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Abstract: With the discovery that the acquisition of toxic features by extrasynaptic NMDA receptors
(NMDARs) involves their physical interaction with the non-selective cation channel, TRPM4, it
has become possible to develop a new pharmacological principle for neuroprotection, namely the
disruption of the NMDAR/TRPM4 death signaling complex. This can be accomplished through
the expression of the TwinF domain, a 57-amino-acid-long stretch of TRPM4 that mediates its
interaction with NMDARs, but also using small molecule TwinF interface (TI) inhibitors, also known
as NMDAR/TRPM4 interaction interface inhibitors. Both TwinF and small molecule TI inhibitors
detoxify extrasynaptic NMDARs without interfering with synaptic NMDARs, which serve important
physiological functions in the brain. As the toxic signaling of extrasynaptic NMDARs contributes
to a wide range of neurodegenerative conditions, TI inhibitors may offer therapeutic options for
currently untreatable human neurodegenerative diseases including Amyotrophic Lateral Sclerosis,
Alzheimer’s disease, and Huntington’s disease.

Keywords: neurodegeneration; NMDAR/TRPM4 death signaling; TwinF interface inhibitor;
therapeutic intervention

1. Introduction

Glutamate neurotoxicity, also known as excitotoxicity, refers to neuronal damage
caused by the action of the neurotransmitter glutamate outside the synaptic cleft. It
was first described in the retina [1] and subsequently in the brain when James Olney
observed that the subcutaneous injection of monosodium glutamate induced acute neuronal
death throughout the brain [2]. Glutamate neurotoxicity is associated with the loss of the
structural integrity of neurons, mitochondrial dysfunction, increased production of reactive
oxygen species (ROS), and deregulation of gene expression, which eventually lead to
the death of neurons. Numerous studies have shown that glutamate neurotoxicity is a
central part of the pathomechanism of many neurodegenerative diseases including stroke,
Alzheimer’s disease (AD), Huntington’s disease (HD), and Amyotrophic Lateral Sclerosis
(ALS). Therefore, huge efforts have been made in both academia and the pharmaceutical
industry to investigate the molecular basis of glutamate neurotoxicity with the goal of
developing effective therapeutic strategies. In the 1980s, the N-methyl-D-aspartate receptor
(NMDAR) was identified as the key mediator of glutamate-induced neuronal death [3].
Later, in 2002, NMDARs located outside of synaptic contacts, so-called extrasynaptic
NMDARs (eNMDARs), were found to be responsible for the toxic actions of glutamate [4],
which comprise the typical pathological triad of structural disintegration, mitochondrial
dysfunction, and transcriptional deregulation [5]. In the past two decades, the molecular
basis of toxic eNMDAR signaling has been investigated in depth, and in 2020, it led to
the discovery of the death signaling complex and a new pharmacological principle for
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providing neuroprotection [6]. In this review, we focus on the molecular basis of eNMDAR-
mediated excitotoxicity and summarize pre-clinical and clinical studies that have employed
NMDAR antagonists in an effort to treat neurodegenerative diseases. Finally, we describe a
conceptually new approach for therapeutic interventions.

2. Deregulation of Glutamate Homeostasis in Neurodegeneration

Glutamate is one of the most abundant neurotransmitters in the central nervous
system and is the principal mediator of excitatory synaptic transmission in the mammalian
brain. Upon depolarization of neurons, glutamate is released from nerve terminals into the
synaptic cleft and activates glutamate receptors in the synapse. Efficient excitatory amino
acid transporters (EAATs) mediate the re-uptake of glutamate into neurons and glial cells,
thereby preventing glutamate leakage into the extrasynaptic space [7–10]. Many acute
and chronic neurodegenerative disorders are characterized by deficits in glutamate uptake
systems, which causes extracellular glutamate concentrations to increase to neurotoxic
levels. Hypoxic ischemic conditions can further exacerbate deregulation of glutamate
homeostasis through enhanced extrasynaptic glutamate release via the cystine/glutamate
antiporter, System XC [11] (Figure 1). Thus, while in healthy condition, the action of
glutamate is restricted to the synapse, in neurodegenerative diseases, glutamate receptors
located outside synaptic contacts are being activated. Particularly relevant in the context of
glutamate neurotoxicity are eNMDARs (Figure 1; and see below).
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Figure 1. Deregulation of glutamate homeostasis in neurodegeneration. Faulty glutamate re-uptake
systems in neurodegenerative diseases lead to elevated glutamate levels outside the synaptic contacts
and the stimulation of the extrasynaptically localized NMDAR/TRPM4 complex. Excitatory amino
acid transporter (EAAT); System XC, amino acid antiporter that mediates the exchange of extracellular
L-cystine and intracellular glutamate.

