Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted-1,3,4-Oxadiazole Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Molecular Docking Studies
2.3. Molecular Dynamic Simulation Studies
2.4. In Vitro Antioxidant Assays
2.5. In Vitro Anti-Inflammatory Potential
2.6. In Vivo Anti-Inflammatory Potential
2.7. Effect on Antioxidant Enzymes
2.8. Effect on Inflammatory Markers
2.9. Materials and Methods
2.9.1. Synthesis of Intermediate 1,3,4-Oxadiazole (4)
2.9.2. Synthesis of Substituted 1,3,4-Oxadiazole Derivatives Ox-6a-f
2.9.3. Synthesis and Characterization of 2-(3-Methoxybenzylsulfanyl)-5-[1-(2-fluorobiphenyl-4-yl)ethyl]-1,3,4-oxadiazole Ox-6a
2.9.4. Synthesis and Characterization of 2-(4-Methoxybenzylsulfanyl)-5-[1-(2-fluorobiphenyl-4-yl)ethyl]-1,3,4-oxadiazole Ox-6b
2.9.5. Synthesis and Characterization of 2-(3-Hydroxybenzylsulfanyl)-5-[1-(2-fluorobiphenyl-4-yl)ethyl]-1,3,4-oxadiazole Ox-6c
2.9.6. Synthesis and Characterization of 2-({5-[1-(2-Fluorobiphenyl-4-yl)ethyl]-1,3,4-oxadiazol-2-yl}sulfanyl)-N-phenylacetamide Ox-6d
2.9.7. Synthesis and Characterization of 2-({5-[1-(2-Fluorobiphenyl-4-yl)ethyl]-1,3,4-oxadiazol-2-yl}sulfanyl)-N-(4-bromophenylacetamide Ox-6e
2.9.8. Synthesis and Characterization of 2-({5-[1-(2-Fluorobiphenyl-4-yl)ethyl]-1,3,4-oxadiazol-2-yl}sulfanyl)-N-(4-chlorophenylacetamide Ox-6f
2.9.9. In Silico Docking Studies
Retrieval of Proteins
Ligand Structures and In Silico Docking
Molecular Dynamics Simulations
2.9.10. DPPH Radical Scavenging Assay
2.9.11. OH Scavenging Assay
2.9.12. Nitric Oxide Scavenging Assay
2.9.13. Iron Chelation
2.9.14. Lipid Peroxidation (TBARS) Estimation
2.9.15. Nitrite Assay
2.9.16. Catalase Assay (CAT)
2.9.17. Peroxidase Assay (POD)
2.9.18. Superoxide Dismutase Assay (SOD)
2.9.19. Reduced Glutathione Assay (GSH)
2.9.20. Total Protein Estimation
2.9.21. Proinflammatory Cytokines
2.9.22. In Vivo Anti-inflammatory Activity
3. Biochemical Analysis
3.1. Measurement of Endogenous Antioxidants
3.2. Measurement of Inflammatory Markers
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash, R.; Singapalli, T.; Gokulnath. Review of oxidative stress in relevance to uremia. Clin. Queries Nephrol. 2012, 1, 215–221. [Google Scholar] [CrossRef]
- Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, antioxidant therapies and chronic kidney disease. Nephrology 2012, 17, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Naito, Y. What is oxidative stress? Jpn. Med. Assoc. J. 2002, 45, 271–276. [Google Scholar]
- Nikam, S.; Nikam, P.; Ahaley, S.; Sontakke, A. Oxidative stress in Parkinson’s disease. Indian. J. Clin. Biochem. 2009, 24, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Huang, Y.; Przedborski, S. Oxidative stress in Parkinson’s disease: A mechanism of pathogenic and therapeutic significance. Ann. N. Y. Acad. Sci. 2008, 1147, 93–104. [Google Scholar] [CrossRef]
- Gita Chawla, G.; Naaz, B.; Siddiqui, A.A. Exploring 1,3,4-Oxadiazole Scaffold for Anti-inflammatory and Analgesic Activities: A Review of Literature From 2005–2016. Mini. Rev. Med. Chem. 2018, 18, 216–233. [Google Scholar]
- Abas, M.; Rafique, H.; Shamas, S.; Roshan, S.; Ashraf, Z.; Iqbal, Z.; Raza, H.; Hassan, M.; Afzal, K.; Rizvanov, A.A.; et al. Sulfonamide-Based Azaheterocyclic Schiff Base Derivatives as Potential Carbonic Anhydrase Inhibitors: Synthesis, Cytotoxicity, and Enzyme Inhibitory Kinetics. BioMed Res. Int. 2020, 2020, 8104107. [Google Scholar] [CrossRef] [Green Version]
