Treating Epilepsy with Natural Products: Nonsense or Possibility?
Abstract
:1. Introduction
2. Data Collection Process
3. Conventional Therapy
4. Molecular Targets of Natural Products and Experimental Models of Epilepsy
4.1. Natural Products That Affect Voltage-Gated Na+ and Ca2+ Channels
Compound | Effective Dose | Animal Model | Seizure-Inducing Agent | Mechanism | Source |
---|---|---|---|---|---|
Paeoniflorin (monoterpene) | 100 mg/kg/day, p.o. (for 10 days) | Male immature Lewis rats | Hyperthermia | Suppression of [Ca2+]i elevation via mGluR5 | [42] |
Thymol (monoterpene) | 50 and 100 mg/kg, i.p. | Male Swiss mice Male Wistar rats | PTZ, MES, Strychnine, 4-AP | Possibly via positive modulation of GABAA and voltage-dependent Na+ channel blockade | [43] |
Iritectol G (triterpene) | 10 μM | Neocortical neurons of C57BL/6 mice | 4-AP | Interaction with inactivated state of VGSC | [44] |
Imperatorin (coumarin) | 30–50 µM | NG108-15 cells | Voltage-clamp assay | Inhibition of VGSC | [45] |
Xanthotoxin (coumarin) | 50 and 100 mg/kg, i.p. + CBZ 100 mg/kg, i.p. + VPA | Male Swiss mice | MES | Inhibition of P-glycoprotein Inhibition of VGPC Modulation of calcium-dependent potassium channels | [46] |
Acacetin (flavonoid) | 10 and 50 mg/kg, i.p. | Male Sprague Dawley rats | KA | Inhibition of glutamate release by decrease in voltage-dependent Ca2+ entry | [47] |
Aconitine (alkaloid) | 1 μM | Hippocampal slices of male Wistar rats | Low Mg2+-ACSF | Modulation of Na+ channels | [29] |
3-Acetylaconitine (alkaloid) | 0.01–1 μM | Hippocampal slices of male Wistar rats | Mg2+-free ACSF Bicuculline | Inactivation of Na+ channels | [31] |
Lappaconitine (alkaloid) | 1–100 μM | Hippocampal slices of male Wistar rats | Low Mg2+-ACSF Bicuculline | Blockade of Na+ channels | [32] |
N-desacetyl lappaconitine (alkaloid) | 1–100 μM | Hippocampal slices of male Wistar rats | Low Mg2+-ACSF Bicuculline | Blockade of Na+ channels | [32] |
1-Benzoylnapelline (alkaloid) | 1–100 μM | Hippocampal slices of male Wistar rats | Low Mg2+-ACSF Bicuculline | Modulation of Na+ channels | [33] |
6-Benzoylheteratisine (alkaloid) | 0.01–10 μM | Hippocampal slices of male Wistar rats | Bicuculline | Blockade of Na+ channels | [34] |
Nantenine (alkaloid) | 20–50 mg/kg, i.p. | Male albino mice | PTZ MES | Decrease in Ca2+-influx into the cell | [48] |
Piperine (alkaloid) | 5, 10, and 20 mg/kg, i.p. | Male Swiss mice | PTZ, MES, NMDA, PTX, Bicuculline, BAYK-8644, Strychnine | Na+ channel antagonist activity | [35] |
Veratridine (alkaloid) | 1 μM | Hippocampal slices of male Wistar rats | Low Ca2+/high Mg2+-ACSF | Block of inactivation of Na+ channels | [30] |
4.2. Natural Products That Affect the Gabaergic Transmission
Compound | Effective Dose | Animal Model | Seizure-Inducing Agent | Mechanism | Source |
---|---|---|---|---|---|
Thymol (monoterpene) | 50 and 100 mg/kg, i.p. | Male Swiss mice Male Wistar rats | PTZ, MES, Strychnine, 4-AP | Possibly via positive modulation of GABAA and voltage-dependent Na+ channel blockade | [43] |
Thymoquinone (monoterpene) | 40 mg/kg/day, p.o. (for 7 days) | Sprague Dawley rats | PTZ | Activation of GABAB1R/CaMKII/pCREB pathway | [55] |
Paederosidic acid (iridoid) | 5–40 mg/kg, i.p. | Male ICR mice Sprague Dawley rats | MES PTZ | Upregulation of GAD65 | [59] |
Valepotriate (iridoid) | 5–20 mg/kg/day, i.p. (for 3 weeks) | Male ICR mice Sprague Dawley rats | MES PTZ | Upregulation of GABAA, GAD65, and Bcl-2 and downregulation of caspase-3 | [58] |
Bilobalide (sesquiterpene) | 30 mg/kg/day, p.o. (for 4 days) | Hippocampus, cortex, and striatum of male ddY mice | INH | Elevation of GABA levels Potentiation of GAD activity | [61] |
Curcumol (sesquiterpene) | 100 mg/kg/day, i.p. (for 3 days) | Male C57BL/6J mice | PTZ KA | Facilitation of GABAergic inhibition | [73] |
(+)-Dehydrofukinone (sesquiterpene) | 10, 30, and 100 mg/kg, i.p. | Female Swiss mice | PTZ | Modulation of GABAA receptors | [74] |
Betulin (triterpene) | 50 and 100 mg/kg, i.p. | Male ICR mice | Bicuculline | Binding to the GABAA receptor | [75] |
Ginsenoside Rg3 (triterpene) | 100 μM | Xenopus laevis oocytes | Electrode voltage-clamp technique | GABAA receptor activation via interaction with the γ2 subunit | [76] |
Ursolic acid stearoyl glucoside (triterpene) | 50 mg/kg, i.p. | Wistar albino rats | MES INH | Possibly via GABA receptor stimulation | [77] |
Embelin (benzoquinone) | 0.156–0.625 mg/kg, i.p. | Adult zebrafish | PTZ | Affinity toward GABAA receptor | [78] |
Cnidilin (coumarin) | 300 µM | Xenopus oocytes | Two-microelectrode voltage clamp assay | Modulation of GABAA receptors of the subunit combination α1β2γ2S | [79] |
Osthole (coumarin) | 300 µM | Xenopus oocytes | Two-microelectrode voltage clamp assay | Modulation of GABAA receptors of the subunit combination α1β2γ2S | [79] |
Lucidafuranocouma-rin A (coumarin) | 10–16 μM | Zebrafish larvae | PTZ | Possibly via interaction with the GABAA receptor | [68] |
Oxypeucedanin (coumarin) | 10–40 μM | Zebrafish larvae | PTZ | Possibly via interaction with the GABAA receptor | [69] |
Oxypeucedanin hydrate (coumarin) | 20–50 μM | Zebrafish larvae | PTZ | Possibly via interaction with the GABAA receptor | [69] |
Notopterol (coumarin) | 0.25–2 μM | Zebrafish larvae | PTZ | Possibly via interaction with the GABAA receptor | [69] |
Pimpinellin (coumarin) | 20–80 μM | Zebrafish larvae | PTZ | Possibly via interaction with the GABAA receptor | [69] |
Hyuganin C (coumarin) | 2.5–20 μM | Zebrafish larvae | PTZ | Possibly via interaction with the GABAA receptor | [69] |
Rosmarinic acid (phenolic) | 30 mg/kg, i.p. | Female C57BL/6 mice | PTZ Pilocarpine | Probably activation of the GABAergic system | [80] |
Chlorogenic acid (phenolic) | 5 mg/kg/day, p.o. (for 15 days) | Male Swiss albino mice | Pilocarpine | Suppressing glutamate receptors, neuroprotective effect | [81] |
Gastrodin (phenolic) | 60 mg/kg/day, p.o. (for 7 days) | Mongolian gerbils | Genetic seizure model (seizure-sensitive gerbils) | Decrease in GABA degradation Decrease in GABA-T, SSADH, and SSAR immunoreactivities | [82] |
Rutin (flavonoid) | 50 and 150 nM, i.c.v. | Male Wistar rats | PTZ | Positive allosteric modulation of the GABAA receptor complex via interaction at the benzodiazepine site | [83] |
Wogonin (flavonoid) | 5 and 10 mg/kg, i.p. | Male Sprague Dawley rats | MES PTZ | Potentiation of the activity of GABA | [84] |
Vitexin (flavonoid) | 100 and 200 µM, i.c.v. | Male Wistar rats | PTZ | Interaction with GABAA benzodiazepine receptor complex | [85] |
10 mg/kg/day, p.o. (for 15 days) | Male Swiss albino mice | Pilocarpine | Suppressing glutamate receptors, neuroprotective effect | [81] | |
Nobiletin (flavonoid) | 12.5, 25, and 50 mg/kg/day, o.g. (for 6 days) | C57BL/6 mice | PTZ | Modulation GAD65/GABAA expression, BDNF-TrkB, PI3K/Akt | [86] |
(+)-Erythravine (alkaloid) | 0.25–3 μg/μL, i.c.v. | Male Wistar rats | Bicuculline, NMDA, KA, PTZ | Probably modifying GABA neurotransmission | [87] |
(+)-11-α-Hydroxy-erythravine (alkaloid) | 0.25–3 μg/μL, i.c.v. | Male Wistar rats | Bicuculline, NMDA, KA, PTZ | Probably modifying GABA neurotransmission | [87] |
