Droplet-Based Microfluidics: Applications in Pharmaceuticals
Abstract
:1. Introduction
2. Droplet-Based Microfluidics
2.1. Droplet-Based Microfluidic Device Fabrication
2.2. Droplet Generation
2.3. Droplet Manipulation
2.4. Open Droplet Microsystem
3. Droplet-Based Microfluidic Technology for Pharmaceutical Applications
3.1. Drug Synthesis
3.2. Drug Screening
3.3. Drug Delivery
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelm, J.M.; Lal-Nag, M.; Sittampalam, G.S.; Ferrer, M. Translational in vitro research: Integrating 3D drug discovery and development processes into the drug development pipeline. Drug. Discov. Today 2019, 24, 26–30. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Bian, F.; Shang, L.; Zhu, K.; Zhao, Y. Advances of droplet-based microfluidics in drug discovery. Expert. Opin. Drug. Discov. 2020, 15, 969–979. [Google Scholar] [CrossRef]
- Dittrich, P.S.; Manz, A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug. Discov. 2006, 5, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Warden, A.R.; Ding, X. Recent advances in microfluidics for drug screening. Biomicrofluidics 2019, 13, 061503. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug. Discov. Today 2019, 24, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, L.; Zhang, H.; Shang, L.; Zhao, Y. Microfluidics for drug development: From synthesis to evaluation. Chem. Rev. 2021, 121, 7468–7529. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Peng, Y.; Li, H.; Chen, W. Organ-on-a-chip: A new paradigm for drug development. Trends Pharmacol. Sci. 2021, 42, 119–133. [Google Scholar] [CrossRef]
- Smietana, K.; Siatkowski, M.; Møller, M. Trends in clinical success rates. Nat. Rev. Drug. Discov. 2016, 15, 379–380. [Google Scholar] [CrossRef]
- Dugger, S.A.; Platt, A.; Goldstein, D.B. Drug development in the era of precision medicine. Nat. Rev. Drug. Discov. 2018, 17, 183–196. [Google Scholar] [CrossRef]
- Karale, C.K.; Nikumbh, K.K.; Wagh, D.S.; Thorat, S.S. Microfluidics in drug discovery: An overview. Inventi Rapid Pharm. Process. Dev. 2013, 2013, 146. [Google Scholar]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Kaneko, M.; Narukawa, M. Approval success rates of drug candidates based on target, action, modality, application, and their combinations. Clin. Transl. Sci. 2021, 14, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.; Rath, S.N. 3D printed microfluidic devices: A review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Des. Manuf. 2021, 4, 311–343. [Google Scholar] [CrossRef]
- Santana, H.S.; Palma, M.S.; Lopes, M.G.; Souza, J.; Lima, G.A.; Taranto, O.P.; Silva, J.L., Jr. Microfluidic devices and 3D printing for synthesis and screening of drugs and tissue engineering. Ind. Eng. Chem. Res. 2020, 59, 3794–3810. [Google Scholar] [CrossRef]
- Berlanda, S.F.; Breitfeld, M.; Dietsche, C.L.; Dittrich, P.S. Recent advances in microfluidic technology for bioanalysis and diagnostics. Anal. Chem. 2020, 93, 311–331. [Google Scholar] [CrossRef] [PubMed]
- Dressler, O.J.; Maceiczyk, R.M.; Chang, S.I.; DeMello, A.J. Droplet-based microfluidics: Enabling impact on drug discovery. J. Biomol. Screen. 2014, 19, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Ruszczak, A.; Bartkova, S.; Zapotoczna, M.; Scheler, O.; Garstecki, P. Droplet-based methods for tackling antimicrobial resistance. Curr. Opin. Biotechnol. 2022, 76, 102755. [Google Scholar] [CrossRef] [PubMed]
- Mashaghi, S.; Abbaspourrad, A.; Weitz, D.A.; van Oijen, A.M. Droplet microfluidics: A tool for biology, chemistry and nanotechnology. TrAC Trends Anal. Chem. 2016, 82, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Amirifar, L.; Besanjideh, M.; Nasiri, R.; Shamloo, A.; Nasrollahi, F.; de Barros, N.R.; Davoodi, E.; Erdem, A.; Mahmoodi, M.; Hosseini, V.; et al. Droplet-based microfluidics in biomedical applications. Biofabrication 2022, 14, 022001. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, R.; Shen, B.; Li, N.; Zhou, H.; Wang, W.; Zhao, Y.; Huang, M.; Fang, P.; Wang, S.; et al. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics. Sci. Adv. 2021, 7, eabe3839. [Google Scholar] [CrossRef]
- Schoepp, N.G.; Schlappi, T.S.; Curtis, M.S.; Butkovich, S.S.; Miller, S.; Humphries, R.M.; Ismagilov, R.F. Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. Sci. Transl. Med. 2017, 9, eaal3693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulesa, A.; Kehe, J.; Hurtado, J.E.; Tawde, P.; Blainey, P.C. Combinatorial drug discovery in nanoliter droplets. Proc. Natl. Acad. Sci. USA 2018, 115, 6685–6690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.; Chen, X. A review on microdroplet generation in microfluidics. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 247. [Google Scholar] [CrossRef]
