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Abstract: Pain represents one of the leading causes of suffering and disability worldwide. Currently
available drugs cannot treat all types of pain and may have adverse effects. Hence, the use of
pharmacological combinations is an alternative treatment strategy. Therefore, this study aimed to
evaluate the combination of resveratrol and ketorolac through isobolographic analysis. CD1 mice
were used to study the antinociceptive effect of this combination using the formalin test and the
study was divided into two phases. In the first phase, four individual doses of each drug were
evaluated, totaling eight testing groups. From these data, the median effective doses (ED50) of each
drug were calculated. In the second phase, four testing groups were used to evaluate the combination
of sub-doses of both drugs and obtain the experimental ED50. To evaluate gastric damage, five groups
were employed, including indomethacin, vehicle, resveratrol, ketorolac, and combined resveratrol
and ketorolac groups. Stomach samples from the mice were taken after 5 h of treatment, and the area
of the ulcers was determined. Resveratrol plus ketorolac elicited a reduction in nociceptive behavior
during both phases of the formalin test, and isobologram analysis revealed that the theoretical
and experimental ED50 values of resveratrol and ketorolac did not differ significantly, implying an
additive interaction between the drugs. Additionally, the drug combination did not generate gastric
ulcers, thus enhancing the desired effects without increasing the adverse effects. Consequently, these
findings substantiate the efficacy of the resveratrol and ketorolac combination in the formalin test,
thereby highlighting its potential as a viable alternative for alleviating pain.

Keywords: resveratrol; ketorolac; isobologram; pain; gastric damage; drug interactions; mice

1. Introduction

Pain constitutes a profoundly incapacitating condition in many cases, exerting a
detrimental influence on the quality of life of those affected. Consequently, it is one of the
foremost reasons individuals pursue medical care [1,2].

The International Association for the Study of Pain (IASP) defines pain as an unpleas-
ant sensory and emotional experience associated with, or resembling that associated with,
actual or potential tissue damage [3]. However, there are various types of pain, includ-
ing nociceptive, inflammatory, and neuropathic pain [4]; this poses a challenge to proper
treatment when multiple pain types coexist, thereby leading to polypharmacy and the
escalation of medication doses; this results in an increased risk of adverse events [5].

The pharmacological treatment of pain depends on different circumstances, such as
chronicity and intensity. Generally, for mild to moderate acute or chronic pain, paracetamol,
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nonsteroidal anti-inflammatory drugs (NSAIDs), or short-acting opioids are used. For
intense pain, more potent drugs, such as opioids, are employed. [6]. Nonetheless, NSAIDs,
which are often the first choice for treatment, can have adverse effects, such as [7] renal [8],
or cardiovascular alterations [9]. This poses a challenge when relying on a single analgesic
agent that targets a specific pain pathway to achieve effective pain relief. Higher doses may
be required to achieve the desired pain reduction, which, in turn, increases the risk of side
effects [10].

Given these considerations, the use of pharmacological combinations is necessary for
pain management. The goal of using medications that act on multiple signaling pathways
is to maximize therapeutic coverage while minimizing side effects [10]. In this study,
ketorolac, an NSAID, was used. Ketorolac is known for its potent analgesic activity and
moderate anti-inflammatory action [11]; similar to other drugs in its class, its mechanism
of action involves cyclooxygenase (COX) inhibition, thereby preventing the production of
inflammatory mediators, such as prostaglandins [12]. As a result, ketorolac is indicated for
the treatment of moderately intense acute pain [13].

Resveratrol is an alternative molecule for treating pain; it is a natural polyphenol
first characterized in 1939 from the roots of Veratrum grandiflorum (Maxim ex. Baker)
Loes [14]. Resveratrol has been called the “elixir of life” due to its antioxidant [15,16]
anti-inflammatory [17] and analgesic [18] properties, as indicated by reports in both ani-
mals [19,20] and humans [21]. Additionally, resveratrol acts on various pathways related to
pain perception and transmission, such as suppressing inflammatory mediator production
through inhibiting NF-κB translocation to the nucleus [22], as well as inhibiting COX en-
zymes [23]. Additionally, it has a potent inhibitory effect on transient receptor potential
cation channel subfamily A member 1 (TRPA1) and transient receptor potential cation
channel subfamily V member 1 (TRPV1), channels involved in nociceptive signaling [24].
Furthermore, resveratrol had a favorable safety profile in many studies, making it a promis-
ing candidate for the development of safer and more effective analgesic therapies [15].