3. Glutamate Neurotoxicity and NMDA Receptors

Glutamate acts on two types of glutamate receptors: ionotropic glutamate receptors
(iGluRs) and metabotropic glutamate receptors (mGluRs). The iGluRs, which include α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), kainate recep-
tors, and NMDARs, are glutamate-gated cation channels that—upon their activation—allow
for ion flux across the plasma membrane. In contrast, mGluRs belong to the family of
G-protein-coupled receptors that are linked to either the cAMP or phosphatidylinositol
signaling pathways. Although all types of glutamate receptors have been linked to gluta-
mate neurotoxicity, the NMDAR is generally considered the major player in excitotoxicity.
NMDARs consist of four subunits in various subtype configurations. Typically, NMDARs
include two mandatory GluN1 subunits and either two GluN2 or GluN3 subunits. Four
subtypes of GluN2 (GluN2A, GluN2B, GluN2C, and GluN2D) and two subtypes of GluN3
(GluN3A and GluN3B) subunits are known. Despite differences in their molecular weight
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and biochemical properties, all three types of NMDAR subunits share common structural
features, including an extracellular domain that binds agonists, a transmembrane do-
main, and a C-terminal domain that regulates intracellular trafficking, membrane insertion,
protein–protein interactions, and downstream signaling [12,13].

Although NMDARs are the key mediators of excitotoxic neuronal death, they are
also critical for neuronal survival, synaptic transmission, and memory formation [14–16].
Accordingly, despite their neuroprotective potential in animal models of neurological disor-
ders, including stroke, glaucoma, AD, HD, and ALS, the application of NMDAR antagonists
in patients is limited. Indeed, as classical NMDAR antagonists such as MK801 failed to
make it to clinical trials, research aimed at addressing the toxic functions of NMDARs
shifted towards the generation of subtype-specific antagonists and in particular towards
blockers of GluN2B-containing NMDARs, which are considered to be the predominant
NMDAR subunits driving glutamate neurotoxicity [17,18].

Ifenprodil (NP-120) and its analog eliprodil (SL-82.0715) were developed as selective
antagonists for GluN2B-containing NMDARs, and they have shown neuroprotective effi-
cacy in animal models of stroke [19–21]. There have been several clinical studies examining
the efficacy of eliprodil for treating stroke. No results have been published; however,
according to its manufacturer Sanofi-Synthélabo, a phase III clinical trial failed. Although
no side effects were observed with the treatment regimen [22], both ifenprodil and eliprodil
are also known to act as antagonists of α1-adrenergic receptors, serotonin receptors, and
calcium channels [23–26]. Accordingly, their effectiveness may be compromised due to
potential interference with the cardiovascular system. To address this issue, several “second
generation” ifenprodil analogs, including traxoprodil (CP-101606; Pfizer), were developed.
CP-101606 was demonstrated to have greater selectivity for GluN2B receptor subtypes
over other targets and to provide robust neuroprotection in various animal models of
stroke [27–29]. In a double-blind, placebo-controlled study of CP-101606 in patients with
mild or moderate traumatic brain injury, no psychotropic effects were found, and it was well
tolerated [30]. However, although the Neurobehavioral Rating Scale score of all subjects
improved compared to a pre-dosing baseline, no significant differences were observed ei-
ther with respect to the type of head injury, or to the treatment—drug or placebo—received.
In another open-label study with 30 patients with severe traumatic brain injury, a 72 h
infusion of CP-101606 was well tolerated; it effectively penetrated the cerebrospinal fluid
and brain and improved outcomes in brain-injured patients, with longer infusions showing
better average outcomes [31]. However, the development of CP-101606 was discontinued
due to potential cardiovascular toxicity, especially of prolonged QT interval [32].