- Kovalchuk, N.M.; Simmons, M.J.H. Review of the role of surfactant dynamics in drop microfluidics. Adv. Colloid. Interface Sci. 2023, 312, 102844. [Google Scholar] [CrossRef] [PubMed]
- Fenneteau, J.; Chauvin, D.; Griffiths, A.D.; Nizak, C.; Cossy, J. Synthesis of new hydrophilic rhodamine based enzymatic substrates compatible with droplet-based microfluidic assays. Chem. Commun. 2017, 53, 5437–5440. [Google Scholar] [CrossRef]
- Dimitriou, P.; Li, J.; Tornillo, G.; McCloy, T.; Barrow, D. Droplet microfluidics for tumor drug-related studies and programmable artificial cells. Glob. Chall. 2021, 5, 2000123. [Google Scholar] [CrossRef]
- Payne, E.M.; Holland-Moritz, D.A.; Sun, S.; Kennedy, R.T. High-throughput screening by droplet microfluidics: Perspective into key challenges and future prospects. Lab Chip 2020, 20, 2247–2262. [Google Scholar] [CrossRef]
- Chen, L.; Yang, C.; Xiao, Y.; Yan, X.; Hu, L.; Eggersdorfer, M.; Chen, D.; Weitz, D.A.; Ye, F. Millifluidics, microfluidics, and nanofluidics: Manipulating fluids at varying length scales. Mater. Today Nano 2021, 16, 100136. [Google Scholar] [CrossRef]
- Shakeri, A.; Khan, S.; Didar, T.F. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab Chip 2021, 21, 3053–3075. [Google Scholar] [CrossRef]
- Yandrapalli, N.; Petit, J.; Bäumchen, O.; Robinson, T. Surfactant-free production of biomimetic giant unilamellar vesicles using PDMS-based microfluidics. Commun. Chem. 2021, 4, 100. [Google Scholar] [CrossRef]
- Krishna Kumar, B.; Dickens, T.J. Dynamic bond exchangeable thermoset vitrimers in 3D-printing. J. Appl. Polym. Sci. 2023, 140, e53304. [Google Scholar] [CrossRef]
- An, Z.; Liu, Z.; Mo, H.; Hu, L.; Li, H.; Xu, D.; Chitrakar, B. Preparation of Pickering emulsion gel stabilized by tea residue protein/xanthan gum particles and its application in 3D printing. J. Food Eng. 2023, 343, 111378. [Google Scholar] [CrossRef]
- Su, R.; Wang, F.; McAlpine, M.C. 3D printed microfluidics: Advances in strategies, integration, and applications. Lab Chip 2023, 23, 1279–1299. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, P.S.; Gudeti, P.K.R.; Rikmanspoel, T.; Włodarczyk-Biegun, M.K. 3D printing of bio-instructive materials: Toward directing the cell. Bioact. Mater. 2023, 19, 292–327. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, X.; Han, X.; Hong, X.; Li, X.; Zhang, H.; Li, M.; Wang, Z.; Zheng, A. A Review of 3D Printing Technology in Pharmaceutics: Technology and Applications, Now and Future. Pharmaceutics 2023, 15, 416. [Google Scholar] [CrossRef] [PubMed]
- Lakkala, P.; Munnangi, S.R.; Bandari, S.; Repka, M. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Int. J. Pharm. X 2023, 5, 100159. [Google Scholar] [CrossRef]
- Noroozi, R.; Kashtiban, M.M.; Taghvaei, H.; Zolfagharian, A.; Bodaghi, M. 3D-printed microfluidic droplet generation systems for drug delivery applications. Mater. Today Proc. 2022, 70, 443–446. [Google Scholar] [CrossRef]
- Anyaduba, T.D.; Otoo, J.A.; Schlappi, T.S. Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds. Micromachines 2022, 13, 1946. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Bell, S.; Iyer, H.; Brenden, C.K.; Zhang, Y.; Kim, S.; Park, I.; Bashir, R.; Sweedler, J.; Vlasov, Y. Integrated silicon microfluidic chip for picoliter-scale analyte segmentation and microscale printing for mass spectrometry imaging. Lab Chip 2023, 23, 72–80. [Google Scholar] [CrossRef]
- Kaminski, T.S.; Scheler, O.; Garstecki, P. Droplet microfluidics for microbiology: Techniques, applications and challenges. Lab Chip 2016, 16, 2168. [Google Scholar] [CrossRef] [Green Version]
- Shang, L.; Cheng, Y.; Zhao, Y. Emerging Droplet Microfluidics. Chem. Rev. 2017, 117, 7964–8040. [Google Scholar] [CrossRef] [PubMed]
- Moragues, T.; Arguijo, D.; Beneyton, T.; Modavi, C.; Simutis, K.; Abate, A.R.; Baret, J.C.; deMello, A.J.; Densmore, D.; Griffiths, A.D. Droplet-based microfluidics. Nat. Rev. Methods Prim. 2023, 3, 32. [Google Scholar] [CrossRef]
- Huang, D.; Wang, J.; Che, J.; Wen, B.; Kong, W. Ultrasound-responsive microparticles from droplet microfluidics. Biomed. Technol. 2023, 1, 1–9. [Google Scholar] [CrossRef]
- Yu, W.; Liu, X.; Zhao, Y.; Chen, Y. Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles. Chem. Eng. Sci. 2019, 203, 259–284. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, L. Passive and active droplet generation with microfluidics: A review. Lab Chip 2017, 17, 34. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Dynamics of Passive Droplet Generation in Capillary Microfluidic Devices. In Microfluidics-Enabled Soft Manufacture; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Aminizadeh, J.; Moosavi, A. Microfluidic equivalents of three logical systems for controlling droplet generation: Set, reset, and set-reset latches. Sens. Actuators A Phys. 2023, 349, 114073. [Google Scholar] [CrossRef]
