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Abstract: Chemotherapy is a life-sustaining therapeutic option for cancer patients. Despite the
advancement of several modern therapies, such as immunotherapy, gene therapy, etc., chemother-
apy remains the first-line therapy for most cancer patients. Along with its anti-cancerous effect,
chemotherapy exhibits several detrimental consequences that restrict its efficacy and long-term
utilization. Moreover, it effectively hampers the quality of life of cancer patients. Cancer patients
receiving chemotherapeutic drugs suffer from neurological dysfunction, referred to as chemobrain,
that includes cognitive and memory dysfunction and deficits in learning, reasoning, and concentra-
tion ability. Chemotherapy exhibits neurotoxicity by damaging the DNA in neurons by interfering
with the DNA repair system and antioxidant machinery. In addition, chemotherapy also provokes
inflammation by inducing the release of various pro-inflammatory cytokines, including NF-kB, IL-1β,
IL-6, and TNF-α. The chemotherapy-mediated inflammation contributes to chemobrain in cancer
patients. These inflammatory cytokines modulate several growth signaling pathways and reactive
oxygen species homeostasis leading to systemic inflammation in the body. This review is an effort
to summarize the available information which discusses the role of chemotherapy-induced inflam-
mation in chemobrain and how it impacts different aspects of therapeutic outcome and the overall
quality of life of the patient. Further, this article also discusses the potential of herbal-based remedies
to overcome chemotherapy-mediated neuronal toxicity as well as to improve the quality of life of
cancer patients.
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1. Introduction

Accumulating reports indicate that approximately 85% of cancer-treated patients
agonize with long-term reduction in cognitive function that includes impaired memory, at-
tention deficits, decreased multitasking, and executive function [1,2]. Chemotherapy is the
fundamental therapeutic strategy for cancer treatment that is often associated with serious
neurological and cogitative disorders referred to as chemotherapy-induced cognitive im-
pairment (CICI)/chemo brain/chemo fog [3]. A wide spectrum of studies has examined the
neurotoxic effect of various classes of chemotherapeutic agents, including alkylating agents,
antimetabolites, microtubules, and tyrosine kinase inhibitors [4–6]. Chemo fog affects 75%
of cancer-treated patients, and about 35% of patients exhibit post-treatment symptoms [7].
Chemotherapy-associated neurological accusations include neuropathy, encephalopathy,
perceived mental slowness, vasculopathy, stroke, headache, and seizure [8–10], which
are articulated as depression, anxiety, fatigue, pain, lack of concentration, and memory
loss. Preclinical reports have shown that the administration of chemotherapeutic drugs
such as cisplatin and doxorubicin to mice tumor models increases the cellular senescence
markers [11]. Studies have shown that the use of platinum-based drugs for a wide range
of solid tumors, including lung, bladder, and head and neck cancer, leads to cognitive
flaws and structural irregularities in the brain [12–14]. The use of chemotherapeutic agents
predominantly focuses on the induction of cancer cell death and also alters cytokine lev-
els [15]. An elevation in inflammatory cytokines is correlated with cognitive dysfunction [5].
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More interestingly, chronic inflammation is a major factor responsible for cognitive impair-
ment in neurodegenerative ailments. Chemotherapeutic agents govern various cognitive
functions by regulating pro-inflammatory cytokines in the frontal cortex, hippocampus,
and corpus callosum [5]. A few animal studies observed the increased expression of var-
ious pro-inflammatory cytokines such as IL-6 and TNF-α in chemobrain mice. Elevated
inflammatory response results in neurodegeneration and structural alteration in brain
tissue. During chemotherapy treatment, pro-inflammatory cytokines (TNF-α, IL-6, IL-1,
IL-1β) cross the blood-brain barrier via the peripheral nervous system [16]. Further, cancer
patients treated with combinatorial chemotherapy of cyclophosphamide, methotrexate, and
fluorouracil (CMF) experienced cognitive dysfunction not only after the treatment but also
after 20 years [17]. The role of chemotherapeutic drug-mediated inflammation in the cogni-
tive impairment of cancer patients is still under investigation. In this review, we discuss
the effect of chemotherapeutic agents on physiological as well as molecular aberration of
neuronal cells and their impact on brain function. An overview of chemotherapy-mediated
brain abnormalities is provided in Figure 1.
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2. Mechanism of Chemotherapy-Induced Cancer Cell Death and Inflammation