The combination of resveratrol and ketorolac as an analgesic represents a novel and
promising approach in the search for more effective therapeutic strategies for pain relief.
Both compounds have analgesic properties individually, but when combined, their syner-
gistic potential could provide additional benefits, such as increased efficacy and reduced
unwanted side effects. This innovative approach opens new possibilities for the devel-
opment of safer and more efficient analgesic therapies, which could lead to a significant
improvement in the quality of life of patients with chronic or acute pain. Therefore, the
objective of the present research was to evaluate the effect of the combination of ketorolac
with resveratrol using an isobolographic analysis in the formalin test in mice. Before that, it
was determined the drug association’s feasibility by an in silico study.

2. Results
2.1. In Silico Analysis
2.1.1. Molecular Targets

The possible effectiveness of the combination of ketorolac and resveratrol for pain
treatment was evaluated through an in silico analysis using PASS online and SwissTarget-
Prediction. The results show that resveratrol can target both isoforms of the COX enzyme
(>99%). Additionally, several molecular targets with high probabilities (>50%) were iden-
tified in Table 1, indicating that the antioxidant resveratrol could inhibit pain through
these targets. On the other hand, ketorolac is an inhibitor of both COX isoforms (>99%)
(Table 2). All the molecular targets presented in Tables 1 and 2 involve pain signaling.
Based on these tables, Figure 1 visually shows how both ligands could interact to inhibit
pain. These approximations give us an idea of the potential these drugs could have if they
are combined, expanding the range of pharmacological targets to counteract pain.
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Table 1. Molecular targets of resveratrol and their probabilities.

Probability Molecular Target Common Nomenclature Software

1.0 Cyclooxygenase 1 COX-1/PTGS1 SwissTargetPrediction
1.0 Cyclooxygenase 2 COX-2/PTGS2 SwissTargetPrediction

0.912 Janus kinase 2 expression inhibitor JAK2 PASS Online
0.773 Phosphatidylserine decarboxylase inhibitor PISD PASS Online
0.772 Matrix metallopeptidase 9 expression inhibitor MMP9 PASS Online
0.681 Dimethylargininase inhibitor DDAH PASS Online
0.654 Tumor necrosis factor expression inhibitor TNF PASS Online
0.603 Nitric oxide synthase 2 expression inhibitor NOS2 PASS Online
0.587 Transcription factor RelA expression inhibitor RelA/p65 PASS Online

Table 2. Molecular targets of ketorolac and their probabilities.

Probability Molecular Target Common Name

1.0 Cyclooxygenase 1 COX 1/PTGS1
1.0 Cyclooxygenase 2 COX 2/PTGS2
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Figure 1. Pathways of pain inhibition by resveratrol (R) and ketorolac (K). COX, cyclooxygenase;
iNOS, inducible nitric oxide synthase; MMP-9, matrix metallopeptidase 9; ADMA, asymmetric
dimethylarginine; DDAH-1, dimethylargininase; PLA2, phospholipase A2; PGE2, prostaglandin
E2; PGI2, prostacyclin; FD, phosphatidylserine decarboxylase; DRG, dorsal root ganglion; nNOS,
neuronal nitric oxide synthase; JAK, Janus kinase; NO, nitric oxide.

2.1.2. In Silico Analysis of CYP-Dependent Metabolism

The predictions regarding resveratrol and ketorolac are divided into substrates or
inhibitors of CYP enzymes. Table 3 displays the probabilities of the drugs acting as CYP
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isoform inhibitors, while Table 4 shows the results for the drugs as enzyme substrates. Both
analyses were conducted using the admetSAR web server.

Table 3. Probability of inhibition of resveratrol and ketorolac on CYP isoforms.

Inhibitor

CYP Isoform admetSAR % Probability Drugs

CYP2D6
No 0.9226 Resveratrol
No 0.9333 Ketorolac

CYP3A4
Yes 0.7539 Resveratrol
No 0.9621 Ketorolac

CYP1A2
Yes 0.9106 Resveratrol
Yes 0.5483 Ketorolac

CYP2C19
Yes 0.8052 Resveratrol
No 0.9225 Ketorolac

CYP2C9
Yes 0.7068 Resveratrol
No 0.9081 Ketorolac

Table 4. Analysis of resveratrol and ketorolac as substrates of CYP isoforms.