Huperzine A (alkaloid) | 0.6 mg/kg, i.p. | Male Sprague Dawley rats | PTZ | Activation of cortical GABA transmission | [66] |
Lobeline (alkaloid) | 10, 20, 30 mg/kg, i.p. | Male Swiss mice | PTZ Strychnine | Enhancing the GABA release | [88] |
Montanine (alkaloid) | 30 and 60 mg/kg, i.p. | Swiss mice and Wistar rats of either sex | PTZ | Modulation of several neurotransmitter receptor systems including GABAA receptors | [89] |
Piperine (alkaloid) | 2.5, 5, 10, and 20 mg/kg, i.p. | Male Swiss mice | Pilocarpine | Multiple anticonvulsant mechanisms, modulation of the GABA system, antioxidant, and anti-inflammatory activity | [90] |
4.3. Natural Products That Reduce Postsynaptic Excitability by Affecting AMPA or NMDA Receptors
Compound | Effective Dose | Animal Model | Seizure-Inducing Agent | Mechanism | Source |
---|---|---|---|---|---|
20(S)-Ginsenoside Rh2 (triterpene) | 10 μM | Hippocampal neurons of Sprague Dawley rats | NMDA, AMPA, KA, Glycine | Inhibition of NMDA receptors via the interaction with the polyamine-binding site | [94] |
Saikosaponin A (triterpene) | 1 μM | Hippocampal neurons of Sprague Dawley rats | Kynurenic acid PTX | Inhibition of NMDA receptor current and persistent sodium current (INaP) | [96] |
3β,6β,16β-Trihydroxylup-20(29)-ene (triterpene) | 30 mg/kg, i.g. | Swiss mice | PTZ | Possibly via Na+, K+-ATPase activity maintenance | [97] |
6-Gingerol (phenolic) | 37.5 μM | Zebrafish larvae | PTZ | Inhibition of NMDA receptors via the interaction with the glutamate-binding site | [98] |
Magnolol (neolignan) | 12.5 µM 30 mg/kg, i.p. | Adult zebrafish Male NMRI mice | PTZ, EKP 6-Hz test | Probably targeting GABAA, cannabinoid, and AMPA receptors | [92] |
Honokiol (neolignan) | 6.25 µM | Adult zebrafish | PTZ EKP | Probably targeting GABAA, cannabinoid, and AMPA receptors | [92] |
Huperzine A (alkaloid) | 1, 2, and 3 mg/kg, i.m. | Male Sprague Dawley rats | NMDA | NMDA antagonism | [99] |
14-Benzoyltalitasamine (alkaloid) | 0.3–10 μM | Hippocampal slices of male Wistar rats | Low Mg2+/high K+-ACSF | Modulation NMDA receptors | [100] |
Ibogaine (alkaloid) | ED50 31 mg/kg, i.p. | Male NIH Swiss mice | MES NMDA | Blockade of NMDA receptors | [101] |
Rhynchophylline (alkaloid) | 30 μM | Xenopus laevis oocytes injected with total RNA from Male Wistar rat cortices or cerebelli | NMDA Glycine | Noncompetitive antagonist of the NMDA receptor | [102] |
100 μM, i.c.v. | Male Sprague Dawley rats | Pilocarpine | Inhibition of the persistent sodium current INaP and NMDA receptor current | [103] | |
Isorhynchophylline (alkaloid) | 30 μM | Xenopus laevis oocytes injected with total RNA from Male Wistar rat cortices or cerebelli | NMDA Glycine | Noncompetitive antagonist of the NMDA receptor | [102] |
4.4. Natural Products with Multiple Mechanisms of Action: Cannabinoids
5. Clinical Data
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thijs, R.D.; Surges, R.; O′Brien, T.J.; Sander, J.W. Epilepsy in Adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE Official Report: A Practical Clinical Definition of Epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devinsky, O.; Spruill, T.; Thurman, D.; Friedman, D. Recognizing and Preventing Epilepsy-Related Mortality: A Call for Action. Neurology 2016, 86, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Levira, F.; Thurman, D.J.; Sander, J.W.; Hauser, W.A.; Hesdorffer, D.C.; Masanja, H.; Odermatt, P.; Logroscino, G.; Newton, C.R. The Epidemiology Commission of the International League Against Epilepsy Premature Mortality of Epilepsy in Low- and Middle-Income Countries: A Systematic Review from the Mortality Task Force of the International League Against Epilepsy. Epilepsia 2017, 58, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Begley, C.; Wagner, R.G.; Abraham, A.; Beghi, E.; Newton, C.; Kwon, C.; Labiner, D.; Winkler, A.S. The Global Cost of Epilepsy: A Systematic Review and Extrapolation. Epilepsia 2022, 63, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Nabbout, R.; Thile, E.A. The Role of Cannabinoids in Epilepsy Treatment: A Critical Review of Efficacy Results from Clinical Trials. Epileptic Disord. 2020, 22, S23–S28. [Google Scholar] [CrossRef]
- Lee, B.I.; Park, K.M.; Kim, S.E.; Heo, K. Clinical Opinion: Earlier Employment of Polytherapy in Sequential Pharmacotherapy of Epilepsy. Epilepsy Res. 2019, 156, 106165. [Google Scholar] [CrossRef] [PubMed]
- Vajda, F.J.E. Pharmacotherapy of Epilepsy: New Armamentarium, New Issues. J. Clin. Neurosci. 2007, 14, 813–823. [Google Scholar] [CrossRef]
- Brodie, M.J. Antiepileptic Drug Therapy the Story so Far. Seizure 2010, 19, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Perucca, P.; Gilliam, F.G. Adverse Effects of Antiepileptic Drugs. Lancet Neurol. 2012, 11, 792–802. [Google Scholar] [CrossRef]
- Cunliffe, V.T.; Baines, R.A.; Giachello, C.N.G.; Lin, W.-H.; Morgan, A.; Reuber, M.; Russell, C.; Walker, M.C.; Williams, R.S.B. Epilepsy Research Methods Update: Understanding the Causes of Epileptic Seizures and Identifying New Treatments Using Non-Mammalian Model Organisms. Seizure 2015, 24, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Pitkänen, A.; Buckmaster, P.S.; Galanopoulou, A.S.; Moshé, S.L. Models of Seizures and Epilepsy, 2nd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: London, UK, 2017; ISBN 978-0-12-804067-6. [Google Scholar]
- Sucher, N.J.; Carles, M.C. A Pharmacological Basis of Herbal Medicines for Epilepsy. Epilepsy Behav. 2015, 52, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Schmidt, D. Modern Antiepileptic Drug Development Has Failed to Deliver: Ways out of the Current Dilemma: Ways Out of the Current Dilemma with New AEDs. Epilepsia 2011, 52, 657–678. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W. Animal Models of Epilepsy for the Development of Antiepileptogenic and Disease-Modifying Drugs. A Comparison of the Pharmacology of Kindling and Post-Status Epilepticus Models of Temporal Lobe Epilepsy. Epilepsy Res. 2002, 50, 105–123. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, F.; Mozere, M.; Zdebik, A.A.; Stanescu, H.C.; Tobin, J.; Beales, P.L.; Kleta, R.; Bockenhauer, D.; Russell, C. Generation and Validation of a Zebrafish Model of EAST (Epilepsy, Ataxia, Sensorineural Deafness and Tubulopathy) Syndrome. Dis. Model. Mech. 2013, 6, 652–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraban, S.C.; Dinday, M.T.; Hortopan, G.A. Drug Screening in Scn1a Zebrafish Mutant Identifies Clemizole as a Potential Dravet Syndrome Treatment. Nat. Commun. 2013, 4, 2410. [Google Scholar] [CrossRef] [Green Version]
- Grone, B.P.; Marchese, M.; Hamling, K.R.; Kumar, M.G.; Krasniak, C.S.; Sicca, F.; Santorelli, F.M.; Patel, M.; Baraban, S.C. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1) Mutant Zebrafish. PLoS ONE 2016, 11, e0151148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samarut, É.; Swaminathan, A.; Riché, R.; Liao, M.; Hassan-Abdi, R.; Renault, S.; Allard, M.; Dufour, L.; Cossette, P.; Soussi-Yanicostas, N.; et al. γ-Aminobutyric Acid Receptor Alpha 1 Subunit Loss of Function Causes Genetic Generalized Epilepsy by Impairing Inhibitory Network Neurodevelopment. Epilepsia 2018, 59, 2061–2074. [Google Scholar] [CrossRef] [Green Version]