- Chong, Z.Z.; Tan, S.H.; Gañán-Calvo, A.M.; Tor, S.B.; Loh, N.H.; Nguyen, N.T. Active droplet generation in microfluidics. Lab Chip 2016, 16, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Buryska, T.; Yang, T.; Wang, J.; Fischer, P.; Streets, A.; Stavrakis, S.; deMello, A. Towards an active droplet-based microfluidic platform for programmable fluid handling. Lab Chip 2023, 23, 2029–2038. [Google Scholar] [CrossRef]
- Albadi, A.; Zhang, Y. A versatile droplet on demand generator based on active pressure control. Rev. Sci. Instrum. 2020, 91, 125005. [Google Scholar] [CrossRef]
- Fadaei, M.; Majidi, S.; Mojaddam, M. Droplet generation in a co-flowing microchannel influenced by magnetic fields applied in parallel and perpendicular to flow directions. J. Magn. Magn. Mater. 2023, 570, 170528. [Google Scholar] [CrossRef]
- Clerget, M.; Klimenko, A.; Bourrel, M.; Lequeux, F.; Panizza, P. Marangoni destabilization of bidimensional-confined gas–liquid co-flowing streams in rectangular microfluidic channels. Phys. Fluids 2023, 35, 042111. [Google Scholar] [CrossRef]
- Nette, J.; Montanarella, F.; Zhu, C.; Sekh, T.V.; Boehme, S.C.; Bodnarchuk, M.I.; Raino, G.; Howes, P.D.; Kovalenko, M.V.; deMello, A.J. Microfluidic synthesis of monodisperse and size-tunable CsPbBr3 supraparticles. Chem. Commun. 2023, 59, 3554–3557. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, X.; Chen, R.; Zhou, J.; Zhang, H.; Ma, X.; Bao, F. Encapsulation of Monodisperse Microdroplets in Nanofibers through a Microfluidic–Electrospinning Hybrid Method. Langmuir 2023, 39, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Zheng, Z.; Luo, Y.; Dong, T.; Huang, Y.; Li, Y.; Song, C. Development of robust on-demand droplet generation system using 3-D image reconstruction as feedback. IEEE Trans. Ind. Electron. 2022, 70, 10700–10709. [Google Scholar] [CrossRef]
- Jena, S.K.; Srivastava, T.; Bahga, S.S.; Kondaraju, S. Effect of channel width on droplet generation inside T-junction microchannel. Phys. Fluids 2023, 35, 022107. [Google Scholar] [CrossRef]
- Liu, E.; Wang, C.; Zheng, H.; Song, S.; Riaud, A.; Zhou, J. Two-dimensional manipulation of droplets on a single-sided continuous optoelectrowetting digital microfluidic chip. Sens. Actuators B Chem. 2022, 368, 132231. [Google Scholar] [CrossRef]
- Kong, W.; Feng, H.; Qian, X.; Chen, Y.; Deng, M.; Zhang, P.; Li, W.; Bu, W.; Jin, W.; Huang, Y.; et al. Facile and scalable generation of fluorescent microspheres using a microfluidic electrojetting device. Sens. Actuators B Chem. 2023, 378, 133106. [Google Scholar] [CrossRef]
- Bouillant, A.; Lafoux, B.; Clanet, C.; Quere, D. Thermophobic leidenfrost. Soft Matter. 2021, 17, 8805–8809. [Google Scholar] [CrossRef]
- Priyadarshani, J.; Awasthi, P.; Das, S.; Chakraborty, S. Thermally-modulated shape transition at the interface of soft gel filament and hydrophobic substrate. J. Colloid. Interface Sci. 2023, 640, 246–260. [Google Scholar] [CrossRef]
- Damodara, S.; Sen, A.K. Magnetic field assisted droplet manipulation on a soot-wax coated superhydrophobic surface of a PDMS-iron particle composite substrate. Sens. Actuators B Chem. 2017, 239, 816–823. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Hu, Y.; Wu, T.; Zhang, Y.; Li, H.; Chu, J. Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation. Nano Lett. 2022, 22, 2923–2933. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Xu, F.; Chen, B.; Li, X.; Huang, J.; Mi, S. Variable-position centrifugal platform achieves droplet manipulation and logic circuitries on-chip. Lab Chip 2023, 23, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, S.; Zhang, T.; Cong, H.; Wei, Y.; Xu, J.; Ho, J.P.; Kong, S.K.; Ho, H.P. A centrifugal microfluidic pressure regulator scheme for continuous concentration control in droplet-based microreactors. Lab Chip 2019, 19, 3870–3879. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yu, Y.; Wang, X.; Zu, Y.; Zhao, Y.; Shang, L. Bioinspired stimuli-responsive spindle-knotted fibers for droplet manipulation. Chem. Eng. J. 2023, 451, 138669. [Google Scholar] [CrossRef]
- Hu, S.; Cao, X.; Reddyhoff, T.; Ding, X.; Shi, X.; Dini, D.; deMello, A.J.; Peng, Z.; Wang, Z. Pneumatic programmable superrepellent surfaces. Droplet 2022, 1, 48–55. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, Z.; Zheng, X.; Li, Y.; Che, Z.; Fang, J.; Song, C. Model-based feedback control for on-demand droplet dispensing system with precise real-time phase imaging. Sens. Actuators B Chem. 2022, 365, 131936. [Google Scholar] [CrossRef]