Chemotherapy is the most often used cancer treatment strategy [18]. The chemother-
apeutic agent acts on the genomic content of tumor cells and exhibits cytotoxicity [19].
Cytotoxicity of chemotherapeutic agents is accompanied by interfering with various cellu-
lar processes, including cell division, DNA synthesis, and microtubule formation, which
activates various cascades [18]. Chemotherapeutic agent activates apoptosis, a geneti-
cally programmed cell death mechanism, either via caspase-dependent and independent
pathway or both together [20,21]. For example, the chemotherapeutic drug cisplatin and
doxycycline induce both caspase-dependent and independent pathways [22,23], while
paclitaxel activates only caspase-dependent apoptosis [24]. Fascinatingly, cisplatin and
5-fluorouracil also activate necroptosis, an immune cell-dependent cell death mechanism
in tumor cells [25–27]. Moreover, chemotherapeutic agents also induced senescence by
DNA damage. Briefly, chemotherapy-induced caspase-dependent apoptosis complements
caspase-independent apoptosis, senescence, necroptosis, and autophagy [18]. It has been
well established that chemotherapeutic drugs-induced cancer cell death occurs predomi-
nantly by elevating oxidative stress through enhancing ROS and RNS. A moderate elevation
in oxidative stress regulates cell proliferation and differentiation, while excessive levels of
oxidative stress damage biomolecules such as lipids, nucleic acids, and proteins, which
contributes to cell death [28]. More than 50% of FDA-approved anticancer drugs increase
oxidative stress through enhancing ROS/RNS that contribute to neuron cell death [29].
The elevated level of ROS disrupts the BBB by activating various pathways, including
oxidative stress-mediated signaling [30]. Disruption of the BBB allows the entry of proin-
flammatory cytokines synthesized by chemotherapy-targeted tissue [31]. More interestingly,
many studies reported that ROS/RNS-generating chemotherapeutic drugs dysregulate
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cytokines [15]. Further, cytokines enter the brain through receptor-mediated endocytosis or
passive diffusion through the disrupted region of the BBB [29]. Moreover, toll like receptor
4 (TLR 4) is a possible candidate to maintain the BBB integrity after chemotherapy. The
chemotherapy-induced oxidative stress activates the TLR4 pathways, which produces the
proinflammatory cytokines TNF-α. As consequence, activation of intracellular NF-kB takes
place [32]. Further, activated NF-kB triggers iNOS, which contributes more oxidative stress,
finally leading to mitochondrial dysfunction and release of cytochrome c. Additionally,
activated NF-kB also increases the proapoptotic protein (BAX and p53) and decreases
antiapoptotic protein (BCL2). Consequently, activation of the apoptotic cascade results in
neuron cell apoptosis in the brain [29]. Another molecular mechanism associated by CICI is
inactivation of apolipoprotein A-1 (ApoA1). Basically, ApoA1 blocks the over-synthesis of
TNF-α and IL-1β by activating JAK/STAT3 pathways [15,29]. However, oxidative stress-
mediated oxidization of ApoA1 and disruption of JAK/STAT3 impaired its ability to
inhibit TNF-α synthesis [15,29,33], leading to elevation in TNF-α, which further activates
NF-kB. Therefore, excessive oxidative stress leads to neuronal cell death. Furthermore,
TNF-α also activates the microglia cells by binding TNF-α receptors 1 and 2 of microglial
cells and augments the inflammatory signal by local TNF-α production in the brain [34].
Additionally, activated microglia cells also elevate the ROS level by increasing the ex-
pression and activity of NADPH oxidase, primarily NOX 4 [34,35]. Hence, here we can
conclude that a possible molecular mechanism behind CICI is chemotherapy-mediated
inflammation and oxidative stress, which further elevate oxidative stress and finally lead
to neuronal cell death.