- EuroEPINOMICS RES Consortium; Schubert, J.; Siekierska, A.; Langlois, M.; May, P.; Huneau, C.; Becker, F.; Muhle, H.; Suls, A.; Lemke, J.R.; et al. Mutations in STX1B, Encoding a Presynaptic Protein, Cause Fever-Associated Epilepsy Syndromes. Nat. Genet. 2014, 46, 1327–1332. [Google Scholar] [CrossRef]
- Noebels, J.L.; Avoli, M.; Rogawski, M.A.; Olsen, R.W.; Antonio, V. Jasper’s Basic Mechanisms of the Epilepsies, 4th ed.; NCBI Bookshelf Online Book Version; Wiley: New Jersey, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Yang, Z.-W.; Wu, F.; Zhang, S.-L. Effects of Ganoderic Acids on Epileptiform Discharge Hippocampal Neurons: Insights From alterations of BDNF, TRPC3 and Apoptosis. Pharmazie 2016, 71, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Daif, A.; Lukas, R.V.; Issa, N.P.; Javed, A.; VanHaerents, S.; Reder, A.T.; Tao, J.X.; Warnke, P.; Rose, S.; Towle, V.L.; et al. Antiglutamic Acid Decarboxylase 65 (GAD65) Antibody-Associated Epilepsy. Epilepsy Behav. 2018, 80, 331–336. [Google Scholar] [CrossRef] [PubMed]
- McKeon, A.; Tracy, J.A. GAD65 Neurological Autoimmunity. Muscle Nerve 2017, 56, 15–27. [Google Scholar] [CrossRef] [PubMed]
- De Melo, C.G.F.; Salgado, P.R.R.; Da Fonsêca, D.V.; Braga, R.M.; Filho, M.R.D.C.; De Farias, I.E.V.; De Luna Freire Pessôa, H.; Lima, E.M.; Do Amaral, I.P.G.; De Sousa, D.P.; et al. Anticonvulsive Activity of (1S)-(−)-Verbenone Involving RNA Expression of BDNF, COX-2, and c-Fos. Naunyn-Schmiedebergs Arch. Pharmacol. 2017, 390, 863–869. [Google Scholar] [CrossRef]
- Brahmachari, G. Neuroprotective Natural Products: Clinical Aspects and Mode of Action; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; ISBN 978-3-527-80378-1. [Google Scholar]
- Catterall, W.A.; Lenaeus, M.J.; Gamal El-Din, T.M. Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 133–154. [Google Scholar] [CrossRef] [Green Version]
- Oz, M.; Lozon, Y.; Sultan, A.; Yang, K.-H.S.; Galadari, S. Effects of Monoterpenes on Ion Channels of Excitable Cells. Pharmacol. Ther. 2015, 152, 83–97. [Google Scholar] [CrossRef]
- Ameri, A.; Gleitz, J.; Peters, T. Inhibition of Neuronal Activity in Rat Hippocampal Slices by Aconitum Alkaloids. Brain Res. 1996, 738, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Ameri, A.; Shi, Q.; Aschoff, J.; Peters, T. Electrophysiological Effects of Aconitine in Rat Hippocampal Slices. Neuropharmacology 1996, 35, 13–22. [Google Scholar] [CrossRef]
- Ameri, A. Inhibition of Rat Hippocampal Excitability by the Plant Alkaloid 3-Acetylaconitine Mediated by Interaction with Voltage-Dependent Sodium Channels. Naunyn-Schmiedebergs Arch. Pharmacol. 1997, 355, 273–280. [Google Scholar] [CrossRef]
- Ameri, A. Structure-Dependent Differences in the Effects of the Aconitum Alkaloids Lappaconitine, N-Desacetyllappaconitine and Lappaconidine in Rat Hippocampal Slices. Brain Res. 1997, 769, 36–43. [Google Scholar] [CrossRef]
- Ameri, A. Inhibition of Rat Hippocampal Excitability by the Aconitum Alkaloid, 1-Benzoylnapelline, but Not by Napelline. Eur. J. Pharmacol. 1997, 335, 145–152. [Google Scholar] [CrossRef]
- Ameri, A. Effects of the Alkaloids 6-Benzoylheteratisine and Heteratisine on Neuronal Activity in Rat Hippocampal Slices. Neuropharmacology 1997, 36, 1039–1046. [Google Scholar] [CrossRef]
- Mishra, A.; Punia, J.K.; Bladen, C.; Zamponi, G.W.; Goel, R.K. Anticonvulsant Mechanisms of Piperine, a Piperidine Alkaloid. Channels 2015, 9, 317–323. [Google Scholar] [CrossRef]
- Tiwari, A.; Mahadik, K.R.; Gabhe, S.Y. Piperine: A Comprehensive Review of Methods of Isolation, Purification, and Biological Properties. Med. Drug Discov. 2020, 7, 100027. [Google Scholar] [CrossRef]
- Ren, T.; Wang, Q.; Li, C.; Yang, M.; Zuo, Z. Efficient Brain Uptake of Piperine and Its Pharmacokinetics Characterization after Oral Administration. Xenobiotica 2018, 48, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Hu, M.; Cheng, Y.; Shek, T.L.; Xiao, M.; Ho, N.J.; Zhang, C.; Leung, S.S.Y.; Zuo, Z. Piperine-Loaded Nanoparticles with Enhanced Dissolution and Oral Bioavailability for Epilepsy Control. Eur. J. Pharm. Sci. 2019, 137, 104988. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, H.Y.; Back, S.Y.; Han, H.-K. Piperine-Mediated Drug Interactions and Formulation Strategy for Piperine: Recent Advances and Future Perspectives. Expert Opin. Drug Metab. Toxicol. 2018, 14, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Luszczki, J.J.; Glowniak, K.; Czuczwar, S.J. Imperatorin Enhances the Protective Activity of Conventional Antiepileptic Drugs against Maximal Electroshock-Induced Seizures in Mice. Eur. J. Pharmacol. 2007, 574, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Zagaja, M.; Pyrka, D.; Skalicka-Wozniak, K.; Glowniak, K.; Florek-Luszczki, M.; Glensk, M.; Luszczki, J.J. Effect of Xanthotoxin (8-Methoxypsoralen) on the Anticonvulsant Activity of Classical Antiepileptic Drugs against Maximal Electroshock-Induced Seizures in Mice. Fitoterapia 2015, 105, 1–6. [Google Scholar] [CrossRef]
- Hino, H.; Takahashi, H.; Suzuki, Y.; Tanaka, J.; Ishii, E.; Fukuda, M. Anticonvulsive Effect of Paeoniflorin on Experimental Febrile Seizures in Immature Rats: Possible Application for Febrile Seizures in Children. PLoS ONE 2012, 7, e42920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sancheti, J.; Shaikh, M.F.; Chaudhari, R.; Somani, G.; Patil, S.; Jain, P.; Sathaye, S. Characterization of Anticonvulsant and Antiepileptogenic Potential of Thymol in Various Experimental Models. Naunyn-Schmiedebergs Arch. Pharmacol. 2014, 387, 59–66. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Zhao, F.; Chen, R.; Yu, D.; Cao, Z. Iritectol G, a Novel Iridal-Type Triterpenoid from Iris Tectorum Displays Anti-Epileptic Activity in Vitro through Inhibition of Sodium Channels. Fitoterapia 2017, 122, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.-C.; Chen, Y.-H.; Cheng, K.-S.; Kuo, Y.-H.; Yang, C.-T.; Wong, K.-L.; Tu, Y.-K.; Chan, P.; Leung, Y.-M. Suppression of Voltage-Gated Na+ Channels and Neuronal Excitability by Imperatorin. Eur. J. Pharmacol. 2013, 721, 49–55. [Google Scholar] [CrossRef]
- Skalicka-Woźniak, K.; Orhan, I.E.; Cordell, G.A.; Nabavi, S.M.; Budzyńska, B. Implication of Coumarins towards Central Nervous System Disorders. Pharmacol. Res. 2016, 103, 188–203. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Huang, W.-J.; Wu, C.-C.; Lu, C.-W.; Wang, S.-J. Acacetin Inhibits Glutamate Release and Prevents Kainic Acid-Induced Neurotoxicity in Rats. PLoS ONE 2014, 9, e88644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, R.A.; Leite, J.R. Nantenine Alkaloid Presents Anticonvulsant Effect on Two Classical Animal Models. Phytomedicine 2003, 10, 563–568. [Google Scholar] [CrossRef]
- Akyuz, E.; Polat, A.K.; Eroglu, E.; Kullu, I.; Angelopoulou, E.; Paudel, Y.N. Revisiting the Role of Neurotransmitters in Epilepsy: An Updated Review. Life Sci. 2021, 265, 118826. [Google Scholar] [CrossRef]