- Mastiani, M.; Seo, S.; Mosavati, B.; Kim, M. High-throughput aqueous two-phase system droplet generation by oil-free passive microfluidics. ACS Omega 2018, 3, 9296–9302. [Google Scholar] [CrossRef] [Green Version]
- Nan, L.; Cao, Y.; Yuan, S.; Shum, H.C. Oil-mediated high-throughput generation and sorting of water-in-water droplets. Microsyst. Nanoeng. 2020, 6, 70. [Google Scholar] [CrossRef]
- Shakya, G.; Yang, T.; Gao, Y.; Fajrial, A.K.; Li, B.; Ruzzene, M.; Borden, M.A.; Ding, X. Acoustically manipulating internal structure of disk-in-sphere endoskeletal droplets. Nat Commun 2022, 13, 987. [Google Scholar] [CrossRef]
- Park, J.; Lee, K.G.; Han, D.H.; Lee, J.S.; Lee, S.J.; Park, J.K. Pushbutton-actived microfluidic dropenser for droplet digital PCR. Biosens. Bioelectron. 2021, 181, 113159. [Google Scholar] [CrossRef]
- Dewandre, A.; Rivero-Rodriguez, J.; Vitry, Y.; Sobac, B.; Scheid, B. Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle. Sci. Rep. 2020, 10, 21616. [Google Scholar] [CrossRef] [PubMed]
- Lashkaripour, A.; Rodriguez, C.; Mehdipour, N.; Mardian, R.; McIntyre, D.; Ortiz, L.; Campbell, J.; Densmore, D. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat. Commun. 2021, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Pathak, M. Effect of velocity slip on the flow and heat transfer characteristics during droplet formation in a microfluidic T-junction. J. Therm. Anal. Calorim. 2023, 148, 2737–2747. [Google Scholar] [CrossRef]
- Wu, J.; Gao, C.; Sun, D.; Yang, L.; Ye, B.; Wang, T.; Zhou, P. Thermally mediated double emulsion droplets formation in a six-way junction microfluidic device. Colloids Surf. A Physicochem. Eng. Asp. 2023, 661, 130961. [Google Scholar] [CrossRef]
- Alizadeh Majd, S.; Moghimi Zand, M.; Javidi, R.; Rahimian, M.H. Numerical investigation of electrohydrodynamic effect for size-tunable droplet formation in a flow-focusing microfluidic device. Soft Mater. 2023, 21, 174–190. [Google Scholar] [CrossRef]
- Kieda, J.; Appak-Baskoy, S.; Jeyhani, M.; Navi, M.; Chan, K.W.; Tsai, S.S. Microfluidically-generated Encapsulated Spheroids (μ-GELS): An All-Aqueous Droplet Microfluidics Platform for Multicellular Spheroids Generation. ACS Biomater. Sci. Eng. 2023, 9, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, C.; Yadav, V.; Wong, A.; Senapati, S.; Chang, H.C. A home-made pipette droplet microfluidics rapid prototyping and training kit for digital PCR, microorganism/cell encapsulation and controlled microgel synthesis. Sci. Rep. 2023, 13, 184. [Google Scholar] [CrossRef]
- Al-Hetlani, E.; Amin, M.O. Continuous magnetic droplets and microfluidics: Generation, manipulation, synthesis and detection. Microchim. Acta 2019, 186, 55. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.P.; Wang, Q.Y.; Ma, Z.K.; Wu, S.H.; Gou, Y.P. Droplet manipulation under a magnetic field: A review. Biosensors 2022, 12, 156. [Google Scholar] [CrossRef]
- Ben, S.; Zhou, T.; Ma, H.; Yao, J.; Ning, Y.; Tian, D.; Liu, K.; Jiang, L. Multifunctional Magnetocontrollable Superwettable-Microcilia Surface for Directional Droplet Manipulation. Adv. Sci. 2019, 6, 1900834. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.H.; Nguyen, N.T.; Yobas, L.; Kang, T.G. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J. Micromechanics Microengineering 2010, 20, 045004. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Tang, X.; Wang, L. Droplet generation in co-flow microfluidic channels with vibration. Microfluid. Nanofluidics 2016, 20, 47. [Google Scholar] [CrossRef]
- Park, J.K.; Yang, Z.; Kim, S. Black silicon/elastomer composite surface with switchable wettability and adhesion between lotus and rose petal effects by mechanical strain. ACS Appl. Mater. Interfaces 2017, 9, 33333–33340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Siltanen, C.A.; Dolatmoradi, A.; Sun, C.; Chang, K.C.; Cole, R.H.; Gartner, Z.J.; Abate, A.R. High diversity droplet microfluidic libraries generated with a commercial liquid spotter. Sci. Rep. 2021, 11, 4351. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Jain, A.; Cao, X.; Hess, D.; Stavrakis, S.; de Mello, A. Programmable Control of Multiscale Droplets using V-Valves. Adv. Mater. Technol. 2023, 8, 2201553. [Google Scholar] [CrossRef]
- Nagesh, G.; Wang, H.; Ting, D.S.K.; Ahamed, M.J. Development of a rapid manufacturable microdroplet generator with pneumatic control. Microsyst. Technol. 2021, 27, 3095–3103. [Google Scholar] [CrossRef]
- Jiang, T.; Wu, Y. Controlled generation of droplets using an electric field in a flow-focusing paper-based device. Electrophoresis 2022, 43, 601–608. [Google Scholar] [CrossRef]