Substrate

CYP Isoform admetSAR % Probability Drugs

CYP2D6
No 0.6927 Resveratrol
No 0.8801 Ketorolac

CYP3A4
No 0.7342 Resveratrol
No 0.6185 Ketorolac

CYP1A2
-- -- Resveratrol
-- -- Ketorolac

CYP2C19
-- -- Resveratrol
-- -- Ketorolac

CYP2C9
No 0.5955 Resveratrol
No 0.6206 Ketorolac

The results indicate that resveratrol exhibits a high probability (>0.70) of inhibiting
four CYP isoforms (1A2, 3A4, 2C19 and 2C9). Conversely, ketorolac was not identified as a
substrate for these isoforms. Ketorolac demonstrates a probability of 0.5483 of inhibiting
CYP1A2. However, the programs did not provide evidence regarding whether resveratrol
acts as a substrate for CYP1A2. Notably, both drugs exhibited inhibitory effects on CYP1A2;
ketorolac showed a relatively lower probability (<0.5483).

2.2. Evaluation of the Antinociceptive Activity of Individual Drugs in the Formalin Test

The subcutaneous administration of 2% formalin in the hind limb of mice treated with
the vehicle resulted in a nociceptive biphasic response that is characteristic of the test. It
should be noted that the administration of both saline solution and carboxymethylcellulose
yielded similar results (Figure 2A). As no significant differences were observed in the
effects of both vehicles, it was decided to use only one of them (saline solution) for the
graphical representations.
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Figure 2. Temporal course of the number of limb flinches induced by formalin administration after
the administration of vehicles (saline solution 0.9% and carboxymethylcellulose 0.1%) (A), resveratrol
(10, 31.6, 100, and 316 mg/kg) (B) and ketorolac (0.1, 0.316, 1, and 3.16 mg/kg) (D). The bar graph
shows the area under the curve of (C) resveratrol and (E) ketorolac for the two phases in formalin
test. The mean value plus standard error of the mean (S.E.M.) is presented for six animals per group,
with each dose representing a separate group. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to the
vehicle, based on one-way analysis of variance (ANOVA), followed by Tukey’s post hoc test.

The temporal course of the four doses of resveratrol and the vehicle is depicted in
Figure 2B. The number of limb flinches in mice decreased during both phases. The area
under the curve (AUC) was calculated for both phases of the test; the neurogenic phase
(0–10 min) and the inflammatory phase (15–60 min). Figure 2C illustrates the area under
the curve (AUC) for each dose, with a lower AUC indicating a reduction in nociceptive
behavior. The graph also demonstrates that the AUC of the four doses is significantly
different from the vehicle in both phases (p < 0.05), except for the 10 mg/kg dose in the
first phase, which was not significantly different from the vehicle. The percentages of
antinociception were 22.25, 31.65, 37.61, and 55.27% for the first phase, and 43.47, 44.72,
55.27%, and 76.17% for the second phase, respectively.
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The temporal course of the four evaluated doses of ketorolac is shown in Figure 2D,
illustrating a reduction in the number of limb flinches in mice during both phases compared
to the vehicle. Subsequently, the AUC was determined (Figure 2E), revealing that the AUCs
of the four different doses were statistically distinct from the vehicle group (p < 0.01),
indicating the antinociceptive effect caused by ketorolac in both phases. The percentages of
antinociception induced by the doses (0.1, 0.316, 1, and 3.16 mg/kg) assessed in the first
phase were 22.25, 37.84, 39.44, 50.91, and 47.01%, respectively. In the second phase, the
corresponding percentages were 36.87, 48.97, 64.22, and 74.78%, respectively.

Based on the dose–response curve constructed using the percentage of antinociception
considering the maximum possible effect of both phases of the test, the maximum effect of
resveratrol was 71.12% with a dose of 316 mg/kg. In comparison, ketorolac exhibited an
efficacy of 66.6% with a dose of 3.16 mg/kg. Consequently, the median effective dose (ED50)
values for resveratrol and ketorolac were 59.9 ± 12.36 and 0.44 ± 0.04 mg/kg, respectively.
From these data, four subdoses were analyzed in combination, as shown in Table 5.

Table 5. Doses of resveratrol and ketorolac evaluated in combination at a 1:1 ratio.