3. Role of Commonly Used Chemotherapeutic Drugs in Neuronal Function
3.1. Doxorubicin

Doxorubicin is a member of the anthracycline drug family and exhibits a potent anti-
tumor effect as a single and as an adjuvant therapeutic remedy [36]. Doxorubicin exhibits
tumoricidal activity by intercalating DNA and inhibiting the activity of topoisomerase
II [3,37]. Moreover, doxorubicin also induces the generation of reactive oxygen species
that contribute to its tumoricidal activity [3]. Doxorubicin has a limited ability to cross the
blood-brain barrier (BBB) despite its exhibiting significant neurotoxicity to the brain [3].
The permeability of doxorubicin to the BBB is restricted, while some studies suggest the
potent antitumor activity of doxorubicin against brain tumors [3]. Several clinical studies
revealed impaired cognitive assessments in cancer patients receiving doxorubicin [38–40].
In a study, it was observed that doxorubicin accumulated in the nuclei of neurons, leading
to crosslinking of DNA, and ultimately induced DNA double-strand breaks (DSBs) [41].
Moreover, doxorubicin also hampers the DNA repair machinery by downregulating the
DNA repair protein breast cancer type 1 susceptible (BRACA1) in primary cortical neu-
rons, consequently inducing mitochondrial-mediated apoptosis in neuronal cells [41]. In
addition, Wetzel et al. reported doxorubicin-mediated extrinsic or death receptor-mediated
apoptosis of primary cortical neurons [42]. Further, reports also suggest increased ROS
production and depolarization of mitochondrial membranes in doxorubicin-exposed
neuronal cells [40,43]. Shokoohina et al. observed doxorubicin-induced neuronal degen-
eration by elevating the BAX/BCL2 ratio and mitochondrial outer membrane potential
(MOMP) [43]. Ramalingayya et al. demonstrated that doxorubicin treatment was not only
responsible for morphological anomalies in cell bodies, such as chromatin condensation
and cell membrane destruction, but effectively suppressed neurite outgrowth in differ-
entiated neuronal cell lines, which resulted in decreased neurite number and synapsin
expression [40,41].

3.2. Effect of Doxorubicin-Mediated Oxidative Stress and Inflammation in Cognitive Impairment

In doxorubicin-induced chemobrain pathogenesis, inflammation and peripheral ox-
idative stress are well-recognized events [33,44]. Doxorubicin is a quinone-containing
molecule, susceptible to one-electron reduction. NADPH cytochrome and P450 reductase
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catalyzed the doxorubicin in reduced semiquinone form [45]. Further, this semiquinone
reacts with oxygen and produces superoxide radical (O2−), which acts as a source of ROS
generation and leads to oxidative stress in the periphery [46,47]. Further, in vivo and clini-
cal studies revealed that doxorubicin-mediated oxidative stress participates in the oxidation
of biomolecules such as proteins, nucleic acids, and lipids. Moreover, doxorubicin also de-
creased the level of enzymatic and non-enzymatic antioxidant molecules [33,44,48]. Several
studies suggest that reactive oxygen species effectively activate the nuclear factor NF-kB
pathway [49–51]. The activated NF-kB pathway regulates the expression of various pro-
inflammatory molecules, including tumor necrosis factor-α (TNF-α) in adaptive and innate
immune cells [50]. Interestingly, it has been observed that intraperitoneal administration
of doxorubicin elevated the plasma TNF-α level. More so, an increased TNF-α secretion
was observed on incubation of mouse macrophage with serum collected from doxorubicin-
administered mice [52,53]. Apolipoprotein A-1 (ApoA-1) is an anti-inflammatory molecule
and negatively regulates TNF-α release from immune cells [54]. More interestingly, dox-
orubicin administration in mice declined the level of the anti-inflammatory molecule
apolipoprotein A-1 (ApoA-1). Therefore, an increase of TNF-α in the circulation of
doxorubicin-treated animals [40,52]. Thus, a decrease in ApoA-1 and an increase in ROS
activate peripheral immune cells to release TNF-α. Circulating TNF-α bind to their recep-
tors located on the endothelial cells of BBB and enter in the brain, where they activate the
microglial and astrocytes cell to produce TNF-α in the brain that results in translocation
of NF-kB in the nucleus [55–57]. Further, activated microglial and astrocytes not only
produced TNF-α but also significantly enhanced ROS production through increasing
the expression of NADPX oxidase [35,58]. NF-kB-mediated brain inflammation leads
to the expression of inducible nitric oxide synthase (iNOS), which results in nitrosative
and oxidative stress in the brain [51,59,60]. Few animal-based studies demonstrated
the augmentation of nitric oxide and iNOS in the brain of doxorubicin-administered
animals [53,57,61]. Holley et al. and Tangpong et al. observed nitration of mitochondrial
antioxidant enzyme MnSOD that synergized O2

•− production [62,63]. Thus, available
evidence states that inflammation and oxidative stress after the doxorubicin treatment
might exacerbate the severity of doxorubicin-induced neurotoxicity.