- He, C.; Jiang, S.; Zhu, C.; Ma, Y.; Fu, T. Self-assembly of droplet swarms and its feedback on droplet generation in a step-emulsification microdevice with parallel microchannels. Chem. Eng. Sci. 2022, 256, 117685. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Cai, L.; Shang, L.; Zhao, Y. High-throughput generation of microgels in centrifugal multi-channel rotating system. Chem. Eng. J. 2022, 427, 130750. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Gao, Z.; Sekine, S.; You, Q.; Zhuang, S.; Zhang, D.; Feng, S.; Yamaguchi, Y. Lower fluidic resistance of double-layer droplet continuous flow PCR microfluidic chip for rapid detection of bacteria. Anal. Chim. Acta 2023, 1251, 340995. [Google Scholar] [CrossRef]
- Fevre, R.; Mary, G.; Vertti-Quintero, N.; Durand, A.; Tomasi, R.F.X.; Del Nery, E.; Baroud, C.N. Combinatorial drug screening on 3D Ewing sarcoma spheroids using droplet-based microfluidics. Iscience 2023, 26, 106651. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Huang, Y.; Li, Y.; Duan, X.; Jiang, Y.; Wang, C.; Fang, J.; Xi, L.; Nguyen, N.T.; Song, C. Dispersive phase microscopy incorporated with droplet-based microfluidics for biofactory-on-a-chip. Lab Chip 2023, 23, 2766–2777. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Song, S.; Ma, J.; Da Ling, S.; Wang, Y.D.; Kong, T.T.; Xu, J.H. Fabrication of magnetic core/shell hydrogels via microfluidics for controlled drug delivery. Chem. Eng. Sci. 2022, 248, 117216. [Google Scholar] [CrossRef]
- Liang, X.; Li, M.; Wang, K.; Luo, G. Determination of Time-Evolving interfacial tension and ionic surfactant adsorption kinetics in microfluidic droplet formation process. J. Colloid. Interface Sci. 2022, 617, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, Y.; Wang, S.; Liu, Z.; Cheng, Y. Controlled preparation of alginate microcapsules with multiphase oil cores using microfluidic chip. Chem. Eng. Sci. 2023, 277, 118853. [Google Scholar] [CrossRef]
- Roodan, V.A.; Gómez-Pastora, J.; Karampelas, I.H.; González-Fernández, C.; Bringas, E.; Ortiz, I.; Chalmers, J.J.; Furlani, E.P.; Swihart, M.T. Formation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: A numerical parametric study. Soft Matter. 2020, 16, 9506–9518. [Google Scholar] [CrossRef]
- Cao, J.; An, Q.; Liu, Z.; Jin, M.; Yan, Z.; Lin, W.; Chen, L.; Li, P.; Wang, X.; Zhou, G.; et al. Electrowetting on liquid-infused membrane for flexible and reliable digital droplet manipulation and application. Sens. Actuators B Chem. 2019, 291, 470–477. [Google Scholar] [CrossRef]
- Kumari, P.; Atta, A. Geometric and hydrodynamic influences on the droplet breakup dynamics in a branched microdevice. Chem. Eng. Process. Process. Intensif. 2022, 180, 108818. [Google Scholar] [CrossRef]
- He, K.; Lin, Y.; Guo, X.J.; Yuan, W.Z.; Ge, Y.; Huang, S.M. Phase-splitting features and polydispersity of droplet/slug flow split in a mini-T-junction: Effect of wall wettability. Exp. Therm. Fluid. Sci. 2022, 133, 110579. [Google Scholar] [CrossRef]
- Mazutis, L.; Griffiths, A.D. Selective droplet coalescence using microfluidic systems. Lab Chip 2012, 12, 1800–1806. [Google Scholar] [CrossRef]
- Roshchin, D.E.; Patlazhan, S.A. Mixing inside droplet co-flowing with Newtonian and shear-thinning fluids in microchannel. Int. J. Multiph. Flow. 2023, 158, 104288. [Google Scholar] [CrossRef]
- Sun, G.; Qu, L.; Azi, F.; Liu, Y.; Li, J.; Lv, X.; Du, G.; Chen, J.; Chen, C.H.; Liu, L. Recent progress in high-throughput droplet screening and sorting for bioanalysis. Biosens. Bioelectron. 2023, 225, 115107. [Google Scholar] [CrossRef] [PubMed]
- De Jonghe, J.; Kaminski, T.S.; Morse, D.; Tabaka, M.; Ellermann, A.L.; Kohler, T.N.; Hollfelder, F. spinDrop: A droplet microfluidic platform to maximise single-cell sequencing information content. bioRxiv 2023. [Google Scholar] [CrossRef]
- Bhattacharjee, D.; Chakraborty, S.; Atta, A. Passive droplet sorting engendered by emulsion flow in constricted and parallel microchannels. Chem. Eng. Process. Process. Intensif. 2022, 181, 109126. [Google Scholar] [CrossRef]
- Yang, C.G.; Xu, Z.R.; Wang, J.H. Manipulation of droplets in microfluidic systems. Trends Anal. Chem. 2010, 29, 2010. [Google Scholar] [CrossRef]
- Takinoue, M.; Onoe, H.; Takeuchi, S. Microdroplets: Fusion and Fission Control of Picoliter-Sized Microdroplets for Changing the Solution Concentration of Microreactors. Small 2010, 6, 2374–2377. [Google Scholar] [CrossRef]
- Jin, S.; Ye, G.; Cao, N.; Liu, X.; Dai, L.; Wang, P.; Wang, T.; Wei, X. Acoustics-Controlled Microdroplet and Microbubble Fusion and Its Application in the Synthesis of Hydrogel Microspheres. Langmuir 2022, 38, 12602–12609. [Google Scholar] [CrossRef]
- Fallah, K.; Fattahi, E. Splitting of droplet with different sizes inside a symmetric T-junction microchannel using an electric field. Sci. Rep. 2022, 12, 3226. [Google Scholar] [CrossRef]