Several lines of evidence have challenged the hypothesis that GluN2B-containing
NMDARs are the predominant drivers of glutamate neurotoxicity, and instead implicate
both GluN2A and GluN2B as mediators of glutamate-induced neuronal damage. In
non-neuronal cell lines such as human embryonic kidney (HEK) 293 cells, for example,
expression of functional NMDARs leads to severe cell damage and death regardless of
whether NMDARs contain GluN2A or GluN2B subunits [33,34]. Further, GluN2B receptors
are expressed earlier in the development of neurons—both in vitro and in vivo—compared
to GluN2A receptors. However, ifenprodil shows significant neuroprotection only during
early developmental stages, but fails to protect neurons from glutamate neurotoxicity at a
more mature stages, indicating that, in more developed neurons expressing both receptor
subtypes, both GluN2A and GluN2B mediate glutamate toxicity [35,36].

As an alternative to the subunit hypothesis dictating that GluN2B-containing NM-
DARs mediate glutamate neurotoxicity, it was proposed in 2002 by Bading and colleagues
that NMDARs localized outside the synaptic cleft are the predominant triggers of excitotox-
icity [4]. It is now generally accepted that the subcellular location of NMDARs is critical for
the outcome of their stimulation. The activation of synaptic NMDARs (sNMDARs) during
action potential bursting has been shown to trigger downstream signaling pathways involv-
ing the CaMKIV- and CREB-dependent expression of immediate early genes (IEGs), and
ERK signaling, leading to enhanced neuronal survival and synaptic plasticity. In striking
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contrast, the activation of extrasynaptic NMDARs (eNMDARs) results in the suppression
of CREB signaling, inactivation of ERK, mitochondrial dysfunction, and ultimately cell
death [37,38]. Given that MK-801 is an open-channel NMDAR blocker, sNMDARs can be
selectively inhibited in a paradigm that involves the activation of sNMDARs via synaptic
activity in the presence of MK801, leaving eNMDARs unblocked. After the washout of
MK801, the latter receptors can be subsequently stimulated via bath-applied glutamate or
NMDA. This protocol enables the selective activation of eNMDARs and the separate study
of the function of sNMDARs and eNMDARs [4].

4. Neuroprotectants Targeting Glutamate Neurotoxicity

Increased glutamate levels and the activation of eNMDARs represent a critical point
of convergence in the pathomechanism of many neurodegenerative diseases. Several
drugs targeting this mechanism have been developed and tested in clinical trials, but only
two have been approved by the Food and Drug Administration (FDA) and the European
Medicines Agency (EMA): riluzole for ALS and memantine for moderate to severe AD.
While these medications have also been investigated for other neurodegenerative diseases,
the results have been largely disappointing. Here, we provide an overview of the preclinical
and clinical outcomes of riluzole and memantine across a broad range of neurodegenerative
diseases (see also Table 1).

5. Riluzole

Riluzole (2-Amino-6-trifluoromethoxy benzothiazole) was developed by the French
chemical company Rhône-Poulenc Rorer (now Sanofi) in the 1980s as a possible antagonist
of excitatory amino acids including glutamate [39,40]. The exact mode of action of riluzole is
unclear, but it is believed to provide neuroprotection by reducing the release and increasing
the uptake of glutamate in the brain and spinal cord [41–44]. Riluzole can also block
NMDARs in Xenopus oocytes in a reversible and competitive manner [45] as well as
human muscle acetylcholine receptors [46,47], suggesting other possible neuroprotective
mechanisms of action. Riluzole is also an effective blocker for both tetrodotoxin (TTX)-
sensitive and TTX-resistant sodium channels; it can block the inactivated sodium channel
of damaged neurons under ischemic conditions, which may provide neuroprotection [48].