3.3. Role of Cisplatin in Chemobrain

Cisplatin is a platinum-based anti-cancer agent that acts as a chelator, binds with
adenine and guanine residue, and induces apoptosis in cancerous cells. Published studies
demonstrated that head and neck cancer patients treated with cisplatin showed cognitive
impairments [64]. Andrienne et al. found that within 30 min of a low dose of cisplatin
(0.1 µM) leads to loss of synapses and dendritic spines. In contrast, higher cisplatin dose
(1 µM) exposure causes rapid loss of synapses and dendritic disintegration [64]. The pas-
sage of cisplatin for BBB is limited; transportation of cisplatin across the BBB is mediated
by copper transporter 1 (CTR1). Copper transporter 1 is expressed by endothelial cells of
the brain and neurons. Few reports suggested that cancer patients treated with cisplatin
shows a diminished brain glucose metabolism, abnormal brain network, and cognitive
difficulty [14,65,66]. Chiang et al. observed that cisplatin-treated mice have decreased
working and spatial memory as well as executive function [2]. Simo et al. observed struc-
tural abnormalities in the white matter of the brain after platinum-based chemotherapy [14].
Some in vivo studies have observed loss of arborization in myelin basic protein (MBP+)
fibers and a drop in white matter complexity in the cingulum by increased white matter
coherency in mice [67,68]. Oligodendrocytes are more vulnerable to cisplatin compared to
various cancer cell lines. In vitro and in vivo studies revealed that cisplatin mainly induces
defects in mitochondrial DNA (mtDNA). Manohar et al. demonstrated that cisplatin-
induced the apoptosis in the hippocampus of the brain by increasing the expression of
pro-apoptotic proteins (BIK, BOK, BID) and decreasing the expression of antiapoptotic
proteins BCL2 [69]. In addition, it potentially diminishes oxygen consumption activity.
Dysfunction of mitochondria after Cisplatin exposure leads to increased iNOS and NF-kB,
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diminished expression of antioxidant molecules, and declined neuronal progenitor [70,71].
Jangra et al. found oxidative products such as malondialdehyde (MDA) and protein
carbonyl in the hippocampus of cisplatin-treated mice, indicating oxidative stress in the
hippocampus of mice [71].

3.4. Molecular Mechanism of Cisplatin-Mediated Inflammation

In vivo studies indicated that injection of cisplatin (5 mg/kg) in rats for 7 weeks
induced the activation of NF-kB and expression of downstream inflammatory cytokines,
leading to inflammation in rats [70]. However, another animal-based study did not show
any inflammatory response in the brain identified in terms of TNF-α, IL-6, and IL-1β
expression [68,72]. Cisplatin-induced inflammatory event possibly is a time and dose-
dependent effect. Chotourou et al. manifested that chronic treatment of cisplatin at high
dose provoke inflammation in vivo [70].

3.5. Role of Paclitaxel in Chemobrain

Paclitaxel (PTX) is a microtubule stabilizing agent, which is often used in the first-
line treatment for prevalent cancer types such as ovarian and breast cancer [73]. Pacli-
taxel displays tumoricidal activity by stabilizing the microtubule, causing cell cycle arrest
and apoptosis [74]. In addition to therapeutic function, paclitaxel is responsible for pe-
ripheral neuropathy [75]. The paclitaxel permeability for BBB is limited, while positron
emission tomography detected radiolabeled paclitaxel in brain tissue after intravenous
administration [76]. This observation indicated that a small amount of paclitaxel crosses
the BBB and induces apoptosis in neuron cells via stimulating endoplasmic reticulum
stress [77]. The limbic system area, hippocampus, striatum, and cortex are major centers for
cognitive processes (learning and spatial memory). Interestingly, the report also suggests
that paclitaxel-mediated apoptosis of hippocampus cells causes impairment of neurological
process [76].

3.6. Paclitaxel and Inflammation in Chemobrain

Paclitaxel administration impaired spatial learning and memory by increasing the
TNF-α [76]. Paclitaxel augmented the TNF-α and IL-1β in hippocampus tissue, causing hip-
pocampus neuronal apoptosis [76]. Recently, it has been observed that paclitaxel-induced
cognitive impairment by decreasing the density of dendritic spines, BDNF, and PSD95.
Paclitaxel increased necroptosis in hippocampal neurons by elevating the expression of
receptor-interacting protein kinase 3 (RIP3). Animal treated with PTX shows an elevating
level of inflammatory molecules (iNOS, TNF-α, IL-β), which leads to microglia polarization
to M1 involved in cognitive impairment [78]. PTX triggers p38 MAPK/NF-κB signaling
in peripheral monocytes and macrophages [79]. Further, NF-κB activates the expression
of other pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β [80]. The circulating
TNF-α from peripheral macrophages, and monocytes upsurge the penetrability of BBB.
Consequently, paclitaxel and TNF-α can cross the BBB and act on the central nervous
system (CNS) [76]. Further, TNF-α triggers an inflammatory response and NF-κB signaling
in neurons, microglia, and astrocytes. Few reports suggested the apoptosis of local neu-
ronal cells by NF-κB- TNF-α facilitated neuroinflammatory responses [81,82]. Zhao Li et al.
found improvement in paclitaxel-induced spatial learning and memory impairment by
thalidomide mediated TNF-α inhibition [76].