- Manayi, A.; Nabavi, S.M.; Daglia, M.; Jafari, S. Natural Terpenoids as a Promising Source for Modulation of GABAergic System and Treatment of Neurological Diseases. Pharmacol. Rep. 2016, 68, 671–679. [Google Scholar] [CrossRef]
- De Alvarenga, J.F.R.; Genaro, B.; Costa, B.L.; Purgatto, E.; Manach, C.; Fiamoncini, J. Monoterpenes: Current Knowledge on Food Source, Metabolism, and Health Effects. Crit. Rev. Food Sci. Nutr. 2023, 63, 1352–1389. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Parvardeh, S. Anticonvulsant Effects of Thymoquinone, the Major Constituent of Nigella Sativa Seeds, in Mice. Phytomedicine 2004, 11, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Akhondian, J.; Kianifar, H.; Raoofziaee, M.; Moayedpour, A.; Toosi, M.B.; Khajedaluee, M. The Effect of Thymoquinone on Intractable Pediatric Seizures (Pilot Study). Epilepsy Res. 2011, 93, 39–43. [Google Scholar] [CrossRef]
- Pottoo, F.H.; Salahuddin, M.; Khan, F.A.; Alomar, F.; Al Dhamen, M.A.; Alhashim, A.F.; Alqattan, H.H.; Gomaa, M.S.; Alomary, M.N. Thymoquinone Potentiates the Effect of Phenytoin against Electroshock-Induced Convulsions in Rats by Reducing the Hyperactivation of m-TOR Pathway and Neuroinflammation: Evidence from In Vivo, In Vitro and Computational Studies. Pharmaceuticals 2021, 14, 1132. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Badshah, H.; Naseer, M.I.; Lee, H.Y.; Kim, M.O. Thymoquinone and Vitamin C Attenuates Pentylenetetrazole-Induced Seizures Via Activation of GABAB1 Receptor in Adult Rats Cortex and Hippocampus. Neuromol. Med. 2015, 17, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Feng, Y.; Xie, Y.; Luo, Q.; Chen, L.; Li, B.; Chen, Y. Protective Effects of Thymoquinone Against Convulsant Activity Induced by Lithium-Pilocarpine in a Model of Status Epilepticus. Neurochem. Res. 2016, 41, 3399–3406. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Wang, Z.; Lv, X.; Yin, H.; Li, W.; Li, W.; Jiang, L.; Liu, Y. Potential Herb-Drug Interaction Risk of Thymoquinone and Phenytoin. Chem. Biol. Interact. 2022, 353, 109801. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Ye, X.; Huang, Q.; Dai, W.-M.; Zhang, J.-M. Anti-Epileptic Effects of Valepotriate Isolated from Valeriana Jatamansi Jones and Its Possible Mechanisms. Phcog. Mag. 2017, 13, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, T.; Kong, B.; Gu, J.-W.; Kuang, Y.-Q.; Cheng, L.; Yang, W.-T.; Cheng, J.-M.; Ma, Y.; Yang, X.-K. Anticonvulsant and Sedative Effects of Paederosidic Acid Isolated from Paederia Scandens (Lour.) Merrill. in Mice and Rats. Pharmacol. Biochem. Behav. 2013, 111, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.-K.; Tanaka, T.; Kouno, I. Effects of Iridoids on Lipoxygenase and Hyaluronidase Activities and Their Activation by β-Glucosidase in the Presence of Amino Acids. Biol. Pharm. Bull. 2003, 26, 352–356. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Hatta, S.; Haga, M.; Ohshika, H. Effects of Bilobalide on γ-Aminobutyric Acid Levels and Glutamic Acid Decarboxylase in Mouse Brain. Eur. J. Pharmacol. 1999, 367, 165–173. [Google Scholar] [CrossRef]
- Jiang, M.; Li, J.; Peng, Q.; Liu, Y.; Liu, W.; Luo, C.; Peng, J.; Li, J.; Yung, K.K.L.; Mo, Z. Neuroprotective Effects of Bilobalide on Cerebral Ischemia and Reperfusion Injury Are Associated with Inhibition of Pro-Inflammatory Mediator Production and down-Regulation of JNK1/2 and P38 MAPK Activation. J. Neuroinflammation 2014, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.C.; Duke, R.K.; Hinton, T.; Johnston, G.A.R. Effects of Bilobalide, Ginkgolide B and Picrotoxinin on GABAA Receptor Modulation by Structurally Diverse Positive Modulators. Eur. J. Pharmacol. 2017, 806, 83–90. [Google Scholar] [CrossRef]
- Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A. Huperzine A as a Neuroprotective and Antiepileptic Drug: A Review of Preclinical Research. Expert Rev. Neurother. 2016, 16, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress Report on New Antiepileptic Drugs: A Summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res. 2015, 111, 85–141. [Google Scholar] [CrossRef]
- Gersner, R.; Ekstein, D.; Dhamne, S.C.; Schachter, S.C.; Rotenberg, A. Huperzine A Prophylaxis against Pentylenetetrazole-Induced Seizures in Rats Is Associated with Increased Cortical Inhibition. Epilepsy Res. 2015, 117, 97–103. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, R.Q.; Li, C.R.; Jiang, X.H. Pharmacokinetics of Huperzine a Following Oral Administration to Human Volunteers. Eur. J. Drug Metabol. Pharmacokinet. 2007, 32, 183–187. [Google Scholar] [CrossRef]
- Kozioł, E.; Deniz, F.S.S.; Orhan, I.E.; Marcourt, L.; Budzyńska, B.; Wolfender, J.-L.; Crawford, A.D.; Skalicka-Woźniak, K. High-Performance Counter-Current Chromatography Isolation and Initial Neuroactivity Characterization of Furanocoumarin Derivatives from Peucedanum Alsaticum L (Apiaceae). Phytomedicine 2019, 54, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Kozioł, E.; Jóźwiak, K.; Budzyńska, B.; De Witte, P.A.M.; Copmans, D.; Skalicka-Woźniak, K. Comparative Antiseizure Analysis of Diverse Natural Coumarin Derivatives in Zebrafish. Int. J. Mol. Sci. 2021, 22, 11420. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Ahn, E.-M.; Song, M.-C.; Kim, D.W.; Kang, J.H.; Kwon, O.-S.; Kang, T.-C.; Baek, N.-I. In Vitro GABA-Transaminase Inhibitory Compounds from the Root OfAngelica Dahurica. Phytother. Res. 2005, 19, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Singhuber, J.; Baburin, I.; Ecker, G.F.; Kopp, B.; Hering, S. Insights into Structure–Activity Relationship of GABAA Receptor Modulating Coumarins and Furanocoumarins. Eur. J. Pharmacol. 2011, 668, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Luszczki, J.J.; Wojda, E.; Andres-Mach, M.; Cisowski, W.; Glensk, M.; Glowniak, K.; Czuczwar, S.J. Anticonvulsant and Acute Neurotoxic Effects of Imperatorin, Osthole and Valproate in the Maximal Electroshock Seizure and Chimney Tests in Mice: A Comparative Study. Epilepsy Res. 2009, 85, 293–299. [Google Scholar] [CrossRef]
- Ding, J.; Wang, J.-J.; Huang, C.; Wang, L.; Deng, S.; Xu, T.-L.; Ge, W.-H.; Li, W.-G.; Li, F. Curcumol from Rhizoma Curcumae Suppresses Epileptic Seizure by Facilitation of GABA(A) Receptors. Neuropharmacology 2014, 81, 244–255. [Google Scholar] [CrossRef]
- Garlet, Q.I.; Pires, L.D.C.; Milanesi, L.H.; Marafiga, J.R.; Baldisserotto, B.; Mello, C.F.; Heinzmann, B.M. (+)-Dehydrofukinone Modulates Membrane Potential and Delays Seizure Onset by GABAa Receptor-Mediated Mechanism in Mice. Toxicol. Appl. Pharmacol. 2017, 332, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Muceniece, R.; Saleniece, K.; Rumaks, J.; Krigere, L.; Dzirkale, Z.; Mezhapuke, R.; Zharkova, O.; Klusa, V. Betulin Binds to γ-Aminobutyric Acid Receptors and Exerts Anticonvulsant Action in Mice. Pharmacol. Biochem. Behav. 2008, 90, 712–716. [Google Scholar] [CrossRef]