Combination Dose

Resveratrol mg/kg Ketorolac mg/kg Total mg/kg

ED50 + ED50 59.9 0.44 60.34
(ED50 + ED50)/2 29.95 0.22 30.17
(ED50 + ED50)/4 14.97 0.11 15.08
(ED50 + ED50)/8 7.48 0.05 7.54

2.3. Evaluation of the Antinociceptive Activity of Drug Combinations in the Formalin Test

As observed in Figure 3A, the temporal course of the four doses in combination
resulted in a decrease in the number of limb flinches in mice compared to the vehicle.
Furthermore, Figure 3B represents the AUC of all combinations (7.54, 15.08, 30.17, and
60.34 mg/kg), indicating that all four combinations were significantly different from the
vehicle group (p < 0.05). The percentages of antinociception in the first phase were 29.35,
44.26, 47.24, and 47.24%, while in the second phase, they were 28.88, 39.66, 60.48, and
65.98%, respectively.

In Figure 3C, the effects of the highest doses administered individually (resveratrol,
316 mg/kg; ketorolac, 3.16 mg/kg) are compared with the ED50 doses of their combination
(60.3446 mg/kg). The percentages of antinociception in the neurogenic phase were 55.27,
47.01, and 47.24%, respectively, while in the second phase, they were 76.17, 74.78, and
65.98%, respectively. No statistically significant differences (p < 0.05) were observed in the
antinociceptive effects between groups; this demonstrates that to achieve effects similar to
the highest individual doses, approximately five times less resveratrol and seven times less
ketorolac is necessary when combined.

2.4. Isobolographic Analysis of the Combination of Resveratrol with Ketorolac

After determining the ED50 values for individual drug administration, the theoretical
ED50 (ED50-T) was obtained (30.17 ± 3.09 mg/kg). The experimental ED50 (ED50-E) was
24.70 ± 1.56 mg/kg. Figure 4 presents the isobologram, demonstrating the statistical
comparison between the ED50-T and ED50-E, revealing no statistically significant differences
between them. Furthermore, an interaction index of 0.81 was calculated, indicating an
additive interaction between resveratrol and ketorolac.
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Figure 3. Temporal course of the number of limb flinches in the formalin test after the administration
of (A) the resveratrol–ketorolac combination (7.54, 15.08, 30.17, and 60.34 mg/kg) and the vehicle.
(B) The bar graph shows the area under the curve of each combination. (C) Antinociceptive effect
of the highest doses of the drugs used individually and the highest doses used in combination.
Mean ± S.E.M. of 6 animals per group is presented in all cases, with each dose corresponding to a
group. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to the vehicle, according to one-way analysis of
variance (ANOVA), followed by Tukey’s post hoc test.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 7 of 17 
 

 

* p < 0.05, ** p < 0.01, *** p < 0.001 compared to the vehicle, according to one-way analysis of variance 
(ANOVA), followed by Tukey’s post hoc test. 

In Figure 3C, the effects of the highest doses administered individually (resveratrol, 
316 mg/kg; ketorolac, 3.16 mg/kg) are compared with the ED50 doses of their combination 
(60.3446 mg/kg). The percentages of antinociception in the neurogenic phase were 55.27, 
47.01, and 47.24%, respectively, while in the second phase, they were 76.17, 74.78, and 
65.98%, respectively. No statistically significant differences (p < 0.05) were observed in the 
antinociceptive effects between groups; this demonstrates that to achieve effects similar 
to the highest individual doses, approximately five times less resveratrol and seven times 
less ketorolac is necessary when combined. 

2.4. Isobolographic Analysis of the Combination of Resveratrol with Ketorolac 
After determining the ED50 values for individual drug administration, the theoretical 

ED50 (ED50-T) was obtained (30.17 ± 3.09 mg/kg). The experimental ED50 (ED50-E) was 24.70 
± 1.56 mg/kg. Figure 4 presents the isobologram, demonstrating the statistical comparison 
between the ED50-T and ED50-E, revealing no statistically significant differences between 
them. Furthermore, an interaction index of 0.81 was calculated, indicating an additive in-
teraction between resveratrol and ketorolac. 

 
Figure 4. Isobologram of the antinociceptive interaction between resveratrol and ketorolac in a dose 
ratio of 1:1. The points on the y-axis represent the ED50 of resveratrol, while the points on the x-axis 
represent the ED50 of ketorolac. The diagonal line connecting the ED50 values of resveratrol and ke-
torolac represents the line of additivity. The midpoint (blue point) between the two drugs corre-
sponds to the theoretical ED50 (ED50-T), and the point below represents the experimental ED50 (ED50-
E). The horizontal and vertical bars indicate the standard error of the mean (S.E.M). The ED50-T and 
ED50-E were not statistically significantly different according to a Student t-test, indicating an addi-
tive interaction. 

