The Antinociceptive Responses of MTDZ to Paclitaxel−Induced Peripheral Neuropathy and Acute Nociception in Mice: Behavioral, Pharmacological, and Biochemical Approaches
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Nociceptive Potential of MTDZ against PTX−Induced Peripheral Neuropathy—Mechanical Sensitivity
2.2. Evaluation of the Nociceptive Potential of MTDZ against PTX−Induced Peripheral Neuropathy—Thermal Sensitivity
2.3. Open Field Test
2.4. Biochemical Assays
2.4.1. Ca2+−ATPase Activity
2.4.2. Nitric Oxide Levels
2.5. Evaluation of the Modulating Potential of Transient Receptor Potential Vanilloid 1 (TRPV1), and Glutamatergic, Nitrergic, Serotonergic, and Opioidergic Pathways by MTDZ
2.5.1. Glutamatergic Pathway
2.5.2. Nitrergic Pathways and Guanylate Cyclase
2.5.3. Serotonergic Pathway
2.5.4. Opioidergic and Transient Vanilloid Receptor Type 1 Pathway
3. Discussion
4. Material and Methods
4.1. Animals
4.2. Drugs
4.3. Evaluation of the Nociceptive Potential of MTDZ against PTX−Induced Peripheral Neuropathy
4.4. Experimental Design
4.5. Nociceptive Behavior—Mechanical Sensitivity
4.6. Nociceptive Behavior—Thermal Sensitivity
4.7. Open Field (OF) Test
4.8. Biochemical Assays
4.8.1. Ca2+−ATPase Activity
4.8.2. Nitric Oxide Levels
4.9. Evaluation of the Modulating Potential Transient Receptor Potential Cation Channel Subfamily V Member 1 (TRPV1), and Glutamatergic, Nitrergic, Serotonergic, and Opioidergic Pathways by MTDZ
4.9.1. Acetic Acid Test
4.9.2. Glutamatergic Pathway
4.9.3. Nitregic Route and Guanylate Cyclase Pathway
4.9.4. Serotonergic Pathway
4.9.5. Opioidergic and Transient Vanilloid Receptor Type 1 Pathway
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Oliveira, D.H.; Sousa, F.S.S.; Birmann, P.T.; Alves, D.; Jacob, R.G.; Savegnago, L. Antinociceptive and Anti-Inflammatory Effects of 4-(Arylchalcogenyl)-1H-Pyrazoles Containing Selenium or Sulfur. Pharmacol. Rep. 2020, 72, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Barce Ferro, C.T.; dos Santos, B.F.; da Silva, C.D.G.; Brand, G.; da Silva, B.A.L.; de Campos Domingues, N.L. Review of the Syntheses and Activities of Some Sulfur-Containing Drugs. Curr. Org. Synth. 2020, 17, 192–210. [Google Scholar] [CrossRef]
- Miranda, H.F.; Sierralta, F.; Pinardi, G. Neostigmine Interactions with Non Steroidal Anti-Inflammatory Drugs. Br. J. Pharmacol. 2002, 135, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Mowlavi, A.; Cooney, D.; Febus, L.; Khosraviani, A.; Wilhelmi, B.J.; Akers, G. Increased Cutaneous Nerve Fibers in Female Specimens. Plast. Reconstr. Surg. 2005, 116, 1407–1410. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216. [Google Scholar] [CrossRef]
- da Motta, K.P.; Santos, B.F.; Domingues, N.L.D.C.; Luchese, C.; Wilhelm, E.A. Target Enzymes in Oxaliplatin-Induced Peripheral Neuropathy in Swiss Mice: A New Acetylcholinesterase Inhibitor as Therapeutic Strategy. Chem. Biol. Interact. 2022, 352, 109772. [Google Scholar] [CrossRef]
- dos Santos, B.F.; Pereira, C.F.; Pinz, M.P.; de Oliveira, A.R.; Brand, G.; Katla, R.; Wilhelm, E.A.; Luchese, C.; Domingues, N.L.C. Efficient Palladium-Catalyzed C-S Cross-Coupling Reaction of Benzo-2,1,3-Thiadiazole at C-5-Position: A Potential Class of AChE Inhibitors. Appl. Organomet. Chem. 2020, 34, e5650. [Google Scholar] [CrossRef]
- Canta, A.; Pozzi, E.; Carozzi, V.A. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Toxics 2015, 3, 198–223. [Google Scholar] [CrossRef]
- Staff, N.P.; Fehrenbacher, J.C.; Caillaud, M.; Damaj, M.I.; Segal, R.A.; Rieger, S. Pathogenesis of Paclitaxel-Induced Peripheral Neuropathy: A Current Review of in Vitro and in Vivo Findings Using Rodent and Human Model Systems. Exp. Neurol. 2019, 324, 113121. [Google Scholar] [CrossRef]
- Al-mahayri, Z.N.; Alahmad, M.M.; Ali, B.R. Expert Opinion on Drug Metabolism & Toxicology Current Opinion on the Pharmacogenomics of Paclitaxel-Induced Toxicity. Expert Opin. Drug Metab. Toxicol. 2021, 17, 785–802. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Bavencoffe, A.; Yang, P.; Feng, J.; Yin, S.; Qian, A.; Yu, W.; Liu, S.; Gong, X.; Cai, T.; et al. Zinc Inhibits TRPV1 to Alleviate Chemotherapy-Induced Neuropathic Pain. J. Neurosci. 2018, 38, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, D.; Huang, J.; Cao, J.; Cai, G.; Guo, Y.; Wang, G.; Zhao, S.; Wang, X.; Wu, S. Glutamatergic Neurons in the Amygdala Are Involved in Paclitaxel-Induced Pain and Anxiety. Front. Psychiatry 2022, 13, 869544. [Google Scholar] [CrossRef]