- Lee, B.-H.; Kim, H.-J.; Chung, L.; Nah, S.-Y. Ginsenoside Rg3 Regulates GABAA Receptor Channel Activity: Involvement of Interaction with the γ2 Subunit. Eur. J. Pharmacol. 2013, 705, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, I.; Afzal, M.; Gupta, G.; Anwar, F. Antiepileptic Potential of Ursolic Acid Stearoyl Glucoside by GABA Receptor Stimulation. CNS Neurosci. Ther. 2012, 18, 799–800. [Google Scholar] [CrossRef]
- Kundap, U.P.; Choo, B.K.M.; Kumari, Y.; Ahmed, N.; Othman, I.B.; Shaikh, M.F. Embelin Protects Against Acute Pentylenetetrazole-Induced Seizures and Positively Modulates Cognitive Function in Adult Zebrafish. Front. Pharmacol. 2019, 10, 1249. [Google Scholar] [CrossRef] [PubMed]
- Zaugg, J.; Eickmeier, E.; Rueda, D.C.; Hering, S.; Hamburger, M. HPLC-Based Activity Profiling of Angelica Pubescens Roots for New Positive GABAA Receptor Modulators in Xenopus Oocytes. Fitoterapia 2011, 82, 434–440. [Google Scholar] [CrossRef]
- Grigoletto, J.; Oliveira, C.V.D.; Grauncke, A.C.B.; Souza, T.L.D.; Souto, N.S.; Freitas, M.L.D.; Furian, A.F.; Santos, A.R.S.; Oliveira, M.S. Rosmarinic Acid Is Anticonvulsant against Seizures Induced by Pentylenetetrazol and Pilocarpine in Mice. Epilepsy Behav. 2016, 62, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Aseervatham, G.S.B.; Suryakala, U.; Doulethunisha; Sundaram, S.; Bose, P.C.; Sivasudha, T. Expression Pattern of NMDA Receptors Reveals Antiepileptic Potential of Apigenin 8-C-Glucoside and Chlorogenic Acid in Pilocarpine Induced Epileptic Mice. Biomed. Pharmacother. 2016, 82, 54–64. [Google Scholar] [CrossRef]
- An, S.-J.; Park, S.-K.; Hwang, I.K.; Choi, S.Y.; Kim, S.K.; Kwon, O.-S.; Jung, S.J.; Baek, N.-I.; Lee, H.Y.; Won, M.H.; et al. Gastrodin Decreases Immunoreactivities of Gamma-Aminobutyric Acid Shunt Enzymes in the Hippocampus of Seizure-Sensitive Gerbils. J. Neurosci. Res. 2003, 71, 534–543. [Google Scholar] [CrossRef]
- Nassiri-Asl, M.; Shariati-Rad, S.; Zamansoltani, F. Anticonvulsive Effects of Intracerebroventricular Administration of Rutin in Rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 989–993. [Google Scholar] [CrossRef]
- Park, H.G.; Yoon, S.Y.; Choi, J.Y.; Lee, G.S.; Choi, J.H.; Shin, C.Y.; Son, K.H.; Lee, Y.S.; Kim, W.K.; Ryu, J.H.; et al. Anticonvulsant Effect of Wogonin Isolated from Scutellaria Baicalensis. Eur. J. Pharmacol. 2007, 574, 112–119. [Google Scholar] [CrossRef]
- Abbasi, E.; Nassiri-Asl, M.; Shafeei, M.; Sheikhi, M. Neuroprotective Effects of Vitexin, a Flavonoid, on Pentylenetetrazole-Induced Seizure in Rats: Neuroprotective Effects of Vitexin. Chem. Biol. Drug Des. 2012, 80, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wang, J.; Zhang, N. Effect of Nobiletin on Experimental Model of Epilepsy. Transl. Neurosci. 2018, 9, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Faggion, S.A.; Cunha, A.O.S.; Fachim, H.A.; Gavin, A.S.; Dos Santos, W.F.; Pereira, A.M.S.; Beleboni, R.O. Anticonvulsant Profile of the Alkaloids (+)-Erythravine and (+)-11-α-Hydroxy-Erythravine Isolated from the Flowers of Erythrina Mulungu Mart Ex Benth (Leguminosae–Papilionaceae). Epilepsy Behav. 2011, 20, 441–446. [Google Scholar] [CrossRef]
- Tamboli, A.M.; Rub, R.A.; Ghosh, P.; Bodhankar, S. Antiepileptic Activity of Lobeline Isolated from the Leaf of Lobelia Nicotianaefolia and Its Effect on Brain GABA Level in Mice. Asian Pac. J. Trop. Biomed. 2012, 2, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.; De Andrade, J.; Bevilaqua, L.; Desouza, M.; Izquierdo, I.; Henriques, A.; Zuanazzi, J. Anxiolytic-, Antidepressant- and Anticonvulsant-like Effects of the Alkaloid Montanine Isolated from Hippeastrum Vittatum. Pharmacol. Biochem. Behav. 2006, 85, 148–154. [Google Scholar] [CrossRef]
- Da Cruz, G.M.P.; Felipe, C.F.B.; Scorza, F.A.; Da Costa, M.A.C.; Tavares, A.F.; Menezes, M.L.F.; De Andrade, G.M.; Leal, L.K.A.M.; Brito, G.A.C.; Da Graça Naffah-Mazzacoratti, M.; et al. Piperine Decreases Pilocarpine-Induced Convulsions by GABAergic Mechanisms. Pharmacol. Biochem. Behav. 2013, 104, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Hanada, T. Ionotropic Glutamate Receptors in Epilepsy: A Review Focusing on AMPA and NMDA Receptors. Biomolecules 2020, 10, 464. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Copmans, D.; Partoens, M.; Hunyadi, B.; Luyten, W.; De Witte, P. Zebrafish-Based Screening of Antiseizure Plants Used in Traditional Chinese Medicine: Magnolia Officinalis Extract and Its Constituents Magnolol and Honokiol Exhibit Potent Anticonvulsant Activity in a Therapy-Resistant Epilepsy Model. ACS Chem. Neurosci. 2020, 11, 730–742. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Y.; Zeng, Y.; Tian, B.; Qu, X.; Yuan, Q.; Song, Y. Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update. Front. Pharmacol. 2021, 12, 632767. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, S.; Chul Chung, K.; Choo, M.-K.; Kim, D.-H.; Nam, G.; Rhim, H. 20(S)-Ginsenoside Rh2, a Newly Identified Active Ingredient of Ginseng, Inhibits NMDA Receptors in Cultured Rat Hippocampal Neurons. Eur. J. Pharmacol. 2006, 536, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Xue, B.; Yang, C.; Miao, L.; Zhou, L.; Chen, Q.; Cai, Q.; Liu, Y.; Liu, D.; He, H.; et al. Biopharmaceutical Characters and Bioavailability Improving Strategies of Ginsenosides. Fitoterapia 2018, 129, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-H.; Xie, W.; Bao, Y.; Li, H.-M.; Hu, S.-J.; Xing, J.-L. Saikosaponin a Mediates the Anticonvulsant Properties in the HNC Models of AE and SE by Inhibiting NMDA Receptor Current and Persistent Sodium Current. PLoS ONE 2012, 7, e50694. [Google Scholar] [CrossRef]
- Della-Pace, I.D.; Rambo, L.M.; Ribeiro, L.R.; Saraiva, A.L.L.; De Oliveira, S.M.; Silva, C.R.; Villarinho, J.G.; Rossato, M.F.; Ferreira, J.; De Carvalho, L.M.; et al. Triterpene 3β, 6β, 16β Trihidroxilup-20(29)-Ene Protects against Excitability and Oxidative Damage Induced by Pentylenetetrazol: The Role of Na+, K+-ATPase Activity. Neuropharmacology 2013, 67, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Gawel, K.; Kukula-Koch, W.; Banono, N.S.; Nieoczym, D.; Targowska-Duda, K.M.; Czernicka, L.; Parada-Turska, J.; Esguerra, C.V. 6-Gingerol, a Major Constituent of Zingiber Officinale Rhizoma, Exerts Anticonvulsant Activity in the Pentylenetetrazole-Induced Seizure Model in Larval Zebrafish. Int. J. Mol. Sci. 2021, 22, 7745. [Google Scholar] [CrossRef] [PubMed]
- Coleman, B.R.; Ratcliffe, R.H.; Oguntayo, S.A.; Shi, X.; Doctor, B.P.; Gordon, R.K.; Nambiar, M.P. [+]-Huperzine A Treatment Protects against N-Methyl-d-Aspartate-Induced Seizure/Status Epilepticus in Rats. Chem. Biol. Interact. 2008, 175, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Ameri, A. Structure-Dependent Inhibitory Action of the Aconitum Alkaloids 14-Benzoyltalitasamine and Talitasamine in Rat Hippocampal Slices. Naunyn-Schmiedebergs Arch. Pharmacol. 1998, 357, 585–592. [Google Scholar] [CrossRef]
- Chen, K.; Kokate, T.G.; Donevan, S.D.; Carroll, F.I.; Rogawski, M.A. Ibogaine Block of the NMDA Receptor: In Vitro and in Vivo Studies. Neuropharmacology 1996, 35, 423–431. [Google Scholar] [CrossRef]