2.5. Evaluation of Gastric Damage Caused by the Drugs 
In order to identify possible adverse gastrointestinal effects caused by the individual 

drugs and their combination, the area of gastric ulcers was quantified. Within 5 h of treat-
ment in the different groups that received resveratrol, ketorolac, the combination, and the 
vehicle, the minimum gastric damage was significantly different (p < 0.001) compared to 
the reference group with 100% gastric damage (indomethacin-treated group). Images of 
gastric lesions are shown in Figure 5, where the stomach damage was caused by indo-
methacin (Figure 5A, panel I), in contrast to stomachs treated with the vehicle and 

Figure 4. Isobologram of the antinociceptive interaction between resveratrol and ketorolac in a
dose ratio of 1:1. The points on the y-axis represent the ED50 of resveratrol, while the points on the
x-axis represent the ED50 of ketorolac. The diagonal line connecting the ED50 values of resveratrol
and ketorolac represents the line of additivity. The midpoint (blue point) between the two drugs
corresponds to the theoretical ED50 (ED50-T), and the point below represents the experimental ED50

(ED50-E). The horizontal and vertical bars indicate the standard error of the mean (S.E.M). The ED50-T
and ED50-E were not statistically significantly different according to a Student t-test, indicating an
additive interaction.
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2.5. Evaluation of Gastric Damage Caused by the Drugs

In order to identify possible adverse gastrointestinal effects caused by the individ-
ual drugs and their combination, the area of gastric ulcers was quantified. Within 5 h
of treatment in the different groups that received resveratrol, ketorolac, the combination,
and the vehicle, the minimum gastric damage was significantly different (p < 0.001) com-
pared to the reference group with 100% gastric damage (indomethacin-treated group).
Images of gastric lesions are shown in Figure 5, where the stomach damage was caused
by indomethacin (Figure 5A, panel I), in contrast to stomachs treated with the vehicle
and resveratrol (Figure 5A, panels II and III, respectively), where gastric damage was
minimal. In Figure 5B, the differences in the percentage of gastric damage in each group
compared to the reference group are represented. The percentages of gastric lesions were
5.53 ± 2.5, 4.17 ± 0.66, 19.45 ± 7.71, and 17.46 ± 4.96% for the groups that received the
vehicle, resveratrol, ketorolac, and the combination, respectively. The percentage of lesions
in the ketorolac and combination groups represents approximately one-fifth of the damage
observed in the indomethacin group. No statistically significant differences were found
between the groups administered the vehicle, resveratrol, ketorolac, and the combination.
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combination (59.9 + 0.44 mg/kg). (B) Percentage of gastric damage of treatments compared to
the group used as the reference for 100% damage (indomethacin). Gastric lesions were quantified
using the ImageJ program. The bars represent each group’s mean ± SEM of gastric lesions (n = 6).
*** p < 0.001 according to one-way ANOVA followed by Tukey’s post hoc test.

3. Discussion

Resveratrol has been the subject of research due to its various therapeutic proper-
ties [16–18]; however, the combined effects of resveratrol and ketorolac on pain management
have not been thoroughly examined. Therefore, this analysis was crucial to understand
and provide insights into the pathways through which these drugs can exert an antinoci-
ceptive effect.

In silico analysis of the pharmacodynamics of these drugs revealed their potential
antinociceptive effects, indicating novel targets for resveratrol. There is substantial ev-
idence in the literature for the inhibitory effect of resveratrol on the majority of these
targets [23,25–30], which explains the antinociceptive action of the drug. However, there is
no evidence to suggest that resveratrol acts as an inhibitor of phosphatidyl-serine decar-
boxylase (PISD) or dimethylargininase (DDHA). PISD plays a role in phosphatidylserine
decarboxylation to produce phosphatidylethanolamine, which is a key phospholipid in cell
membranes [31,32]. Upon stimulation, the enzyme phospholipase A2 triggers the release of
arachidonic acid from membrane phospholipids [33], suggesting that by inhibiting the PISD
enzyme, no phosphatidylethanolamine (PE) is produced, thereby preventing arachidonic
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acid production and inhibiting the formation of inflammation-mediating molecules that
contribute to pain generation.