Given its ability to prevent glutamate-mediated neuronal death, the therapeutic po-
tential of riluzole was evaluated with ALS patients starting in the early 1990s, only a few
years after its discovery [49–51]. The first trial comprised a total of 155 patients. Riluzole
(100 mg/day) significantly increased the survival rate from 58% to 74% after 12 months of
treatment. The deterioration of muscle strength was also slowed by riluzole treatment [49].
A second trial with 959 ALS patients was conducted a short time later to evaluate the
efficacy of riluzole at different doses (50, 100, or 200 mg/day). Although no functional
improvements were observed in this trial—including measures of muscle strength—all
three riluzole doses reduced the risk of death or tracheostomy after 12 and 18 months,
with the greatest reduction observed in patients receiving higher doses [51]. Not surpris-
ingly, as riluzole has many biological targets, several adverse effects were documented,
including dizziness, gastrointestinal disorders, increased alanine aminotransferase, and
low hemoglobin levels. Nonetheless, as the results of these studies demonstrated a modest
benefit in extending the lifespan of ALS patients, riluzole was approved for the treatment
of ALS by the FDA in 1995 and by the EMA one year later.

Given its potential to reduce glutamate neurotoxicity, riluzole has been evaluated for
its potential to treat other neurodegenerative diseases, including HD, PD, and AD (Table 1).
In a preclinical study, riluzole extended the survival time of R6/2 HD model mice, and
to reduce the severity of intranuclear inclusions in their striata [52]. In a phase III clinical
trial involving 537 HD patients given a 100 mg daily dose for three years, however, no
neuroprotective or other beneficial effects were observed [53]. Similarly, although riluzole
had provided neuroprotection in cellular and animal models of PD [54,55], it failed to
improve survival or deterioration rates in PD patients [56]. In contrast to these somewhat



Pharmaceuticals 2023, 16, 1085 5 of 15

disappointing results, riluzole has demonstrated the potential to treat AD in preclinical
settings. When administered to mouse models of AD, riluzole was able to rescue the ageing-
and AD-related gene expression profiles, cognitive deficits, and memory deficits [57–62].
A recent phase II trial with AD patients revealed that cerebral glucose metabolism, a
well-established biomarker for AD, was significantly better preserved in riluzole-treated
patients than in the placebo group [63]. Despite its promise as revealed by this study,
a higher-powered trial of longer duration is necessary in order to validate the potential
therapeutic effects of riluzole in AD. Preclinical studies have also revealed that riluzole
shows potential in the treatment of ischemic stroke and glaucoma: it showed efficacy in
preventing brain damage and in delaying retinal ganglion cell degeneration in mouse
models of ischemic stroke and glaucoma, respectively [64–67]. To our knowledge, however,
there have not yet been any clinical trials investigating the therapeutic potential of riluzole
in these diseases.

6. Memantine

In the early 1960s, Eli Lilly synthesized memantine hydrochloride with the aim of
developing an antidiabetic drug [68]. Although ineffective for reducing elevated blood
sugar levels, memantine was later found, in 1989, to be a clinically well-tolerated NMDAR
antagonist [69]. Notably, unlike several other NMDAR antagonists, memantine exhibits
a strong voltage dependency and rapid unblocking kinetics, characteristics which allow
it—when used at low doses—to preferentially affect tonically activated eNMDARs while
leaving the normal physiological functions mediated by sNMDARs largely unaffected [70].
Memantine is not, however, a pure NMDAR antagonist: it also acts as a non-competitive
antagonist for type 3 serotonin receptors and alpha7 nicotinic acetylcholine receptors, and
is an agonist of dopamine D2 receptors and of sigma 1 receptors [71–75].

Merz Pharma (Germany) initiated investigations into the therapeutic potential of
memantine for treating dementia in 1989 [76]. Subsequently, a randomized, double-blind,
placebo-controlled clinical trial published in 2003 found that memantine significantly
improved cognitive function and daily living activities in patients with moderate to severe
AD [77]. The study involved 252 patients who were treated with either memantine or
placebo for 28 weeks. Based on this study, memantine was approved by the FDA for
the treatment of moderate to severe AD. Later, memantine was used in conjunction with
donepezil, an acetylcholinesterase (AChE) inhibitor commonly prescribed for treating AD.
Compared to donepezil alone, this combination has been shown to lead to significantly
improved outcomes on measures of cognition, daily living activities, and global outcomes,
and to reductions in agitation/aggression, irritability, and appetite/eating disturbances in
patients with moderate to severe AD [78,79]. However, another trial failed to demonstrate a
significant difference in the effectiveness of donepezil and memantine together compared to
either treatment alone [80]. Nonetheless, as memantine has a different mechanism of action,
its administration in combination with AChe inhibitors may offer significant benefits to
some AD patients.