- Kang, T.-H.; Murakami, Y.; Matsumoto, K.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Rhynchophylline and Isorhynchophylline Inhibit NMDA Receptors Expressed in Xenopus Oocytes. Eur. J. Pharmacol. 2002, 455, 27–34. [Google Scholar] [CrossRef]
- Shao, H.; Yang, Y.; Mi, Z.; Zhu, G.; Qi, A.; Ji, W.; Zhu, Z. Anticonvulsant Effect of Rhynchophylline Involved in the Inhibition of Persistent Sodium Current and NMDA Receptor Current in the Pilocarpine Rat Model of Temporal Lobe Epilepsy. Neuroscience 2016, 337, 355–369. [Google Scholar] [CrossRef]
- Gaston, T.E.; Friedman, D. Pharmacology of Cannabinoids in the Treatment of Epilepsy. Epilepsy Behav. 2017, 70, 313–318. [Google Scholar] [CrossRef]
- Mouhamed, Y.; Vishnyakov, A.; Qorri, B.; Sambi, M.; Frank, S.S.; Nowierski, C.; Lamba, A.; Bhatti, U.; Szewczuk, M.R. Therapeutic potential of medicinal marijuana: An educational primer for health care professionals. Drug Healthc. Patient Saf. 2018, 10, 45–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perucca, E. Cannabinoids in the Treatment of Epilepsy: Hard Evidence at Last? J. Epilepsy Res. 2017, 7, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Devinsky, O.; Cilio, M.R.; Cross, H.; Fernandez-Ruiz, J.; French, J.; Hill, C.; Katz, R.; Di Marzo, V.; Jutras-Aswad, D.; Notcutt, W.G.; et al. Cannabidiol: Pharmacology and Potential Therapeutic Role in Epilepsy and Other Neuropsychiatric Disorders. Epilepsia 2014, 55, 791–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morano, A.; Fanella, M.; Albini, M.; Cifelli, P.; Palma, E.; Giallonardo, A.T.; Di Bonaventura, C. Cannabinoids in the Treatment of Epilepsy: Current Status and Future Prospects. Neuropsychiatr. Dis. Treat. 2020, 16, 381–396. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho Reis, R.; Almeida, K.J.; Da Silva Lopes, L.; De Melo Mendes, C.M.; Bor-Seng-Shu, E. Efficacy and Adverse Event Profile of Cannabidiol and Medicinal Cannabis for Treatment-Resistant Epilepsy: Systematic Review and Meta-Analysis. Epilepsy Behav. 2020, 102, 106635. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Marsh, E.; Friedman, D.; Thiele, E.; Laux, L.; Sullivan, J.; Miller, I.; Flamini, R.; Wilfong, A.; Filloux, F.; et al. Cannabidiol in Patients with Treatment-Resistant Epilepsy: An Open-Label Interventional Trial. Lancet Neurol. 2016, 15, 270–278. [Google Scholar] [CrossRef]
- Devinsky, O.; Patel, A.D.; Cross, J.H.; Villanueva, V.; Wirrell, E.C.; Privitera, M.; Greenwood, S.M.; Roberts, C.; Checketts, D.; VanLandingham, K.E.; et al. Effect of Cannabidiol on Drop Seizures in the Lennox—Gastaut Syndrome. N. Engl. J. Med. 2018, 378, 1888–1897. [Google Scholar] [CrossRef] [Green Version]
- Devinsky, O.; Cross, J.H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I.E.; Thiele, E.A.; Wright, S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017, 376, 2011–2020. [Google Scholar] [CrossRef] [Green Version]
- Devinsky, O.; Nabbout, R.; Miller, I.; Laux, L.; Zolnowska, M.; Wright, S.; Roberts, C. Long-term Cannabidiol Treatment in Patients with Dravet Syndrome: An Open-label Extension Trial. Epilepsia 2019, 60, 294–302. [Google Scholar] [CrossRef]
- Arzimanoglou, A.; Brandl, U.; Cross, J.H.; Gil-Nagel, A.; Lagae, L.; Landmark, C.J.; Specchio, N.; Nabbout, R.; Thiele, E.A.; Gubbay, O.; et al. Epilepsy and Cannabidiol: A Guide to Treatment. Epileptic Disord. 2020, 22, 1–14. [Google Scholar] [CrossRef]
- Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress Report on New Antiepileptic Drugs: A Summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia 2017, 58, 181–221. [Google Scholar] [CrossRef] [Green Version]
- Shawki, M.; El Wakeel, L.; Shatla, R.; EL-Saeed, G.; Ibrahim, S.; Badary, O. The Clinical Outcome of Adjuvant Therapy with Black Seed Oil on Intractable Paediatric Seizures: A Pilot Study. Epileptic Disord. 2013, 15, 295–301. [Google Scholar] [CrossRef]
- McKinney, M.; Miller, J.H.; Yamada, F.; Tuckmantel, W.; Kozikowski, A.P. Potencies and Stereoselectivities of Enantiomers of Huperzine A for Inhibition of Rat Cortical Acetylcholinesterase. Eur. J. Pharmacol. 1991, 203, 303–305. [Google Scholar] [CrossRef]
- Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress Report on New Antiepileptic Drugs: A Summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs in Preclinical and Early Clinical Development. Epilepsia 2018, 59, 1811–1841. [Google Scholar] [CrossRef] [Green Version]
- Rafii, M.S.; Walsh, S.; Little, J.T.; Behan, K.; Reynolds, B.; Ward, C.; Jin, S.; Thomas, R.; Aisen, P.S. For the Alzheimer’s Disease Cooperative Study A Phase II Trial of Huperzine A in Mild to Moderate Alzheimer Disease. Neurology 2011, 76, 1389–1394. [Google Scholar] [CrossRef] [Green Version]
- Fukuoka, M.; Kuki, I.; Kawawaki, H.; Okazaki, S.; Kim, K.; Hattori, Y.; Tsuji, H.; Nukui, M.; Inoue, T.; Yoshida, Y.; et al. Quinidine Therapy for West Syndrome with KCNTI Mutation: A Case Report. Brain Develop. 2017, 39, 80–83. [Google Scholar] [CrossRef]
- Mikati, M.A.; Jiang, Y.; Carboni, M.; Shashi, V.; Petrovski, S.; Spillmann, R.; Milligan, C.J.; Li, M.; Grefe, A.; McConkie, A.; et al. Quinidine in the Treatment of KCNT1-Positive Epilepsies: Quinidine in KCNT1 Epilepsies. Ann. Neurol. 2015, 78, 995–999. [Google Scholar] [CrossRef] [Green Version]
- Bearden, D.; Strong, A.; Ehnot, J.; DiGiovine, M.; Dlugos, D.; Goldberg, E.M. Targeted Treatment of Migrating Partial Seizures of Infancy with Quinidine: MPSI and Quinidine. Ann. Neurol. 2014, 76, 457–461. [Google Scholar] [CrossRef]
- Yoshitomi, S.; Takahashi, Y.; Yamaguchi, T.; Oboshi, T.; Horino, A.; Ikeda, H.; Imai, K.; Okanishi, T.; Nakashima, M.; Saitsu, H.; et al. Quinidine Therapy and Therapeutic Drug Monitoring in Four Patients with KCNT1 Mutations. Epileptic Disord. 2019, 21, 48–54. [Google Scholar] [CrossRef]
- Abdelnour, E.; Gallentine, W.; McDonald, M.; Sachdev, M.; Jiang, Y.-H.; Mikati, M.A. Does Age Affect Response to Quinidine in Patients with KCNT1 Mutations? Report of Three New Cases and Review of the Literature. Seizure 2018, 55, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Mullen, S.A.; Carney, P.W.; Roten, A.; Ching, M.; Lightfoot, P.A.; Churilov, L.; Nair, U.; Li, M.; Berkovic, S.F.; Petrou, S.; et al. Precision Therapy for Epilepsy Due to KCNT1 Mutations: A Randomized Trial of Oral Quinidine. Neurology 2018, 90, e67–e72. [Google Scholar] [CrossRef]
- Fitzgerald, M.P.; Fiannacca, M.; Smith, D.M.; Gertler, T.S.; Gunning, B.; Syrbe, S.; Verbeek, N.; Stamberger, H.; Weckhuysen, S.; Ceulemans, B.; et al. Treatment Responsiveness in KCNT1-Related Epilepsy. Neurotherapeutics 2019, 16, 848–857. [Google Scholar] [CrossRef]
- Rahimi, N.; Delfan, B.; Motamed-Gorji, N.; Dehpour, A.R. Effects of Oleuropein on Pentylenetetrazol-Induced Seizures in Mice: Involvement of Opioidergic and Nitrergic Systems. J. Nat. Med. 2017, 71, 389–396. [Google Scholar] [CrossRef]
- Buenafe, O.E.; Orellana-Paucar, A.; Maes, J.; Huang, H.; Ying, X.; De Borggraeve, W.; Crawford, A.D.; Luyten, W.; Esguerra, C.V.; De Witte, P. Tanshinone IIA Exhibits Anticonvulsant Activity in Zebrafish and Mouse Seizure Models. ACS Chem. Neurosci. 2013, 4, 1479–1487. [Google Scholar] [CrossRef] [Green Version]