DDAH is an enzyme that utilizes asymmetric dimethylarginine (ADMA) as its sub-
strate. ADMA, which bears structural similarity to L-arginine, competes for the active
site of nitric oxide synthase (NOS), thereby inhibiting nitric oxide production. [34–36].
According to the prediction results, resveratrol could be an DDAH inhibitor, and by in-
hibiting this enzyme, the ADMA concentration would be increased, thus blocking NOS
activity [35,37]. This suggests that resveratrol could indirectly inhibit Nitric Oxide (NO)
production, thereby preventing a nociceptive signaling pathway mediated by NO [38]. In
contrast to the above, resveratrol can restore DDHA activity in bovine endothelial cells [39].
It is important to note that ADMA inhibits both neuronal (nNOS) and endothelial NOS
(eNOS) [40,41], which suggests that resveratrol may not be entirely innocuous. Despite
these reports, ADMA also exhibits a higher affinity for inhibiting nNOS than eNOS [40–42].
Moreover, neuronal ADMA upregulation dramatically suppressed NO-mediated excito-
toxic injury, offering a novel therapeutic approach [34]. Additionally, nNOS activation
and subsequent NO production can lead to spinal hyperexcitability and heightened pain
sensation [35]. Therefore, it is important to confirm whether resveratrol inhibits DDAH
and PISD, as these pathways could represent novel mechanisms by which resveratrol may
act to inhibit pain.

A high probability (>99%) of ketorolac being an inhibitor of cyclooxygenases was
obtained, which is widely supported by various studies [11,12,43]. Considering the in silico
results of the molecular targets of both drugs, it is evident that resveratrol exerts pleiotropic
effects by inhibiting various molecular targets. Additionally, both ketorolac and resveratrol
demonstrate analgesic activities, indicating the potential for a pharmacodynamic interaction
when administered together.

The in silico predictions of CYP-dependent metabolism indicated that resveratrol
does not undergo phase 1 metabolism as a substrate for any isoform. This is consistent
with previous studies. The resveratrol metabolites reported in the literature, such as glu-
curonides, are formed through the activity of the enzymes UGT1A1, UGT1A9, UGT1A6,
UGT1A7, and UGT1A10 [44,45]. Additionally, resveratrol acts as a substrate for the en-
zymes SULT1A1, SULT1A2, and SULT1A3, leading to resveratrol sulfate formation [46,47];
all of these enzymes are involved in phase 2 metabolism.

Regarding the results of resveratrol as an inhibitor of CYP2C9, 3A4, and 2C19, the
data are consistent with previous in vitro [48] and in vivo [49] studies; however, despite
the predictions indicating that resveratrol does not inhibit CYP2D6, both studies mention
that resveratrol inhibits this isoform [48,49].

Analysis revealed that ketorolac is neither a substrate nor an inhibitor of any of the
five CYP enzymes. Therefore, the in silico analysis found no pharmacokinetic interaction
regarding metabolism between ketorolac and resveratrol. However, it was reported that
ketorolac is a substrate for CYP2C8, CYP2C9, and UGT2B7 enzymes [50]. Furthermore,
in a study involving ketorolac administration to healthy volunteers, p-hydroxy-ketorolac
was identified as a metabolite [51,52]; it is reasonable to assume that ketorolac is indeed
a substrate for phase 1 enzymes (CYP2C8 and CYP2C9). Furthermore, as previously
observed, resveratrol inhibits CYP2C9 [48,49], which indicates a positive pharmacokinetic
interaction between both drugs, suggesting that when administered in combination, a
lower dose of ketorolac may be sufficient to achieve therapeutic effects.

The efficacy of resveratrol in pain relief has been reported in previous studies [19,20,53,54],
which is consistent with the findings of the present investigation. Nonetheless, some stud-
ies [53,55] showed antinociceptive effects of resveratrol only in the second phase, in contrast
to the current findings where a biphasic reduction in nociceptive behavior was observed.
The differences in our research are likely attributable to methodological differences such as
the route of administration (local vs. systemic). Additionally, previous reports suggest that
resveratrol exerts antinociceptive effects by inhibiting TRPA1 [56] and TRPV1 [24] channels,
both of which are involved in pain generation during the first phase [57–59] of the formalin
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test. Thus, the inhibition of these receptors by resveratrol may explain the antinociceptive
effect observed in the first phase of our investigation.

In this study, we corroborate that ketorolac significantly reduces nociceptive behavior
in the formalin test, which is consistent with studies [60–63] which reported effects in
both phases of the test. Nociceptive behavior in the first phase of the formalin test can
be attenuated by centrally acting drugs [64–66]. Previous research has demonstrated
that ketorolac exerts analgesic effects at the central level [67–69], possibly through the
involvement of descending modulatory systems [69]. This explains the analgesic effect
observed in the present study by the action of ketorolac in the first phase of the formalin test.