- Qin, X.; Wei, X.; Li, L.; Wang, H.; Jiang, Z.; Sun, D. Acoustic valves in microfluidic channels for droplet manipulation. Lab Chip 2021, 21, 3165–3173. [Google Scholar] [CrossRef] [PubMed]
- Coelho, B.J.; Neto, J.P.; Sieira, B.; Moura, A.T.; Fortunato, E.; Martins, R.; Baptista, P.V.; Igreja, R.; Águas, H. Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization. Sensors 2023, 23, 4927. [Google Scholar] [CrossRef]
- Peng, Y.; Li, C.; Jiao, Y.; Zhu, S.; Hu, Y.; Xiong, W.; Cao, Y.; Li, J.; Wu, D. Active Droplet Transport Induced by Moving Meniscus on a Slippery Magnetic Responsive Micropillar Array. Langmuir 2023, 39, 5901–5910. [Google Scholar] [CrossRef]
- Chen, G.; Ji, B.; Gao, Y.; Wang, C.; Wu, J.; Zhou, B.; Wen, W. Towards the rapid and efficient mixing on’open-surface’droplet-based microfluidics via magnetic actuation. Sens. Actuators B Chem. 2019, 286, 181–190. [Google Scholar] [CrossRef]
- Qi, L.; Niu, Y.; Ruck, C.; Zhao, Y. Mechanical-activated digital microfluidics with gradient surface wettability. Lab Chip 2019, 19, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Samlali, K.; Alves, C.L.; Jezernik, M.; Shih, S.C.C. Droplet digital microfluidic system for screening filamentous fungi based on enzymatic activity. Microsyst. Nanoeng. 2022, 8, 123. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, C.; Tian, L.; Wang, R.; Hong, J.; Gao, M.; Gui, L. Dynamic pneumatic rails enabled microdroplet manipulation. Lab Chip 2021, 21, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yu, Z.; Wu, M.; Lan, Y.; Jia, C.; Zhao, J. Single-cell sorting using integrated pneumatic valve droplet microfluidic chip. Talanta 2023, 253, 124044. [Google Scholar] [CrossRef]
- Zeng, Y.; Khor, J.W.; van Neel, T.L.; Tu, W.C.; Berthier, J.; Thongpang, S.; Berthier, E.; Theberge, A.B. Miniaturizing chemistry and biology using droplets in open systems. Nat. Rev. Chem. 2023, 7, 439–455. [Google Scholar] [CrossRef]
- Tung, Y.C.; Hsiao, A.Y.; Allen, S.G.; Torisawa, Y.S.; Ho, M.; Takayama, S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 2011, 136, 473–478. [Google Scholar] [CrossRef]
- Khor, J.W.; Lee, U.N.; Berthier, J.; Berthier, E.; Theberge, A.B. Interfacial tension driven open droplet microfluidics. Adv. Mater. Interfaces 2023, 10, 2202234. [Google Scholar] [CrossRef]
- Park, D.; Kang, M.; Choi, J.W.; Paik, S.M.; Ko, J.; Lee, S.; Lee, Y.; Son, K.; Ha, J.; Choi, M.; et al. Microstructure guided multi-scale liquid patterning on open surface. Lab Chip 2018, 18, 2013–2022. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, S.; Hirvonen, J.; Santos, H.A.; Li, W. Microfluidics Fabrication of Micrometer-Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Adv. Healthc. Mater. 2022, 11, 2200846. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Li, B.; Peng, J.; Gao, D. Recent development of drug delivery systems through microfluidics: From synthesis to evaluation. Pharmaceutics 2022, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Poe, S.L.; Cummings, M.A.; Haaf, M.P.; McQuade, D.T. Solving the clogging problem: Precipitate-forming reactions in flow. Angew. Chem. Int. Ed. Engl. 2006, 45, 1544–1548. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, T.; Bojko, S.; Bunjes, H.; Dietzel, A. An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles. Lab Chip 2018, 18, 627–638. [Google Scholar] [CrossRef]
- Yan, L.; Wang, H.; Bai, L.; Fu, Y.; Cheng, Y. Suzuki-Miyura cross-coupling reaction in droplet-based microreactor. Chem. Eng. Sci. 2019, 207, 352–357. [Google Scholar] [CrossRef]
- Guo, W.; Heeres, H.J.; Yue, J. Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor. Chem. Eng. J. 2020, 381, 122754. [Google Scholar] [CrossRef]
- Smith, A. Screening for drug discovery: The leading question. Nature 2002, 418, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Postek, W.; Garstecki, P. Droplet microfluidics for high-throughput analysis of antibiotic susceptibility in bacterial cells and populations. Acc. Chem. Res. 2022, 55, 605–615. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, S.; Lin, F.; Lin, F.; Zhao, X.; Wu, L.; Miao, Y.; Li, H.; Deng, Y.; Geng, L. Simultaneous label-free screening of G-quadruplex active ligands from natural medicine via a microfluidic chip electrophoresis-based energy transfer multi-biosensor strategy. Analyst 2017, 142, 4257–4264. [Google Scholar] [CrossRef] [PubMed]