- Lelyukh, M.; Martynets, M.; Kalytovska, M.; Drapak, I.; Harkov, S.; Chaban, T.; Chaban, I.; Matiychuk, V. Approaches for synthesis and chemical modification of non-condensed heterocyclic systems based on 1,3,4-oxadiazole ring and their biological activity: A review. J. Appl. Pharm. Sci. 2020, 10, 151–165. [Google Scholar]
- Ramaprasad, G.; Kalluraya, B.; Kumar, B.S.; Hunnur, R.K. Synthesis and biological property of some novel 1,3,4-oxadiazoles. Eur. J. Med. Chem. 2010, 45, 4587–4593. [Google Scholar] [CrossRef]
- Khan, I.; Hanif, M.; Hussain, M.T.; Khan, A.A.; Aslam, M.A.S.; Rama, N.H.; Iqbal, J. Synthesis, acetylcholinesterase and alkaline phosphatase inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Aust. J. Chem. 2012, 65, 1413–1419. [Google Scholar] [CrossRef]
- Tantray, M.A.; Khan, I.; Hamid, H.; Alam, M.S.; Dhulap, A.; Kalam, A. Synthesis of benzimidazole-linked-1, 3,4-oxadiazole carboxamides as GSK-3β inhibitors with in vivo antidepressant activity. Bioorg. Chem. 2018, 77, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Llinas-Brunet, M.; Bailey, M.D.; Ghiro, E.; Gorys, V.; Halmos, T.; Poirier, M.; Goudreau, N. A systematic approach to the optimization of substrate-based inhibitors of the hepatitis C virus NS3 protease: Discovery of potent and specific tripeptide inhibitors. J. Med. Chem. 2004, 47, 6584–6594. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Shu, C.; Haddad, N.; Zeng, X.; Patel, N.D.; Tan, Z.; Campbell, S. A highly convergent and efficient synthesis of a macrocyclic hepatitis C virus protease inhibitor BI 201302. Org. Lett. 2013, 15, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-M.; Han, F.-F.; He, M.; Hu, D.-Y.; He, J.; Yang, S.; Song, B.-A. Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1, 3, 4-oxadiazole moiety. J. Agric. Food Chem. 2012, 60, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Munawar, M.A.; Chattha, F.A.; Kousar, S.; Munir, J.; Ismail, T.; Ashraf, M.; Khan, M.A. Synthesis of novel triazoles and a tetrazole of escitalopram as cholinesterase inhibitors. Bioorg. Med. Chem. 2015, 23, 6014–6024. [Google Scholar]
- El-Din, M.M.G.; El-Gamal, M.I.; Abdel-Maksoud, M.S.; Yoo, K.H.; Oh, C.-H. Synthesis and in vitro antiproliferative activity of new 1, 3, 4-oxadiazole derivatives possessing sulfonamide moiety. Eur. J. Med. Chem. 2015, 90, 45–52. [Google Scholar] [CrossRef]
- Ma, L.; Xiao, Y.; Li, C.; Xie, Z.-L.; Li, D.-D.; Wang, Y.-T.; Ye, Y.-H. Synthesis and antioxidant activity of novel Mannich base of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan. Bioorg. Med. Chem. 2013, 21, 6763–6770. [Google Scholar] [CrossRef]
- Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem. 2018, 77, 106–124. [Google Scholar] [CrossRef]
- Ahmed, M.N.; Sadiq, B.; Al-Masoudi, N.A.; Yasin, K.A.; Hameed, S.; Mahmood, T.; Ayub, K.; Tahir, M.N. Synthesis, crystal structures, computational studies and antimicrobial activity of new designed bis((5-aryl-1,3,4-oxadiazol-2-yl)thio) alkanes. J. Mol. Struct. 2018, 1155, 403–413. [Google Scholar] [CrossRef]
- Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Wadood, A.; Ismail, N.H.; Rahim, F.; Khan, K.M. Novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone: A new class of β-glucuronidase inhibitors and in silico studies. Bioorg. Med. Chem. 2015, 23, 3119–3125. [Google Scholar] [CrossRef]
- Abd-Ellah, H.S.; Abdel-Aziz, M.; Shoman, M.E.; Beshr, E.A.; Kaoud, T.; Ahmed, A.-S.F. New 1,3,4-oxadiazole/oxime hybrids: Design, synthesis, anti-inflammatory, COX inhibitory activities and ulcerogenic liability. Bioorg. Chem. 2017, 74, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Luczynski, M.; Kudelko, A. Synthesis and Biological Activity of 1,3,4-Oxadiazoles Used in Medicine and Agriculture. Appl. Sci. 2022, 12, 3756. [Google Scholar] [CrossRef]
- Tokumaru, K.; Johnston, J.N. A convergent synthesis of 1,3,4-oxadiazoles from acyl hydrazides under semiaqueous conditions. Chem. Sci. 2017, 8, 3187–3191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wet-Osot, S.; Phakhodee, W.; Pattarawarapan, M. Application of N-Acylbenzotriazoles in the Synthesis of 5-Substituted 2-Ethoxy-1,3,4-oxadiazoles as Building Blocks toward 3,5-Disubstituted 1,3,4-Oxadiazol-2(3H)-ones. J. Org. Chem. 2017, 82, 9923–9929. [Google Scholar] [CrossRef] [PubMed]
- Jasiak, K.; Kudelko, A. Oxidative cyclization of N-aroylhydrazones to 2-(2-arylethenyl)-1,3,4-oxadiazoles using DDQ as an efficient oxidant. Tetrahedron Lett. 2015, 56, 5878–5881. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, C.J.; Feng, Q.Z.; Zhai, J.J.; Qi, S.S.; Zhong, A.G.; Chu, M.M.; Xu, D.Q. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para-quinone methides with β-ketoesters. Chem. Commun. 2022, 58, 6653–6656. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Zhong, A.; Wang, S.; Shao, Y. Transition-metal-free catalytic hydroboration reduction of amides to amines. Org. Chem. Front. 2020, 7, 3515–3520. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front. 2021, 8, 4554–4559. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Zhong, A.; Li, J.; Yang, J. Combined KOH/BEt3 catalyst for selective deaminative hydroboration of aromatic carboxamides for construction of luminophores. Org. Lett. 2020, 22, 8086–8090. [Google Scholar] [CrossRef]
- Yao, W.; He, L.; Han, D.; Zhong, A. Sodium triethylborohydride-catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J. Org. Chem. 2019, 84, 14627–14635. [Google Scholar] [CrossRef]
- Iqbal, Z.; Ashraf, Z.; Hassan, M.; Abbas, Q.; Jabeen, E. Substituted phenyl[(5-benzyl-1,3,4-oxadiazol-2-yl)sulfanyl]acetates/acetamides as alkaline phosphatase inhibitors: Synthesis, computational studies, enzyme inhibitory kinetics and DNA binding studies. Bioorg. Chem. 2019, 90, 103108. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Iqbal, A.; Ashraf, Z.; Latif, M.; Hassan, M.; Nadeem, H. Synthesis and docking studies of N-(5-(alkylthio)-1,3,4-oxadiazol-2-yl)methyl)benzamide analogues as potential alkaline phosphatase inhibitors. Drug Dev. Res. 2019, 80, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2006, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Lovell, S.C.; Davis, I.W.; Arendall, W.B., III; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: Phi, psi and Cbeta deviation. Proteins 2002, 50, 437–450. [Google Scholar] [CrossRef]
- Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 1, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Studio, Discovery, version 2.1; Accelrys: San Diego, CA, USA, 2008.