3.7. 5-Fluorouracil in Chemobrain

5-fluorouracil (5-FU) is a pyrimidine analog, a common anti-cancer drug of the an-
timetabolite class [83]. 5-FU is used to treat various cancers, including gastrointestinal,
prostate, cervical, and vaginal cancer [84–86]. It induces programmed cell death in cancer
cells by inhibiting the synthesis of DNA and RNA [84]. An in vivo study revealed that
intraperitoneal administration of 5-FU impaired learning and memory [84]. 5-FU cross the
blood-brain barrier by passive diffusion and inhibit the proliferation of hippocampus cell
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and inhibit hippocampus neurogenesis [87]. Treatment of breast cancer patients with 5-FU
exhibits neurocognitive problems [88]. Mustafa et al. demonstrated that 5-FU exposure
affects spatial working memory and disrupts the neurogenesis in the murine hippocam-
pus [86]. Moreover, Thomas et al. found remarkable inhibition of dendritic branch point,
dendritic length, and complexity in cornu ammonis (CA) and dentate gyrus (DG) after
5-FU treatment. Additionally, 5-FU declined the arborization in the dendritic area of CA
and DG, which is associated with an impairment of hippocampus accompanying learning
and memory [84].

3.8. Inflammatory Role of 5-FU in Chemobrain

Groves et al. demonstrated that administration of 5-FU in mice elevated the expres-
sion of both pro-inflammatory and anti-inflammatory cytokines. Administration of 5-FU
increased the expression of pro-inflammatory cytokines such as IL-17, IL-1β, and GM-
CSF [84]. IL-1β plays a role in hippocampus-dependent memory, while IL-17 plays a
pivotal role in the pathogenesis of inflammation-associated diseases of the central ner-
vous system (CNS), such as stroke and sclerosis [89]. Few clinical studies also shown
that chemotherapy-induced IL-17, IL-1β, and GM-CSF expression in cancer patients are
more prominent who faced cognitive impairment [90,91]. The constant activation of mi-
croglial cells and secretion of IL-1β could cause damage to glial and neuronal cells [90].
More interestingly, 5-FU administration also augments the expression of anti-inflammatory
cytokines IL-2, IL-3, IL-4, and IL-5, which play a role in the proliferation, survival, and
protection of neuronal cells [84]. The anti-inflammatory activity of IL-4 might be because of
antagonizing the inflammatory response of IL-1β [84,92]. Interestingly, it has been observed
that 5-FU administration arouses the expression of one chemokine RANTES (regulated
upon activation of normal T cell expressed and secreted) which is immunologically des-
ignated as CCL5 [84]. CCL5 activates the recruitment of immune cells in the CNS [93]
and increases the expression of genes involved in synaptogenesis, neurite outgrowth, and
neuronal survival [94].

4. Combinatorial Chemotherapy in Chemobrain

A combinatorial therapeutic approach is a strategy of combining two or more drugs for
a more positive outcome. Combinatorial therapeutic approaches have emerged as superior
to monotherapy against many cancers [95]. However, many reports suggest the impact of
combinatorial chemotherapy on chemobrain. Anderson et al. observed that a combination
of cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) in mice exhibits long-term
memory impairment [96]. Further, another in vivo report revealed that intraperitoneal
injection of 5-fluorouracil and methotrexate to rats induced cognitive impairment and
suppressed neurogenesis [97]. Shi et al. detected that intraperitoneal administration
of docetaxel, adriamycin, and cyclophosphamide exhibits impairment of memory and
hippocampal neuronal activity [98]. The combination of another two drugs, adriamycin,
and cyclophosphamide (AC), in C57BL/6 mice display memory impairment and decreased
the total dendritic length, spines density, and hippocampal neuron maturation [99]. A
brief overview of molecular mediators of chemotherapy-induced neuronal toxicity has
been presented in Figure 2 and their impact on signaling pathways has been presented in
Figure 3.
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5. Possible Therapeutic Intervention for Chemotherapy-Mediated Chemobrain
5.1. Phytochemical as Chemobrain Therapeutic Intervention