The potential effectiveness of memantine in the treatment of neurological disorders
has been explored for several disorders other than AD, including HD, glaucoma, ALS,
and multiple sclerosis. In the striatum of the YAC128 mouse model of HD, there was
increased expression of eNMDARs and increased eNMDAR currents, as well as reduced
CREB activation and increased cell death [81]. The chronic treatment of these mice with
memantine was found to restore nuclear CREB phosphorylation and to improve motor
learning, suggesting that memantine may provide therapeutic benefits in HD [81]. To inves-
tigate the effectiveness of memantine in human patients, a two-year open-label multicenter
trial was conducted with 27 HD patients who received up to 30 mg/day of memantine, and
demonstrated that memantine treatment slowed disease progression [82]. Another small pi-
lot study revealed that a daily dose of 20 mg of memantine led to significant improvements
in motor symptoms—particularly chorea—but did not improve cognitive, behavioral, func-
tional, or independence ratings in treated patients [83]. However, as placebo controls were
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missing in both trials, and no follow-up studies have been conducted, it is difficult to fully
assess the therapeutic benefits of memantine in HD.

As concerns glaucoma, the effectiveness of memantine has been well documented
in both monkey and rat models of glaucoma [84,85]. While memantine did not affect
the normal function of the retina as assessed with electroretinogram (ERG) and visually
evoked cortical potential (VECP) recordings, its administration did significantly prevent
the reduction of VECP responses in a monkey model of glaucoma and was associated with
diminished RGC loss in a rat glaucoma model [85]. Moreover, topically applied memantine
significantly reduced RGC loss in a rodent model of ocular hypertension [86]. Despite these
promising pre-clinical results, the clinical transition of memantine as a glaucoma treatment
failed to prevent glaucomatous progression in two phase III studies involving more than
2000 glaucoma patients [87]. Notably, although it is well documented that memantine can
protect RGCs in glaucoma, it is unknown whether memantine also protects RGC axons. As
axons of RGCs are also affected in glaucoma patients, a failure to protect them may explain
why memantine has failed in clinical trials to improve outcomes for glaucoma patients [88].

Memantine was reported in 2005 to extend the survival of the SOD1G93A mouse model
of ALS [89]. However, a randomized controlled trial conducted in 2010 and involving
63 patients failed to show any beneficial effect of memantine in ALS [90]. In MS patients,
memantine even worsened the neurological symptoms [91]. Thus, although memantine
preferentially blocks eNMDARs and is FDA approved for moderate to severe AD, it has
not yet proved beneficial in other neurodegenerative disorders (Table 1).

Table 1. Summary of clinical trials with riluzole and memantine. UHDRS: unified Huntington’s
disease rating scale; ALSFRS: ALS functional rating scale; PPS: Parkinson Plus Syndromes; NAA:
N-acetylaspartate; CIBIC-Plus: Clinician’s Interview-Based Impression of Change Plus Caregiver
Input; ADCS-ADLsev: Alzheimer’s Disease Cooperative Study Activities of Daily Living Inventory
modified for severe dementia. O.d.: once a day. B.i.d.: twice a day. * In this study, the dose of
memantine was not specified by increasing to a maximum of 30 mg/day, according to the tolerance
of the individual patient. N.D.: not determined.

Disease Patients
Complete/Total Details Evaluation (Primary

Endpoint) Dose Phase Outcome Ref.