- Sng, J.C.G.; Taniura, H.; Yoneda, Y. Histone Modifications in Kainate-Induced Status Epilepticus. Eur. J. Neurosci. 2006, 23, 1269–1282. [Google Scholar] [CrossRef]
- Jyoti, A.; Sethi, P.; Sharma, D. Curcumin Protects against Electrobehavioral Progression of Seizures in the Iron-Induced Experimental Model of Epileptogenesis. Epilepsy Behav. 2009, 14, 300–308. [Google Scholar] [CrossRef]
- Gupta, Y.K.; Chaudhary, G.; Srivastava, A.K. Protective Effect of Resveratrol against Pentylenetetrazole-Induced Seizures and Its Modulation by an Adenosinergic System. Pharmacology 2002, 65, 170–174. [Google Scholar] [CrossRef]
- Gao, F.; Gao, Y.; Liu, Y.; Wang, L.; Li, Y. Berberine Exerts an Anticonvulsant Effect and Ameliorates Memory Impairment and Oxidative Stress in a Pilocarpine-Induced Epilepsy Model in the Rat. Neuropsychiatr. Dis. Treat. 2014, 10, 2139. [Google Scholar] [CrossRef] [Green Version]
- Bhutada, P.; Mundhada, Y.; Bansod, K.; Dixit, P.; Umathe, S.; Mundhada, D. Anticonvulsant Activity of Berberine, an Isoquinoline Alkaloid in Mice. Epilepsy Behav. 2010, 18, 207–210. [Google Scholar] [CrossRef]
- Aricioglu, F. Effect of Harmane on the Convulsive Threshold in Epilepsy Models in Mice. Ann. N. Y. Acad. Sci. 2003, 1009, 190–195. [Google Scholar] [CrossRef]
- Ameri, A. Inhibition of Stimulus-Triggered and Spontaneous Epileptiform Activity in Rat Hippocampal Slices by the Aconitum Alkaloid Mesaconitine. Eur. J. Pharmacol. 1998, 342, 183–191. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Li, W.; Qu, K.-P.; Chen, C.-R. Piperine Exerts Anti-Seizure Effects via the TRPV1 Receptor in Mice. Eur. J. Pharmacol. 2013, 714, 288–294. [Google Scholar] [CrossRef]
- Nassiri-Asl, M.; Zamansoltani, F.; Torabinejad, B. Antiepileptic Effects of Quinine in the Pentylenetetrazole Model of Seizure. Seizure 2009, 18, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Bostanci, M.Ö.; Bagirici, F. Anticonvulsive Effects of Quinine on Penicillin-Induced Epileptiform Activity: An in Vivo Study. Seizure 2007, 16, 166–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.-R.; Jo, Y.-J.; Yang, S.; Kim, Y.-B.; Nam, S.-Y.; Kim, H.-C.; Hong, J.T.; Oh, K.-W. Sanjoinine a Isolated from Semen Zizyphi Spinosi Protects against Kainic Acid-Induced Convulsions. Arch. Pharm. Res. 2009, 32, 1515–1523. [Google Scholar] [CrossRef]
- Chang, C.-K.; Lin, M.-T. DL-Tetrahydropalmatine May Act through Inhibition of Amygdaloid Release of Dopamine to Inhibit an Epileptic Attack in Rats. Neurosci. Lett. 2001, 307, 163–166. [Google Scholar] [CrossRef]
- Oliveira, C.C.D.; Oliveira, C.V.D.; Grigoletto, J.; Ribeiro, L.R.; Funck, V.R.; Grauncke, A.C.B.; Souza, T.L.D.; Souto, N.S.; Furian, A.F.; Menezes, I.R.A.; et al. Anticonvulsant Activity of β-Caryophyllene against Pentylenetetrazol-Induced Seizures. Epilepsy Behav. 2016, 56, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Tchekalarova, J.; Da Conceição Machado, K.; Gomes Júnior, A.L.; De Carvalho Melo Cavalcante, A.A.; Momchilova, A.; Tzoneva, R. Pharmacological Characterization of the Cannabinoid Receptor 2 Agonist, β-Caryophyllene on Seizure Models in Mice. Seizure 2018, 57, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Torres-Hernández, B.A.; Del Valle-Mojica, L.M.; Ortíz, J.G. Valerenic Acid and Valeriana Officinalis Extracts Delay Onset of Pentylenetetrazole (PTZ)-Induced Seizures in Adult Danio Rerio (Zebrafish). BMC Complement. Altern. Med. 2015, 15, 228. [Google Scholar] [CrossRef] [Green Version]
- Talevi, A.; Cravero, M.S.; Castro, E.A.; Bruno-Blanch, L.E. Discovery of Anticonvulsant Activity of Abietic Acid through Application of Linear Discriminant Analysis. Bioorg. Med. Chem. Lett. 2007, 17, 1684–1690. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.P.; Ferreira, P.B.; De Sousa, D.P.; Jordan, J.; Freitas, R.M. Anticonvulsant Effect of Phytol in a Pilocarpine Model in Mice. Neurosci. Lett. 2012, 523, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, M.; Xiang, C.; Li, B.-C.; Li, P. Antiepileptic C 21 Steroids from the Roots of Cynanchum otophyllum. J. Asian Nat. Prod. Res. 2015, 17, 724–732. [Google Scholar] [CrossRef]
- Li, J.-L.; Gao, Z.-B.; Zhao, W.-M. Identification and Evaluation of Antiepileptic Activity of C21 Steroidal Glycosides from the Roots of Cynanchum wilfordii. J. Nat. Prod. 2016, 79, 89–97. [Google Scholar] [CrossRef]
- Li, J.-L.; Zhou, J.; Chen, Z.-H.; Guo, S.-Y.; Li, C.-Q.; Zhao, W.-M. Bioactive C 21 Steroidal Glycosides from the Roots of Cynanchum Otophyllum That Suppress the Seizure-like Locomotor Activity of Zebrafish Caused by Pentylenetetrazole. J. Nat. Prod. 2015, 78, 1548–1555. [Google Scholar] [CrossRef]
- Challal, S.; Buenafe, O.E.M.; Queiroz, E.F.; Maljevic, S.; Marcourt, L.; Bock, M.; Kloeti, W.; Dayrit, F.M.; Harvey, A.L.; Lerche, H.; et al. Zebrafish Bioassay-Guided Microfractionation Identifies Anticonvulsant Steroid Glycosides from the Philippine Medicinal Plant Solanum torvum. ACS Chem. Neurosci. 2014, 5, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Taviano, M.F.; Miceli, N.; Monforte, M.T.; Tzakou, O.; Galati, E.M. Ursolic Acid Plays a Role InNepeta Sibthorpii Bentham CNS Depressing Effects. Phytother. Res. 2007, 21, 382–385. [Google Scholar] [CrossRef]
- Nieoczym, D.; Socała, K.; Raszewski, G.; Wlaź, P. Effect of Quercetin and Rutin in Some Acute Seizure Models in Mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatr. 2014, 54, 50–58. [Google Scholar] [CrossRef]
- Khan, I.; Karim, N.; Ahmad, W.; Abdelhalim, A.; Chebib, M. GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from Artemisia Indica Linn. Evid.-Based Complement. Altern. Med. 2016, 2016, 1215393. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-K.; Jeong, J.W.; Jang, T.; Lee, G.-W.; Han, H.; Kang, J.-S.; Kim, I.-H. Decursin Attenuates Kainic Acid-Induced Seizures in Mice. NeuroReport 2014, 25, 1243–1249. [Google Scholar] [CrossRef]
- Nugroho, A.; Lim, S.-C.; Choi, J.; Park, H.-J. Identification and Quantification of the Sedative and Anticonvulsant Flavone Glycoside from Chrysanthemum Boreale. Arch. Pharm. Res. 2013, 36, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Avallone, R.; Zanoli, P.; Puia, G.; Kleinschnitz, M.; Schreier, P.; Baraldi, M. Pharmacological Profile of Apigenin, a Flavonoid Isolated from Matricaria Chamomilla. Biochem. Pharmacol. 2000, 59, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Du, X.-M.; Sun, N.-Y.; Takizawa, N.; Guo, Y.-T.; Shoyama, Y. Sedative and Anticonvulsant Activities of Goodyerin, a Flavonol Glycoside from Goodyera schlechtendaliana. Phytother. Res. 2002, 16, 261–263. [Google Scholar] [CrossRef]