- Rane, T.D.; Zec, H.C.; Wang, T.H. A barcode-free combinatorial screening platform for matrix metalloproteinase screening. Anal. Chem. 2015, 87, 1950–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scanlon, T.C.; Dostal, S.M.; Griswold, K.E. A high-throughput screen for antibiotic drug discovery. Biotechnol. Bioeng. 2014, 111, 232–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtney, M.; Chen, X.; Chan, S.; Mohamed, T.; Rao, P.P.; Ren, C.L. Droplet microfluidic system with on-demand trapping and releasing of droplet for drug screening applications. Anal. Chem. 2017, 89, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Tu, R.; Zhang, Y.; Hua, E.; Bai, L.; Huang, H.; Yun, K.; Wang, M. Droplet-based microfluidic platform for high-throughput screening of Streptomyces. Commun. Biol. 2021, 4, 647. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.G.; Huang, M.S.; Wang, H.F.; Fang, Q. Forming a large-scale droplet array in a microcage array chip for high-throughput screening. Anal. Chem. 2019, 91, 10757–10763. [Google Scholar] [CrossRef]
- Fang, G.; Lu, H.; de la Fuente, L.R.; Law, A.M.K.; Lin, G.; Jin, D.; Gallego-Ortega, D. Mammary tumor organoid culture in non-adhesive alginate for luminal mechanics and high-throughput drug screening. Adv. Sci. 2021, 8, 2102418. [Google Scholar] [CrossRef] [PubMed]
- Seeto, W.J.; Tian, Y.; Pradhan, S.; Minond, D.; Lipke, E.A. Droplet microfluidics-based fabrication of monodisperse poly(ethylene glycol)-fibrinogen breast cancer microspheres for automated drug screening applications. ACS Biomater. Sci. Eng. 2022, 8, 3831–3841. [Google Scholar] [CrossRef] [PubMed]
- Gencturk, E.; Kasim, M.; Morova, B.; Kiraz, A.; Ulgen, K.O. Understanding the Link between Inflammasome and Apoptosis through the Response of THP-1 Cells against Drugs Using Droplet-Based Microfluidics. ACS Omega 2022, 7, 16323–16332. [Google Scholar] [CrossRef]
- Zhao, C.X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug. Deliv. Rev. 2013, 65, 1420–1446. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.; Hui, Y.; Ranaweera, S.; Zhao, C.X. Microfluidic nanoparticles for drug delivery. Small 2022, 18, 2106580. [Google Scholar] [CrossRef]
- Li, X.; Fan, X.; Li, Z.; Shi, L.; Liu, J.; Luo, H.; Wang, L.; Du, X.; Chen, W.; Gou, J.; et al. Application of Microfluidics in Drug Development from Traditional Medicine. Biosensors 2022, 12, 870. [Google Scholar] [CrossRef]
- Kashani, S.Y.; Afzalian, A.; Shirinichi, F.; Moraveji, M.F. Microfluidics for core-shell drug carrier particles–a review. RSC Adv. 2020, 11, 229–249. [Google Scholar] [CrossRef] [PubMed]
- Björnmalm, M.; Yan, Y.; Caruso, F. Engineering and evaluating drug delivery particles in microfluidic devices. J. Control. Release 2014, 190, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Zamani, M.H.; Khatibi, A.; Tavana, B.; Zahedi, P.; Aghamohammadi, S. Characterization of drug-loaded alginate-chitosan polyelectrolyte nanoparticles synthesized by microfluidics. J. Polym. Res. 2023, 30, 86. [Google Scholar] [CrossRef]
- Jung, S.H.; Bulut, S.; Guerzoni, L.B.; Günther, D.; Braun, S.; De Laporte, L.; Pich, A. Fabrication of pH-degradable supramacromolecular microgels with tunable size and shape via droplet-based microfluidics. J. Colloid. Interface Sci. 2022, 617, 409–421. [Google Scholar] [CrossRef]
- Ng, D.Z.L.; Nelson, A.Z.; Ward, G.; Lai, D.; Doyle, P.S.; Khan, S.A. Control of drug-excipient particle attributes with droplet microfluidic-based extractive solidification enables improved powder rheology. Pharm. Res. 2022, 39, 411–421. [Google Scholar] [CrossRef]
- Shao, C.; Chi, J.; Shang, L.; Fan, Q.; Ye, F. Droplet microfluidics-based biomedical microcarriers. Acta Biomater. 2022, 138, 21–33. [Google Scholar] [CrossRef]
- Luo, Z.; Zhao, G.; Panhwar, F.; Akbar, M.F.; Shu, Z. Well-designed microcapsules fabricated using droplet-based microfluidic technique for controlled drug release. J. Drug. Deliv. Sci. Technol. 2017, 39, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Wang, J.; Chen, C.; Wang, J.; Liu, G.; Nandakumar, K.; Li, Y.; Wang, L. Microfluidic applications in drug development: Fabrication of drug carriers and drug toxicity screening. Micromachines 2022, 13, 200. [Google Scholar] [CrossRef]
- Rezvantalab, S.; Moraveji, M.K. Microfluidic assisted synthesis of PLGA drug delivery systems. RSC Adv. 2019, 9, 2055–2072. [Google Scholar] [CrossRef] [Green Version]
- Hirama, H.; Ishikura, Y.; Kano, S.; Hayase, M.; Mekaru, H. Monodispersed sodium hyaluronate microcapsules for transdermal drug delivery systems. Mater. Adv. 2021, 2, 7007–7016. [Google Scholar] [CrossRef]
- Giannitelli, S.M.; Limiti, E.; Mozetic, P.; Pinelli, F.; Han, X.; Abbruzzese, F.; Basoli, F.; Del Rio, D.; Scialla, S.; Rossi, F.; et al. Droplet-based microfluidic synthesis of nanogels for controlled drug delivery: Tailoring nanomaterial properties via pneumatically actuated flow-focusing junction. Nanoscale 2022, 14, 11415–11428. [Google Scholar] [CrossRef] [PubMed]