The use of phytochemicals is a well-established therapeutic approach against var-
ious ailments having minimal side-effect, better biocompatibility, easy availability, and
cost-effectiveness [100,101]. Phytochemicals have potent tumoricidal activity against most
cancers [102]. Moreover, previous reports also claim the neuroprotective properties of
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phytochemicals against chemotherapy-induced neurotoxicity [103]. Mohamed et al. found
that Epicatechin, a polyphenolic molecule from green tea, supplemented orally at dosage
of 10 mg/kg/day for 2 weeks prior to doxorubicin injection and then for another 2 weeks
with doxorubicin. They found significant neuroprotective activity of epicatechin against
doxorubicin-induced neuronal toxicity. Doxorubicin treatment increases the peripheral
TNF-α, which crosses the BBB and induces various inflammatory pathways as well as glial
cell activation. Accordingly, more TNF-α production that leads to mitochondrial dysfunc-
tion and finally neuron death [61]. Indeed, long term utilization of doxorubicin can cause
neurodegenerative disorder due to its continued activation of microglia, which enhances
the synthesis of neurotoxic proinflammatory mediators, direct to neuronal cell death. Epi-
catechin effectively declined the level of TNF-α, NF-kB, iNOS, and lipid peroxidation along
with augmentation of antioxidant enzymes in brain tissue of doxorubicin-administered
mice [61]. Similarly, treatment of Xanthone, a biologically active compound of tropical fruit
Mangosteen, rescue the mice from doxorubicin-mediated neuronal toxicity by inhibiting
the doxorubicin-induced elevated expression of pro-apoptotic proteins, level of circulating
TNF-α, and oxidative stress in doxorubicin treated mice [53]. This bioactive compound acts
as free radicals scavenger, which is a crucial feature to encounter the doxorubicin-induced
chemobrain.

Naringin, a bioactive flavonoid of citrus juice from grapefruit, exhibits therapeutic ac-
tivity such as anti-cancer and antioxidant [104,105]. Chtourou et al. orally administered the
naringin at dosage of 25 mg, 50 mg, and 100 mg/kg/week with cisplatin (5 mg/kg/week)
for five consecutive weeks and detected improved gross motor and neurobehavior impaired
by cisplatin [70]. Cisplatin treatment remarkably elevated the acetylcholinesterase and in-
ducible nitric oxide synthase (iNOS) in hippocampus while declined the protein carbonyls
(PCO), reactive oxygen species (ROS), nitrite formation (NO), and malondialdehyde (MDA)
that contribute to cisplatin associated chemobrain. However, naringin treatment prevented
all the biochemical and molecular alteration in cisplatin treated mice [70]. Further, the
possible therapeutic potential of naringin against doxorubicin induced chemobrain can be
achieve, as one study revealed the potent role of naringin in diminishing the doxorubicin
induced oxidative and nitrosative stress in mice [106]. Thus, the pleiotropic role of naringin
directs it as an effective therapeutic candidate for cognitive dysfunction in cancer patients.

Recently, John et al. demonstrated the neuroprotective effect of lumina mango,
Mangifera indica fruit pulp, Curcuma longa rhizome, Centella asiatica, and nutrient and
vitamins [107]. Various studies suggested the neuroprotective, anti-inflammatory, and
antioxidant properties of mangiferin [108,109]. Mangiferin is a possible neuroprotective
candidate against chemotherapy-induced neurotoxicity because of its ability to cross the
blood-brain barrier [107]. In vivo studies revealed that combinatorial treatment of cy-
clophosphamide, Methotrexate, and 5-fluorouracil (CMF) reduced the burden of mammary
cancer in mice and led to cognitive dysfunction. Daily oral administration of mulmina
(40 mL/kg and 80 mL/kg) started one week before chemotherapy and continued till the end
of chemotherapy cycle showed a remarkable reduction in tumor volume which revealed
that mulmina did not impede the anti-cancer activity of CMF therapy [107]. Animals treated
with 40 ml/kg mulmina display more learning behavior than animals treated with CMF.
Pre-treatment of MN-40 & MN-80 to tumor-bearing animals subjected to chemotherapy
displayed less oxidative damage than chemotherapy-treated animals. Moreover, mul-
mina improved the antioxidant system disrupted by CMF treatment. As we discussed,
pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) play a role in neuroinflammation
and cognitive impairment. It has been seen that CMF treatment enhances the IL-1β, IL-6,
and TNF-α in the tumor-bearing animal. However, the augmented level of IL-1β, IL-6,
and TNF-α was reversed after mulmina treatment [107]. In the quest of potential phyto-
chemical for treatment of chemobrain, donepezil or rivastigmine, an acetylcholinesterase
inhibitor, improves cognitive function [110]. In breast cancer survivors, after chemother-
apy, a 5–10 mg/day of donepezil for 24 weeks (5 mg/day for six weeks and if tolerated
increased the dosage to 10 mg/day for next 18 weeks) better the two parameter of memory-
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the Hopkin verbal learning test-revised (HVLT-R) and HVLT-R discrimination. However,
there were no noticeable effect on other cognitive variables or in subjective cognitive func-
tion or quality of life [111]. Further, Shaw et al. operated a phase II open level study in
irradiated brain tumor survivor treated with 5 mg/kg of donepezil for 6 weeks followed
by 10 mg/kg for 18 weeks found improvement in cognitive attention, verbal and figural
memory, mood, fatigue, and quality of life [112]. Donepezil is an FDA approved drug
for Alzheimer disease. Moreover, many clinical and preclinical investigations established
donepezil for CICI treatment [111,113]. Interestingly, donepezil has been identified for its
recue ability for inflammation associated cognitive dysfunction. In vivo investigation indi-
cated that donepezil inhibits CMF associated cognitive deficiency in mammary carcinoma
model by reverting the increased level of proinflammatory cytokines (IL-6 and IL-1β) in
CMF treated animal tumor model [107].