- González-Trujano, M.E.; Domínguez, F.; Pérez-Ortega, G.; Aguillón, M.; Martínez-Vargas, D.; Almazán-Alvarado, S.; Martínez, A. Justicia Spicigera Schltdl. and Kaempferitrin as Potential Anticonvulsant Natural Products. Biomed. Pharmacother. 2017, 92, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Copmans, D.; Orellana-Paucar, A.M.; Steurs, G.; Zhang, Y.; Ny, A.; Foubert, K.; Exarchou, V.; Siekierska, A.; Kim, Y.; De Borggraeve, W.; et al. Methylated Flavonoids as Anti-Seizure Agents: Naringenin 4′,7-Dimethyl Ether Attenuates Epileptic Seizures in Zebrafish and Mouse Models. Neurochem. Int. 2018, 112, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Santos Rosa, D.; Faggion, S.A.; Gavin, A.S.; Anderson De Souza, M.; Fachim, H.A.; Ferreira Dos Santos, W.; Soares Pereira, A.M.; Cunha, A.O.S.; Beleboni, R.O. Erysothrine, an Alkaloid Extracted from Flowers of Erythrina Mulungu Mart. Ex Benth: Evaluating Its Anticonvulsant and Anxiolytic Potential. Epilepsy Behav. 2012, 23, 205–212. [Google Scholar] [CrossRef]
- Copmans, D.; Kildgaard, S.; Rasmussen, S.A.; Ślęzak, M.; Dirkx, N.; Partoens, M.; Esguerra, C.V.; Crawford, A.D.; Larsen, T.O.; De Witte, P.A.M. Zebrafish-Based Discovery of Antiseizure Compounds from the North Sea: Isoquinoline Alkaloids TMC-120A and TMC-120B. Marine Drugs 2019, 17, 607. [Google Scholar] [CrossRef] [Green Version]
- Copmans, D.; Rateb, M.; Tabudravu, J.N.; Pérez-Bonilla, M.; Dirkx, N.; Vallorani, R.; Diaz, C.; Pérez Del Palacio, J.; Smith, A.J.; Ebel, R.; et al. Zebrafish-Based Discovery of Antiseizure Compounds from the Red Sea: Pseurotin A2 and Azaspirofuran A. ACS Chem. Neurosci. 2018, 9, 1652–1662. [Google Scholar] [CrossRef] [Green Version]
- Tambe, R.; Jain, P.; Patil, S.; Ghumatkar, P.; Sathaye, S. Antiepileptogenic Effects of Borneol in Pentylenetetrazole-Induced Kindling in Mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 389, 467–475. [Google Scholar] [CrossRef]
- Orellana-Paucar, A.M.; Afrikanova, T.; Thomas, J.; Aibuldinov, Y.K.; Dehaen, W.; De Witte, P.A.M.; Esguerra, C.V. Insights from Zebrafish and Mouse Models on the Activity and Safety of Ar-Turmerone as a Potential Drug Candidate for the Treatment of Epilepsy. PLoS ONE 2013, 8, e81634. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Mong, M.; Yang, Y.; Yin, M. Asiatic Acid and Maslinic Acid Attenuated Kainic Acid-Induced Seizure through Decreasing Hippocampal Inflammatory and Oxidative Stress. Epilepsy Res. 2018, 139, 28–34. [Google Scholar] [CrossRef]
- Lu, C.W.; Lin, T.Y.; Wang, S.J.; Huang, S.K. Asiatic Acid, an Active Substance of Centella Asiatica, Presynaptically Depresses Glutamate Release in the Rat Hippocampus. Eur. J. Pharmacol. 2019, 865, 172781. [Google Scholar] [CrossRef]
- Sheng, F.; Chen, M.; Tan, Y.; Xiang, C.; Zhang, M.; Li, B.; Su, H.; He, C.; Wan, J.; Li, P. Protective Effects of Otophylloside N on Pentylenetetrazol-Induced Neuronal Injury In Vitro and In Vivo. Front. Pharmacol. 2016, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- Tu, W.; Qian, S. Anti-Epileptic Effect of 16-O-Acetyldigitoxigenin via Suppressing MTOR Signaling Pathway. Cell Mol. Biol. 2019, 65, 59–63. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, T.; Yu, H.; Chang, L.; Wei, L. Corilagin Reduces the Frequency of Seizures and Improves Cognitive Function in a Rat Model of Chronic Epilepsy. Med. Sci. Monit. 2018, 24, 2832–2840. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Lin, Y.; Zheng, H.; He, Y.; Xu, H.; Zhang, S.; Weng, W.; Li, W.; Zhu, L.; Yang, H. Anticonvulsive and Neuroprotective Effects of Synergetic Combination of Phenytoin and Gastrodin on the Convulsion Induced by Penicillin in Mice. Fundam. Clin. Pharmacol. 2015, 29, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, S.R.; Ghasemi-Kasman, M.; Pouramir, M.; Sadeghi, F. Arbutin Attenuates Cognitive Impairment and Inflammatory Response in Pentylenetetrazol-Induced Kindling Model of Epilepsy. Neuropharmacology 2019, 146, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-L.; Chang, C.-H.; Chiang, S.-Y.; Li, T.-C.; Tang, N.-Y.; Pon, C.-Z.; Hsieh, C.-T.; Lin, J.-G. Anticonvulsive and Free Radical Scavenging Activities of Vanillyl Alcohol in Ferric Chloride-Induced Epileptic Seizures in Sprague-Dawley Rats. Life Sci. 2000, 67, 1185–1195. [Google Scholar] [CrossRef]
- Gupta, Y.K.; Briyal, S.; Chaudhary, G. Protective Effect of Trans-Resveratrol against Kainic Acid-Induced Seizures and Oxidative Stress in Rats. Pharmacol. Biochem. Behav. 2002, 71, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Ethemoglu, M.S.; Seker, F.B.; Akkaya, H.; Kilic, E.; Aslan, I.; Erdogan, C.S.; Yilmaz, B. Anticonvulsant Activity of Resveratrol-Loaded Liposomes in Vivo. Neuroscience 2017, 357, 12–19. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Gao, F.; Li, X.-W.; Jia, R.-H.; Meng, X.-D.; Zhao, R.; Jing, Y.-Y.; Wang, Y.; Jiang, W. The Anticonvulsant and Neuroprotective Effects of Baicalin on Pilocarpine-Induced Epileptic Model in Rats. Neurochem. Res. 2012, 37, 1670–1680. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.K.; Moon, E.; Kim, S.Y. Chrysin Suppresses LPS-Stimulated Proinflammatory Responses by Blocking NF-ΚB and JNK Activations in Microglia Cells. Neurosci. Lett. 2010, 485, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Raygude, K.S.; Kandhare, A.D.; Ghosh, P.; Bodhankar, S.L. Anticonvulsant Effect of Fisetin by Modulation of Endogenous Biomarkers. Biomed. Prevent. Nutr. 2012, 2, 215–222. [Google Scholar] [CrossRef]
- Das, J.; Singh, R.; Sharma, D. Antiepileptic Effect of Fisetin in Iron-Induced Experimental Model of Traumatic Epilepsy in Rats in the Light of Electrophysiological, Biochemical, and Behavioral Observations. Nutr. Neurosci. 2017, 20, 255–264. [Google Scholar] [CrossRef]
- Tambe, R.; Patil, A.; Jain, P.; Sancheti, J.; Somani, G.; Sathaye, S. Assessment of Luteolin Isolated from Eclipta Alba Leaves in Animal Models of Epilepsy. Pharm. Biol. 2017, 55, 264–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golechha, M.; Chaudhry, U.; Bhatia, J.; Saluja, D.; Arya, D.S. Naringin Protects against Kainic Acid-Induced Status Epilepticus in Rats: Evidence for an Antioxidant, Anti-Inflammatory and Neuroprotective Intervention. Biol. Pharm. Bull. 2011, 34, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Wu, Y.; Yang, Y.-J.; Li, W.-Z.; Dong, K.; Zhou, J.; Yin, Y.-Y.; Huang, D.-K.; Wu, W.-N. Sinomenine Exerts Anticonvulsant Profile and Neuroprotective Activity in Pentylenetetrazole Kindled Rats: Involvement of Inhibition of NLRP1 Inflammasome. J. Neuroinflam. 2018, 15, 152. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malaník, M.; Čulenová, M.; Sychrová, A.; Skiba, A.; Skalicka-Woźniak, K.; Šmejkal, K. Treating Epilepsy with Natural Products: Nonsense or Possibility? Pharmaceuticals 2023, 16, 1061. https://doi.org/10.3390/ph16081061
Malaník M, Čulenová M, Sychrová A, Skiba A, Skalicka-Woźniak K, Šmejkal K. Treating Epilepsy with Natural Products: Nonsense or Possibility? Pharmaceuticals. 2023; 16(8):1061. https://doi.org/10.3390/ph16081061
Chicago/Turabian StyleMalaník, Milan, Marie Čulenová, Alice Sychrová, Adrianna Skiba, Krystyna Skalicka-Woźniak, and Karel Šmejkal. 2023. "Treating Epilepsy with Natural Products: Nonsense or Possibility?" Pharmaceuticals 16, no. 8: 1061. https://doi.org/10.3390/ph16081061
APA StyleMalaník, M., Čulenová, M., Sychrová, A., Skiba, A., Skalicka-Woźniak, K., & Šmejkal, K. (2023). Treating Epilepsy with Natural Products: Nonsense or Possibility? Pharmaceuticals, 16(8), 1061. https://doi.org/10.3390/ph16081061