- Preda, P.; Enciu, A.M.; Adiaconita, B.; Mihalache, I.; Craciun, G.; Boldeiu, A.; Aricov, L.; Romanitan, C.; Stan, D.; Marculescu, C.; et al. New Amorphous Hydrogels with Proliferative Properties as Potential Tools in Wound Healing. Gels 2022, 8, 604. [Google Scholar] [CrossRef]
- Luo, C.; Guo, A.; Li, J.; Tang, Z.; Luo, F. Janus Hydrogel to Mimic the Structure and Property of Articular Cartilage. ACS Appl. Mater. Interfaces 2022, 14, 35434–35443. [Google Scholar] [CrossRef] [PubMed]
- Coentro, J.Q.; Di Nubila, A.; May, U.; Prince, S.; Zwaagstra, J.; Jarvinen, T.A.; Zeugolis, D.I. Dual drug delivery collagen vehicles for modulation of skin fibrosis in vitro. Biomed. Mater. 2022, 17, 025017. [Google Scholar] [CrossRef]
- Smagina, V.; Yudaev, P.; Kuskov, A.; Chistyakov, E. Polymeric Gel Systems Cytotoxicity and Drug Release as Key Features for their Effective Application in Various Fields of Addressed Pharmaceuticals Delivery. Pharmaceutics 2023, 15, 830. [Google Scholar] [CrossRef]
- Sartipzadeh, O.; Naghib, S.M.; Haghiralsadat, F.; Shokati, F.; Rahmanian, M. Microfluidic-assisted synthesis and modeling of stimuli-responsive monodispersed chitosan microgels for drug delivery applications. Sci. Rep. 2022, 12, 8382. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wen, Y.; Fan, X.; Sun, M.; Tian, C.; Yang, M.; Xie, H. Magnetically actuated intelligent hydrogel-based child-parent microrobots for targeted drug delivery. J. Mater. Chem. B 2021, 9, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liang, D.; Sun, W.; Shou, X.; Shang, L.; Shen, X. Suspended bubble microcapsule delivery systems from droplet microfluidic technology for the local treatment of gastric cancer. Chem. Eng. J. 2023, 458, 141428. [Google Scholar] [CrossRef]
- Sun, X.; Wu, Q.; Li, W.; Gong, X.; Ge, J.-Y.; Wu, J.; Gao, X. Facile fabrication of drug-loaded PEGDA microcapsules for drug evaluation using droplet-based microchip. Chin. Chem. Lett. 2022, 33, 2697–2700. [Google Scholar] [CrossRef]
- Ota, Y.; Saito, K.; Takagi, T.; Matsukura, S.; Morita, M.; Tsuneda, S.; Noda, N. Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a high-throughput screening method for environmental bacteria with various growth rates. PLoS ONE 2019, 14, e0214533. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.; Madurawe, R.D.; Moore, C.M.V.; Khan, M.A.; Khairuzzaman, A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug. Deliv. Rev. 2017, 108, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Luan, Q.; Becker, J.H.; Macaraniag, C.; Massad, M.G.; Zhou, J.; Shimamura, T.; Papautsky, I. Non-small cell lung carcinoma spheroid models in agarose microwells for drug response studies. Lab Chip 2022, 22, 2364–2375. [Google Scholar] [CrossRef] [PubMed]
- Shembekar, N.; Chaipan, C.; Utharala, R.; Merten, C.A. Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip 2016, 16, 1314. [Google Scholar] [CrossRef] [Green Version]
Type of Control | Droplet Generator | Fabrication Technique | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|
Thermal control | Flow focusing | Soft lithography (*) |
|
| Wu et al., 2023 [75] |
Electrical control | Flow focusing | Soft lithography (*) |
|
| Jiang et al., 2022 [88] |
High-pressure tetrafluoride pump control | Step-emulsification | CNC milled microdevice (*) |
|
| He et al., 2022 [89] |
Centrifugal control | Dispenser nozzles | Glass capillary nozzles (**) |
|
| Li et al., 2022 [90] |
Pressure syringe pump control | Crossflow (T-junction) | Soft lithography (*) |
|
| Li et al., 2023 [91] |
Flow focusing | Soft lithography (*) |
|
| Fevre et al., 2023; Luo et al., 2023 [92,93] | |
Crossflow (T-junction) | CNC milled microdevice (*) |
|
| Chen et al., 2022 [94] | |
Co-flowing | 3D printing and cylindrical glass capillary (**) |
|
| Liang et al., 2022 [95] | |
Gravity force | Co-flowing | 3D printing (**) |
|
| Wu et al., 2023 [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinh, T.N.D.; Do, H.D.K.; Nam, N.N.; Dan, T.T.; Trinh, K.T.L.; Lee, N.Y. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals 2023, 16, 937. https://doi.org/10.3390/ph16070937
Trinh TND, Do HDK, Nam NN, Dan TT, Trinh KTL, Lee NY. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals. 2023; 16(7):937. https://doi.org/10.3390/ph16070937
Chicago/Turabian StyleTrinh, Thi Ngoc Diep, Hoang Dang Khoa Do, Nguyen Nhat Nam, Thach Thi Dan, Kieu The Loan Trinh, and Nae Yoon Lee. 2023. "Droplet-Based Microfluidics: Applications in Pharmaceuticals" Pharmaceuticals 16, no. 7: 937. https://doi.org/10.3390/ph16070937
APA StyleTrinh, T. N. D., Do, H. D. K., Nam, N. N., Dan, T. T., Trinh, K. T. L., & Lee, N. Y. (2023). Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals, 16(7), 937. https://doi.org/10.3390/ph16070937