Curcumin, a bioactive molecule extracted from Curcuma longa, has tremendous medic-
inal value against a wide range of human ailments, including obesity, diabetes, and neu-
rological disorders [114,115]. Clinical studies suggested that curcumin recovers cognitive
deficits and is established as an efficacious, well-tolerated, and safe phytochemical [116,117].
Few studies demonstrated that curcumin was able to reverse the cognitive dysfunction in-
duced by chronic mild stress and activate the proliferation of astrocyte cells of the striatum
and hippocampus. Cisplatin-induced brain toxicity in rats by increasing the mitochondrial
lipid peroxidation and protein carbonyl. However, treatment with curcumin (200 mg/kg)
before 24 h cisplatin treatment (6 mg/kg) improved cisplatin-induced brain toxicity by
rehabilitating mitochondrial lipid peroxidation and protein carbonyl [118]. Moreover, sev-
eral reports documented that curcumin could reduce chemotherapy-induced brain toxicity
by suppressing inflammatory and anti-inflammatory cytokines such as NF-κB, STAT3,
COX, LO, and Xanthine oxidase [119]. Hence, curcumin’s inflammation regulatory ability
may play an important therapeutic role in inflammation-induced chemobrain. Although,
curcumin has well established safety proof, few adverse side effects have been detected.
In a dose response study, seven subject after 72 h of receiving curcumin (500–1200 mg)
suffered with headache, diarrhea, rash, and yellow stool [120,121]

Resveratrol, a non-flavonoid polyphenol naturally present in various species of plants,
including grapes, peanuts, berries, and red wine [122–124]. Resveratrol exhibits anticancer
activity against a wide variety of cancers such as prostate, skin, liver, ovarian, and lung
cancers [125]. Moreover, studies also revealed the antioxidant, anti-inflammatory [125],
immunomodulatory and neuroprotective role of resveratrol [126]. Shi et al. found that
resveratrol protects combinatorial chemotherapy induced cognitive dysfunction. In vivo
study revealed that oral administration of resveratrol (100 mg/kg/day) for three weeks,
beginning one week prior the DAC treatment ameliorated the DAC (docetaxel, adriamycin,
cyclophosphamide) induced cognitive impairment in mice. In addition, resveratrol treat-
ment noticeably lowered the pro-inflammatory cytokines (TNF-α and IL-6) in DAC treated
mice [126]. Recently, another in vivo study found that resveratrol treatment improved
the cognitive function in mice impaired by paclitaxel treatment. Resveratrol treatment
declined the apoptosis and oxidative stress by activating the SIRT1 and PGC-1α pathways
that causes betterment of paclitaxel mediated cognitive dysfunction. Besides, resveratrol
treatment also significantly elevated the level of anti-inflammatory cytokines (IL-4 and
IL10) [127]. Since resveratrol is a plant bioactive molecule, it exhibits adverse effects also.
Its low dosage exhibits advantageous effect while higher dosage shows toxicity. The lower
concentration of resveratrol acts as antioxidant while on higher concentration behave as
pro-oxidant [128]. Resveratrol does not exhibit side effects at short-term doses (1 gm). How-
ever, dose of 2.5 gm or more per day has side effects such as diarrhea, nausea, vomiting,
and liver dysfunction in non-alcoholic fatty acid disease patient [129,130]. Interestingly,
long term clinical trials have not detected any major side effects. Indeed, resveratrol at dose
5 g/day has been identified safe and well tolerated, either as a single dose or as fraction of
multiple dose [130,131].
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Another plant derived bioactive molecule to rescue the chemotherapy induced neu-
ronal aberration is catechins, chemically designed as flavan-3-ol, derived from tea leaves.
Catechins have several pharmacological values, including antioxidant, anti-inflammatory,
and antitumor properties [132]. The neuroprotective role of catechins was evaluated at a
dose of 100 mg/kg against the doxorubicin (DOX) induced memory deficit in animal model
and found a protective efficacy for DOX associated memory deficit. Catechins treatment
showed a remarkable decrease in oxidative stress and neuroinflammation in cerebral cortex
and hippocampus in DOX treated animal [132]. Catechin declined the oxidative stress by
restoring the antioxidant defense molecules, including SOD catalase and GSH.