- Willard, L.; Ranjan, A.; Zhang, H.; Monzavi, H.; Boyko, R.F.; Sykes, B.D.; Wishart, D.S. VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003, 31, 3316–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods MolBiol. 2015, 1263, 243–250. [Google Scholar]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1996, 8, 127–134. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Oostenbrink, C.; Villa, A.; Mark, A.E.; van Gunsteren, W.F. Abiomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676. [Google Scholar] [CrossRef]
- Schüttelkopf, A.W.; van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Desmarchelier, C.; Bermudez, M.J.N.; Coussio, J.; Ciccia, G.; Boveris, A. Antioxidant and prooxidant activities in aqueous extract of Argentine plants. Int. J. Pharmacogn. 1997, 35, 116–120. [Google Scholar] [CrossRef]
- Batool, R.; Khan, M.R.; Majid, M. Euphorbia dracunculoides L. abrogates carbon tetrachloride induced liver and DNA damage in rats. BMC Complement. Altern. Med. 2017, 17, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadwan, M.H. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 2018, 19, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, I.; Abbas, S.Q.; Hassan, M.; Majid, M.; Jin, H.Z.; Bungau, S. Stress driven discovery of natural products from actinobacteria with anti-oxidant and cytotoxic activities including docking and admet properties. Int. J. Mol. Sci. 2021, 22, 11432. [Google Scholar]
- Chiswick, E.L.; Duffy, E.; Japp, B.; Remick, D. Withametelin: Detection and Quantification of Cytokines and Other Biomarkers. Methods Mol. Biol. 2012, 844, 15–30. [Google Scholar]
- Ou, Z.; Zhao, J.; Zhu, L.; Huang, L.; Ma, Y.; Ma, C.; Luo, C.; Zhu, Z.; Yuan, Z.; Wu, J.; et al. Anti-inflammatory effect and potential mechanism of betulinic acid on λ-carrageenan-induced paw edema in mice. Biomed. Pharmacother. 2019, 118, 109347. [Google Scholar] [CrossRef]
- Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A.; Ghorbanzadeh, B. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J. Pharmacol. 2015, 47, 292. [Google Scholar]
- Nasir, B.; Baig, M.W.; Majid, M.; Ali, S.M.; Khan, M.Z.I.; Kazmi, S.T.B.; Haq, I.U. Preclinical anticancer studies on the ethyl acetate leaf extracts of Datura stramonium and Datura inoxia. BMC Complement. Med. Ther. 2020, 20, 188. [Google Scholar] [CrossRef]
- Osyczka, P.; Chowaniec, K.; Skubała, K. Membrane lipid peroxidation in lichens determined by the TBARS assay as a suitable biomarker for the prediction of elevated level of potentially toxic trace elements in soil. Ecol. Indic. 2023, 146, 109910. [Google Scholar] [CrossRef]
- Ma, Y.; Song, X.; Ma, T.; Li, Y.; Bai, H.; Zhang, Z.; Hu, H.; Yuan, R.; Wen, Y.; Gao, L. Aminoguanidine inhibits IL-1β-induced protein expression of iNOS and COX-2 by blocking the NF-κB signaling pathway in rat articular chondrocytes. Exp. Ther. Med. 2020, 20, 2623–2630. [Google Scholar] [CrossRef] [PubMed]