In the additive interaction observed in the combination of resveratrol and ketorolac,
the maximum antinociceptive effect was achieved with the higher doses of resveratrol and
ketorolac, as well as the combination. Despite the smaller doses in the combination, no
significant differences were found in the antinociceptive effect. The synergistic interaction
index also demonstrated an additive interaction between ketorolac and resveratrol. Both
drugs have been previously evaluated in combination with other medications. For exam-
ple, resveratrol exhibited synergistic interactions with diclofenac, benfotiamine [20], and
morphine [70] in acetic acid-induced constriction and hot plate models, respectively. As for
ketorolac, previous research indicates synergistic interactions with methyl eugenol [63] and
essential oils from Syzygium aromaticum and Rosmarinus officinalis [71] in the formalin test, as
well as a synergistic interaction with tramadol in the pain induced functional impairment
model in rats [72].

One of the main adverse effects of NSAIDs is gastric ulcers, associated with their effects
as COX-1 inhibitors [73]. Despite increasing the antinociceptive effects in combination, our
results show that gastric lesions were not exacerbated. It has been reported that resveratrol
acts as a protective and therapeutic agent against oxidative gastric damage, which could
contribute to the gastric effects observed with the administration of the combination [74,75].

4. Materials and Methods
4.1. In Silico Analysis

The SMILES (Simplified Molecular Input Line Entry System) codes [76] for each drug
was obtained from PubChem; these codes are essential for conducting in silico analy-
sis. The tests were divided into two phases. In the first part, the online programs PASS
(Way2Drug) [77] and SwissTargetPrediction [78] were used to obtain the probabilities of
interaction with specific molecular targets and identify potential signaling mechanisms for
pain inhibition. The admetSAR [79] server was used for the second part of the analysis
(accessed on 10 November 2022). To determine the probabilities of the drugs as substrates
or inhibitors based on five CYP isoforms (3A4, 1A2, 2C9, 2C19, 2D6) to detect poten-
tial pharmacokinetic interactions at the metabolism level. The results are expressed as
probabilities (P) on a scale from 0 to 1, where 1 indicates that the event is very likely to
occur and 0 indicates that it is very improbable. Only predictions with a probability of
occurrence >50% (>0.5) were considered.

4.2. Animals

For the experimental tests, 108 male CD1 mice weighing 25–30 g were used. The
rodents were kept under controlled humidity conditions and a 12 h light/dark cycle,
with ad libitum access to water and food, except for food withdrawal hours before the
experiment (12 h for the formalin test; 18 h for gastric damage determination). The use and
handling of the animals were carried out following the ethical guidelines for experimental
pain research in animals proposed by the International Association for the Study of Pain [80]
and under regulations established in the Official Mexican Standard for the care and use of
laboratory animals (NOM-062-ZOO-1999). The experimental procedures were approved
by the research committee of the Autonomous University of Chiapas (Approval date,
7 November 2022; protocol number, 03/ECQ/RPR/066/22). The number of animals used
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was kept to a minimum. Each animal was utilized only once for the experimentation. For
the mice evaluated in the formalin test, they were euthanized by cervical dislocation.

4.3. Drugs

Ketorolac (PHARMAlife, Zapopan, Jalisco, Mexico, CAS 74103-06-3) and resvera-
trol (PlantPills, Nottingham, UK, CAS 501-36-0) were used to evaluate antinociception,
while indomethacin (BIORESEARCH, Naucalpan de Juárez, Edo. de México, Mexico,
CAS 53-86-1) was used as an inducer of gastric damage. Ketorolac and indomethacin
were dissolved in an isotonic saline solution (0.9% NaCl, PiSA Laboratories, Mexico City,
Mexico). Due to the insolubility of resveratrol in saline solution, it was suspended in
0.1% carboxymethylcellulose (Sigma-Aldrich, St. Louis, MO, USA, CAS 9004-32-4). The
substances were administered orally (p.o.) in a volume of 1 mL/100 g of body weight. All
preparations were made minutes before administration.