R
IL

U
Z

O
LE

ALS 155/155 Randomized, placebo-controlled, double-blind,
1-year trial Survival and Norris scales 100 mg o.d. N.D. Positive [49]

ALS 959/959 Randomized, placebo-controlled, double-blind,
12- or 18-month trial Survival 50, 100, or 200 mg.

o.d. N.D. Positive [51]

AD 42/50 Randomized, placebo-controlled, double-blind,
6-month trial

Cerebral glucose
metabolism and NAA 50 mg b.i.d. Phase 2

NCT01703117 Positive [63]

HD 8/8 Open-label, 6-week trial UHDRS 50 mg b.i.d. N.D. Negative [92]

HD 7/9 Open-label, 12-month trial UHDRS 50 mg b.i.d. N.D. Benefits at 3 months, but no
longer at 12 months [93]

HD 56/63 Randomized, placebo-controlled, double-blind,
8-week trial UHDRS 100 or 200 mg

o.d. N.D. Negative [94]

HD 379/537 Randomized, placebo-controlled, double-blind,
3-year trial UHDRS 50 mg b.i.d. Phase 3

NCT00277602 Negative [53]

PPS 760/767 Randomized, placebo-controlled, double-blind,
3-year trial Survival 50–200 mg o.d. Phase 3

NCT00211224 Negative [56]

MS 198/223 Randomized, placebo-controlled, double-blind,
96-week trial Change in brain volume

50 mg
o.d. until week 4,

then b.i.d.

Phase 2b
NCT01910259 Negative [95]

M
EM

A
N

TI
N

E

AD
(moderate
to severe)

181/252 Randomized, placebo-controlled, double-blind,
28-week trial

CIBIC-Plus
ADCS-ADLsev 20 mg o.d. N.D. Positive [77]

Glaucoma 1877/2298 Randomized, placebo-controlled, double-blind,
2-year trials Visual field progression 10 and 20 mg o.d.

Phase 3
NCT00141882
NCT00168350

Negative [87]

HD 9/12 Open-label, 3-month pilot study UHDRS 5–20 mg o.d. N.D. Positive/negative [83]
HD 27/27 Open-label, 2-year pilot study Clinical assessment 30 mg *, o.d. N.D. Positive [82]

ALS 50/63 Randomized, placebo-controlled, double-blind,
12-month trial change in ALSFRS 20 mg o.d. Phase 2/3

NCT00353665 Negative [90]

MS 19/50 Randomized, placebo-controlled, double-blind,
12-month trial Verbal memory 30 mg o.d. NCT00638833 Neurologic symptoms

worsened [91]

7. NMDAR Interacting Proteins

Protein–protein interactions play a vital role in NMDAR-mediated downstream signal-
ing [96,97]. NMDAR interacting proteins not only participate in physiological processes but
also contribute to excitotoxicity. An important observation that subsequently helped guide
the development of effective neuroprotective strategies (see below) was the discovery, in
2002, that the location of NMDARs and their interacting proteins determine the outcome of
NMDAR stimulation: activation of synaptically localized NMDARs promotes neuronal
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survival and regulates synaptic plasticity, whereas the activation of NMDARs located
extrasynaptically promotes death signaling and kills neurons [4].

The first reported NMDAR-linked protein complex with a possible role in mediating
glutamate toxicity comprises neuronal nitric-oxide synthase (NOS), the NMDAR subunit
GluN2B, and post-synaptic density 95 protein (PSD95) [98]. The disruption of GluN2B-
PSD95 interactions by means of peptides or proteins that harbor nine specific amino acids
derived from the C-terminus of GluN2B protected against excitotoxicity-induced neuronal
death in vitro and against brain damage in mouse model of ischemia [99]. Building on
these findings, PSD-95-targeting strategies were developed, including a PSD-95 inhibitor to
treat stroke in the hydrocephalic primate brain [100]. A second protein reported to interact
with the C-terminal domain of the GluN2B subunit is the death-associated protein kinase 1
(DAPK1) [101]. Similar to PSD95, the interruption of the GluN2B-DAPK1 interaction via
an interfering peptide or via the genetic deletion of DAPK1 provided protection against
brain damage in ischemic stroke [101]. Despite this original finding, however, the role of
DAPK1 in excitotoxicity remains controversial [102].