5.2. Anti-Inflammatory Drug in Chemobrain Therapy

A series of studies examined the effect of anti-inflammatory drugs (naproxen, aspirin,
and ibuprofen) on the treatment of Alzheimer’s disease (AD). Drugs such as cladribine,
rituximab, and Copaxone restrict the migration of immune cells across the blood-brain
barrier, able to reduce cognitive impairment [133]. PLX5622 is an inhibitor of the colony-
stimulating factor 1 receptor, inhibits methotrexate-induced memory impairment. More-
over, PLX5622 inhibits inflammation and improves cognitive deficits in the Alzheimer’s
mouse model [134].

PAN 811, chemically designed as 3-aminopyridine-2-carboxaldehyde thiosemicar-
bazone (3-AP) also referred as triapine, acts as inhibitor for ribonucleotide reductase [135].
PAN-811 is verified in phase 1 and 2 clinical trials for cancer treatment [97,136,137]. It has
free radicals scavenging activity and inhibits H2O2 induced neuronal toxicity. Furthermore,
3-AP is well known for inhibiting the cell death induced by neurotoxic agents such as
veratridine, glutamate, and staurosporine. In vitro study illustrated that 0.5 µm of 3-AP
counteracts ischemic neurotoxicity [135]. Further, another in vitro study evidence that PAN
811 prevents the methotrexate (MTX) and 5-flurouracil (5-FU) mediated neurotoxicity by
lowering the oxidative stress. MTX and 5-FU treatment impaired the cognitive function
such as spatial memory, non-matching-to-sample rule-learning, and discrimination learn-
ing in mice [97]. The experimental evidence suggested that PAN 811 treatment improved
cognitive dysfunction in animal treated with MTX/5-FU. Thus, PAN 811 prevents cognitive
deficits resulting with MTX/5-FU treatment and sustain neurogenesis in dentate gyrus. An
overview of different potential therapeutic interventions for chemobrain has been provided
in Table 1.

Table 1. Potential therapeutic interventions for chemotherapy-induced neuro toxicity.

Drug for Chemobrain Intervention Role in Chemobrain References

Epicatechin • Decline the TNF-α, NF-Kb, iNOS level
• Increased the level of antioxidant ezymes

[61]

Xanthone • Inhibits apoptotic protein, oxidative stress and TNF-α [53]

Naringin • Inhibit oxidative stress by elevating antioxidant enzymes [70]

Mangiferin • Decreases oxidative stress
• Suppress IL-1β, IL-6, and TNF-α level

[108]

Curcumin • Suppress NF-κB, STAT3, COX, LO [119]

Resveratrol • Decline proinflammatory cytokines TNF-α and IL-6 [126]

Catechin • Restore antioxidant defence molecules (SOD, catalase, and GSH) [132]

Donepezil • Decrease proinflammatory cytokines (IL-6 and IL-1β) [107]
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6. Conclusions and Future Prospective

The possible molecular events underlying the chemobrain are chemotherapy-induced
oxidative damage, mitochondrial dysfunction, and inflammation. All these processes are
associated with chemobrain pathogenesis. Thus, chemobrain compromises the quality of
life of cancer patients and limits the application of chemotherapy. Chemotherapeutic drugs
are not easily cross the blood-brain barrier. However, the drug-induced cytokines such
as IL-1β, IL-6, and TNF-α cross the BBB and exhibit neurotoxicity as well as chemobrain.
Thus, treatments with anti-inflammatory and antioxidative agents improve parameters
remarkably. Based on accumulating evidence, possible potential agents to treat the chemo-
brain have been identified, including epicatechin, xanthone, alumina, curcumin, and
anti-inflammatory drug (PLX5622). In addition to these molecules, which we discussed in
this review, there are some more possible potential agents to cure the chemobrain, includ-
ing Metformin, Lithium, Astaxanthin, and Fluoxetine. Although, extensive animal-based
studies are required to explore the detailed mechanism associated with chemobrain. Over
and above that, unambiguous clinical trials are needed to recognize the drug targets and
their therapeutic efficacy.
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