4.4. Formalin Test

The antinociceptive effect was measured by the formalin test [81]. Each mouse was
placed inside an acrylic cylinder (30 × 30 × 40 cm) with mirrors mounted on the back for
15 min to allow habituation. After this exploration of the novel environmental concluded
and the rodent appeared comfortable and not stressed. Subsequently, the administration
of resveratrol (10, 31.6, 100 and 316 mg/kg), ketorolac (0.1, 0.316, 1 and 3.16 mg/kg), the
vehicle, or the combination (7.54, 15.1, 30.17 y 60.34 mg/kg) was performed, considering
a latency period of 60 min. The individual doses of resveratrol and ketorolac were taken
according to previously conducted research [20,72]. After the designated time, 20 µL of
2% formalin was administered to the dorsal surface of the mouse’s right hind limb and
the mouse was placed back inside the cylinder. Only the number of paw flinches was
counted as a measure of nociception during 1 min, every 5 min for 60 min (Figure 6). The
response to the stimulus was analyzed in two phases: the first phase ranging from 1 to
10 min (neurogenic phase) and the second phase from 15 to 60 min (inflammatory phase).
All evaluations were performed in real-time by a single researcher in a blinded manner.
Throughout the assessment, the mice remained inside the observation chamber.
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The time course curve for each drug dose was constructed by plotting the number of
limb shakes induced by formalin as a function of time. The area under the curve (AUC) for
the formalin phases was calculated using the trapezoidal method [82]. The percentage of
the antinociceptive effect was calculated from the AUC using the following equation:

% Antinociception =

(
AUC(control group) −AUC(test drug)

AUC(control group)
× 100

)

4.5. Isobolographic Analysis

Isobolographic analysis was performed using the ED50 values of the drugs admin-
istered individually and in combination, calculated from the dose–response curves. The



Pharmaceuticals 2023, 16, 1078 12 of 16

isobologram was constructed by plotting the ED50 of ketorolac on the x-axis and the
ED50 of resveratrol on the y-axis to obtain the theoretical additive line. The midpoint
between the two doses represents the ED50-T [83]. From the individual ED50 values of
each drug, four sub-doses were obtained and evaluated in the formalin test to obtain
the dose–response curve of the combination and calculate the ED50-E. This ED50-T was
compared with the ED50-E using a Student t-test. The interaction index was measured
as described by Tallarida. [84], where values close to 1 indicate an additive interaction,
values >1 correspond to an antagonistic interaction (subadditive), and values <1 indicate a
synergistic interaction (superadditive).

4.6. Gastric Damage Assessment

The animals had an 18 h fasting period, followed by oral administration of the ED50 of
resveratrol (59.9 mg/kg), ketorolac (0.4446 mg/kg), resveratrol–ketorolac (59.9 + 0.4446 mg/kg,
respectively), indomethacin (25 mg/kg), and vehicle. A second administration was per-
formed at the same doses 2.5 h later. Later, the mice were euthanized, and their stomachs
were removed. The stomachs were rinsed with saline solution, and the interior was filled
with 2% formaldehyde [85] followed by immersion in formaldehyde in the same proportion
for 30 min. Subsequently, the stomachs were opened along the greater curvature for better
extension and washed with saline solution to remove gastric content. The stomachs were
photographed using a digital camera, and the images were analyzed with the ImageJ
software version 1.53t (Wayne Rasband, National Institute of Health, Bethesda, MD, USA).
The area of gastric damage was measured in millimeters [86]. The following equation was
used to calculate the total percentage of gastric lesions [87]:

% Gastric damage = 100−
(

Ulcer area(indomethacin) −AUC(test drug)

AUC(indomethacin)
× 100

)

The administered doses of ketorolac, resveratrol, and ketorolac–resveratrol were the
ED50 values previously calculated. The administration of indomethacin (25 mg/kg) was
used as a reference for 100% gastric damage [85].

4.7. Statistical Analysis

The data from the evaluations of the antinociceptive effect in the formalin and the
gastric damage are expressed as the mean ± standard error of the mean (SEM) of six
animals per group. First, a normality test using the Shapiro–Wilk method was conducted
on the data to ensure its adherence to a normal distribution. Subsequently, a one-way
analysis of variance (ANOVA) was performed to determine any statistical differences,
followed by a Tukey post hoc test for making multiple group comparisons. In the context of
comparing the theoretical ED50 to the experimental ED50 from the isobologram, a Student
t-test was employed. For statistical analysis, p < 0.05 was considered statistically significant.
The analyses were performed using GraphPad Prism 6.0 software (SPSS Inc., Chicago,
IL, USA).

5. Conclusions

This research demonstrates the antinociceptive efficacy of both resveratrol and ketoro-
lac in the formalin test, highlighting their potential as analgesic agents with multi-pathway
actions. The additive interaction observed with the resveratrol–ketorolac combination
further suggests its promising role as an alternative for pain treatment and relief. These
findings present a novel path for the development of more effective and safer analgesic
therapies. The combination of resveratrol and ketorolac shows great promise as a potential
clinical intervention, opening up new possibilities for future investigations and applications
in pain-management strategies.
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