In recent years, two NMDAR-interacting proteins of the transient receptor potential
melastatin subfamilies, TRPM2 and TRPM4, have been linked to cell death [6,103]. TRPM2
is a calcium-permeable channel that is activated through intracellular calcium and ADP
ribose and also regulated via oxidative stress. TRPM2 contributes to brain injury in ischemic
stroke, possibly due to its ability to regulate NMDAR trafficking [103]. In particular,
TRPM2-NMDAR coupling is enhanced subsequent to ischemic stroke, resulting in a Protein
Kinase C gamma (PKC-γ)-dependent increase in NMDAR expression at the cell surface.
The ‘EE3’ motif of TRPM2 and the ‘KKR’ motif of the NMDAR mediate their interaction,
which—when disrupted using an EE3 motif peptide—can protect cultured neurons from
oxygen glucose deprivation (OGD)-induced neuronal death in vitro and can reduce brain
damage following ischemic stroke. Interestingly, the domain of GluN2B that harbors the
TRPM2 binding ‘KKR’ motif also interacts with DAPK1 [101] (Figure 2). If and how the
TRPM2-NMDAR or the DAPK1-NMDAR interactions contribute to neurodegenerative
diseases other than stroke remains to be investigated.
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Figure 2. Protein–protein interaction domains within the cytoplasmic portions of GluN2A/2B with
possible roles in cell death. GluN2A/2B can interact with PSD95, Sattler et al., 1999 [98], Aarts et al.,
2002 [99]; DAPK1, Tu et al., 2010 [101], McQueen et al., 2017 [102]; TRPM4, Yan et al., 2020 [6]; TRPM2,
Zong et al., 2022 [103]. The domain of GluN2B that interacts with TRPM2 can also interact with
DAPK1. The four regularly spaced isoleucines of the I4 domain are highlighted in red.
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8. The NMDAR/TRPM4 Death Signaling Complex

While the interaction between TRPM2 and NMDAR seems to be induced under ex-
citotoxic conditions, TRPM4 and NMDAR form a stable complex under physiological
conditions [6,104]. TRPM4 is a non-selective monovalent cation channel, which is acti-
vated by intracellular calcium and inhibited by intracellular ATP [105,106]. The genetic
deletion or pharmacological inhibition of TRPM4 can provide neuroprotection in an ex-
perimental autoimmune encephalomyelitis (EAE) mouse model [107]. Moreover, primary
neuronal cultures derived from TRPM4 knock out mice as well as wild-type mouse neurons
in which TRPM4 was knocked down using RNA interference technology are protected
from glutamate neurotoxicity [107]. Moreover, the pharmacological inhibition of TRPM4
protects rodents from both ischemic and hemorrhagic stroke [108–114]. In light of our
understanding that eNMDARs are the principal mediators of glutamate neurotoxicity
whereas sNMDARs promote survival and plasticity [4], it is perhaps unsurprising that
TRPM4-NMDAR interactions seem to take place at extrasynaptic locations [6]. Accordingly,
the disruption of the eNMDAR/TRPM4 death signaling complex detoxifies eNMDARs,
providing a mechanistic framework for the generation of a new type of neuroprotectant.

9. A New Pharmacological Principle in Neuroprotection: Disruption of the
NMDAR/TRPM4 Death Signaling Complex

NMDARs located extrasynaptically gain toxicity through their interaction with TRPM4 [6].
The mapping of the domains that mediate the interaction of TRPM4 with the NMDAR has
guided the development of both the recombinant and small molecule inhibitors of their in-
teraction interface. The recombinant interface inhibitor is the TRPM4 interface itself, i.e., the
domain of TRPM4 that makes contact with the NMDAR. This domain is a 57-amino-acid-long
cytosolic portion of TRPM4, named TwinF, that interacts with an 18-amino-acid-long domain of
the NMDAR subunits GluN2A and GluN2B, named I4 [6]. Small molecule interface inhibitors
were identified in a computer assisted, structure-based screening for compounds that interact
with the core region of TwinF. The first two prototype small molecules TwinF interface (TI)
inhibitors were compound 8 and compound 19. TwinF and TI inhibitors (previously termed
‘NMDAR/TRPM4 interaction interface inhibitors’) offer robust protection against NMDA- and
OGD-induced excitotoxicity in primary neurons, and reduce both NMDA-induced RGC loss in
mice and brain damage following middle cerebral artery occlusion [6]. However, as they do
not affect the function of sNMDARs, but instead seem to specifically target the toxic signaling
component of eNMDAR activity. These inhibitors represent a new and potentially powerful
therapeutic concept for treating neurodegenerative diseases involving glutamate neurotoxicity.