Compounds | Binding Energy (kcal/mol) (COX-2) (PDBID 5KIR) | Binding Energy (kcal/mol) (COX-1) (PDBID 6Y3C) | Binding Energy (kcal/mol) (NOX) (PDBID 7U8G) |
---|---|---|---|
Ox-6a | −7.10 | −6.30 | −7.10 |
Ox-6b | −6.40 | −6.10 | −6.70 |
Ox-6c | −6.60 | −6.20 | −7.40 |
Ox-6d | −7.30 | −6.70 | −7.90 |
Ox-6e | −6.90 | −6.40 | −7.50 |
Ox-6f | −7.70 | −6.80 | −8.10 |
Group | 1st h | 3rd h | 6th h | 12th h |
---|---|---|---|---|
Saline Control | -- | -- | -- | -- |
Carrageenan Control | -- | -- | -- | -- |
Ibuprofen | 36.87 ± 4.21 | 54.03 ± 2.79 | 72.58 ± 1.82 | 84.71 ± 2.78 a |
Ox-6a | 13.96 ± 8.61 | 36.82 ± 8.47 | 56.14 ± 4.72 | 74.52 ± 3.97 d |
Ox-6b | 10.05 ± 2.56 | 21.51 ± 4.92 | 52.55 ± 1.82 | 57.96 ± 4.17 e |
Ox-6c | 16.75 ± 8.22 | 23.38 ± 5.03 | 38.18 ± 4.94 | 51.59 ± 1.91 f |
Ox-6d | 8.93 ± 3.48 | 30.11 ± 3.35 | 65.41 ± 2.04 | 76.64 ± 3.21 c |
Ox-6e | 7.26 ± 3.48 | 26.07 ± 2.83 | 40.45 ± 2.04 | 52.44 ± 4.51 f |
Ox-6f | 9.49 ± 1.67 | 29.31 ± 1.86 | 57.65 ± 1.73 | 79.83 ± 4.04 b |
Groups | CAT (U/min) | POD (U/min) | SOD (U/min) | GSH (μM/mg Protein) |
---|---|---|---|---|
Saline Control | 4.36 ± 1.28 | 8.03 ± 1.48 | 16.78 ± 1.21 | 23.33 ± 1.21 |
Carrageenan Control | 2.93 ± 0.35 | 4.37 ± 0.94 | 09.39 ± 2.32 | 12.56 ± 1.53 |
Ibuprofen | 4.41 ± 0.36 | 7.96 ± 1.04 | 15.06 ± 1.23 | 22.46 ± 0.21 |
Ox-6a | 4.53 ± 0.55 a | 8.21 ± 1.33 | 15.94 ± 0.34 a | 21.86 ± 1.63 a |
Ox-6b | 5.06 ± 0.95 a | 7.46 ± 0.32 a | 12.53 ± 2.29 a | 18.15 ± 0.58 a |
Ox-6c | 5.53 ± 0.61 a | 7.13 ± 1.05 a | 13.03 ± 1.13 ab | 17.24 ± 2.31 a |
Ox-6d | 5.31 ± 0.87 a | 8.23 ± 0.73 a | 16.43 ± 0.65 b | 21.52 ± 1.66 a |
Ox-6e | 5.43 ± 0.81 b | 7.81 ± 1.51 b | 11.61 ± 0.92 c | 16.27 ± 0.79 b |
Ox-6f | 4.66 ± 0.65 | 8.66 ± 0.41 ab | 15.74 ± 1.97 a | 21.72 ± 0.89 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, S.M.; Islam, M.; Saeed, H.; Rafique, H.; Majid, M.; Aqeel, M.T.; Imtiaz, F.; Ashraf, Z. Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted-1,3,4-Oxadiazole Derivatives. Pharmaceuticals 2023, 16, 1045. https://doi.org/10.3390/ph16071045
Rana SM, Islam M, Saeed H, Rafique H, Majid M, Aqeel MT, Imtiaz F, Ashraf Z. Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted-1,3,4-Oxadiazole Derivatives. Pharmaceuticals. 2023; 16(7):1045. https://doi.org/10.3390/ph16071045
Chicago/Turabian StyleRana, Sibghat Mansoor, Muhammad Islam, Hamid Saeed, Hummera Rafique, Muhammad Majid, Muhammad Tahir Aqeel, Fariha Imtiaz, and Zaman Ashraf. 2023. "Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted-1,3,4-Oxadiazole Derivatives" Pharmaceuticals 16, no. 7: 1045. https://doi.org/10.3390/ph16071045
APA StyleRana, S. M., Islam, M., Saeed, H., Rafique, H., Majid, M., Aqeel, M. T., Imtiaz, F., & Ashraf, Z. (2023). Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted-1,3,4-Oxadiazole Derivatives. Pharmaceuticals, 16(7), 1045. https://doi.org/10.3390/ph16071045