10. TI Inhibitors

Thus far, TI inhibitors exhibit superiority over other neuroprotective compounds because,
in addition to protecting against cell death and mitochondrial dysfunction, they can also revert
the CREB shut-off associated with excitotoxicity. Accordingly, TI inhibitors can rescue the
deregulated gene expression associated with glutamate neurotoxicity [4,5], and convert an
eNMDAR-activating stimulus into a transcription-promoting one [6,115]. More specifically,
an excitotoxic stimulus applied to cultured primary neurons will result in the inhibition of
synaptic-activity-induced CREB phosphorylation and CREB-mediated gene expression. Among
the genes whose expression is thereby inhibited are Bdnf, Npas4, and cFos, all genes that are
otherwise induced upon synaptic activity and sNMDAR activation, and which serve important
functions in the nervous system [15]. Classical blockers of NMDARs do protect against the
toxic consequences of excitotoxic stimuli, but they also inhibit the synaptic-activity-driven,
CREB-mediated gene expression that is vital for a healthy brain. In contrast, by separating
eNMDARs from TRPM4, TI inhibitors not only detoxify eNMDARs, but also enable them
to function in a similar manner as sNMDAR. This mechanism of action—by which both the
physiological functions of sNMDARs are preserved and by which excitotoxic stimuli acting
on eNMDARs are converted into beneficial signals [6]—holds great promise for therapeutic
interventions (Figure 3).
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Figure 3. The therapeutic action of TwinF interface (TI) inhibitors in neurodegenerative diseases.
In the healthy brain, synaptic NMDAR activation promotes CREB activation and pro-survival
gene expression (left panel). In neurodegenerative diseases, glutamate levels outside the synapse
increase and result in the activation of the eNMDAR/TRPM4 complex. This triggers the typical
pathological triad of glutamate neurotoxicity, which consists of CREB shut-off and the deregulation
of gene expression, mitochondrial dysfunction, and loss of structural integrity, eventually leading to
neuronal cell death (middle panel). By disrupting the NMDAR/TRPM4 complex, TI inhibitors can
abolish toxic signaling, rescue CREB-mediated transcription, and restore the normal functioning of
mitochondria (right panel). Glial cells that are primarily responsible for glutamate re-uptake are not
depicted (see Figure 1).

11. Wide Range of Possible Therapeutic Applications of TI Inhibitors

Signaling induced via activated eNMDARs has emerged as a central component of
the pathomechanism for a wide range of acute and chronic neurodegenerative conditions,
including ALS, AD, HD, glaucoma, vascular dementia, stroke, traumatic brain or spinal
cord injury, and ageing-related degeneration [5,37] (Figure 4). Even the development
of chronic neuropathic pain may involve toxic eNMDAR signaling and the subsequent
degeneration of neurons [116]. Indeed, the cell pathology common to virtually all neu-
rodegenerative conditions is highly reminiscent of the typical pathological triad triggered
by the activation of eNMDARs: loss of structural integrity (i.e., the loss of synapses and
dendrites), mitochondrial dysfunction (i.e., the breakdown of the mitochondrial membrane
potential, metabolic/energy insufficiency, and increased production of reactive oxygen
species), and transcriptional deregulation (i.e., CREB shut-off and reduced expression of
activity-regulated neurotrophic/neuroprotective genes) [4,5,38]. One reason for the con-
vergence of different pathomechanisms on toxic eNMDAR signaling is that virtually all
neurodegenerative conditions are burdened with faulty or deregulated glutamate uptake
systems, resulting in the leakage of synaptically released glutamate and a subsequent
rise in glutamate levels at extrasynaptic locations [7,11,117–119]. Deregulated glutamate
homeostasis is further enhanced via neuroinflammatory responses and a leaky blood–brain
barrier, both of which are often associated with degenerative processes in the brain. TI
inhibitors would not fix aberrant neurotoxic glutamate levels, but they do have the potential
to break the disease process by detoxifying eNMDAR signaling, and thereby restoring
normal mitochondrial function, maintaining proper gene regulation, and preserving neu-
rons’ structural integrity. In sum, TI inhibitors hold great potential as broad-spectrum
neurotherapeutics, raising our hopes that currently untreatable human neurodegenerative
diseases may become treatable.
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