- Starobova, H.; Vetter, I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef]
- Legakis, L.P.; Bigbee, J.W.; Negus, S.S. Lack of Paclitaxel Effects on Intracranial Self-Stimulation in Male and Female Rats: Comparison to Mechanical Sensitivity. Behav. Pharmacol. 2018, 29, 290–298. [Google Scholar] [CrossRef]
- Miclescu, A.A.; Granlund, P.; Butler, S.; Gordh, T. Association between Systemic Inflammation and Experimental Pain Sensitivity in Subjects with Pain and Painless Neuropathy after Traumatic Nerve Injuries. Scand. J. Pain 2022, 7, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, J.A.; Davis, K.D. Women Experience Greater Heat Pain Adaptation and Habituation than Men. Pain 2009, 145, 350–357. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.Y.; Fan, Y.Y.; Xu, X.X.; Xie, Q.F. Genistein Reverses the Effect of 17β-Estradiol on Exacerbating Experimental Occlusal Interference-Induced Chronic Masseter Hyperalgesia in Ovariectomised Rats. J. Oral Rehabil. 2022, 49, 237–248. [Google Scholar] [CrossRef]
- Sung, J.Y.; Tani, J.; Hung, K.S.; Lui, T.N.; Lin, C.S.Y. Sensory Axonal Dysfunction in Cervical Radiculopathy. J. Neurol. Neurosurg. Psychiatry 2015, 86, 640–645. [Google Scholar] [CrossRef]
- Zhang, K.; Heidrich, F.M.; DeGray, B.; Boehmerle, W.; Ehrlich, B.E. Paclitaxel Accelerates Spontaneous Calcium Oscillations in Cardiomyocytes by Interacting with NCS-1 and the InsP3R. J. Mol. Cell. Cardiol. 2010, 49, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Boehmerle, W.; Splittgerber, U.; Lazarus, M.B.; McKenzie, K.M.; Johnston, D.G.; Austin, D.J.; Ehrlich, B.E. Paclitaxel Induces Calcium Oscillations via an Inositol 1,4,5-Trisphosphate Receptor and Neuronal Calcium Sensor 1-Dependent Mechanism. Proc. Natl. Acad. Sci. USA 2006, 103, 18356–18361. [Google Scholar] [CrossRef] [PubMed]
- Paltian, J.J.; dos Reis, A.S.; Martins, A.W.S.; Blödorn, E.B.; Dellagostin, E.N.; Soares, L.K.; Schumacher, R.F.; Campos, V.F.; Alves, D.; Luchese, C.; et al. 7-Chloro-4-(Phenylselanyl) Quinoline Is a Novel Multitarget Therapy to Combat Peripheral Neuropathy and Comorbidities Induced by Paclitaxel in Mice. Mol. Neurobiol. 2022, 59, 6567–6589. [Google Scholar] [CrossRef]
- Zhang, Y.; Brewer, A.L.; Nelson, J.T.; Smith, P.T.; Shirachi, D.Y. Hyperbaric Oxygen Produces a Nitric Oxide Synthase-Regulated Anti-Allodynic e Ff Ect in Rats with Paclitaxel-Induced Neuropathic Pain. Brain Res. 2019, 1711, 41–47. [Google Scholar] [CrossRef]
- Ping, C.P.; Akhtar, M.N.; Israf, D.A.; Perimal, E.K.; Sulaiman, M.R. Possible Participation of Ionotropic Glutamate Receptors and L-Arginine-Nitric Oxide-Cyclic Guanosine Monophosphate-ATP-Sensitive K+ Channel Pathway in the Antinociceptive Activity of Cardamonin in Acute Pain Animal Models. Molecules 2020, 25, 5385. [Google Scholar] [CrossRef] [PubMed]
- Lutfy, K.; Cai, S.X.; Woodward, R.M.; Weber, E. Antinociceptive Effects of NMDA and Non-NMDA Receptor Antagonists in the Tail Flick Test in Mice. Pain 1997, 70, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Sari, C.C.; Gunduz, O.; Ulugol, A. Spinal Serotonin and 5HT6 Receptor Levels during Development of Neuropathy and Influence of Blockade of These Receptors on Thermal Hyperalgesia in Diabetic Mice. Drug Res. 2019, 69, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Q.; Yao, X.X.; Gao, S.H.; Li, R.; Li, B.J.; Yang, W.; Cui, R.J. Role of 5-HT Receptors in Neuropathic Pain: Potential Therapeutic Implications. Pharmacol. Res. 2020, 159, 104949. [Google Scholar] [CrossRef] [PubMed]
- Sagalajev, B.; Bourbia, N.; Beloushko, E.; Wei, H.; Pertovaara, A. Bidirectional Amygdaloid Control of Neuropathic Hypersensitivity Mediated by Descending Serotonergic Pathways Acting on Spinal 5-HT3 and 5-HT1A Receptors. Behav. Brain Res. 2015, 282, 14–24. [Google Scholar] [CrossRef]
- Xia, R.; Samad, T.A.; Btesh, J.; Jiang, L.-H.; Kays, I.; Stjernborg, L.; Dekker, N. TRPV1 Signaling: Mechanistic Understanding and Therapeutic Potential. Curr. Top. Med. Chem. 2011, 11, 2180–2191. [Google Scholar] [CrossRef]
- Trevisan, G.; Maldaner, G.; Velloso, A.; Sant, S.; Ilha, V.; De Campos, C.; Gewehr, V.; Rubin, M.A.; Morel, A.F.; Ferreira, J. Antinociceptive Effects of 14-Membered Cyclopeptide Alkaloids. J. Nat. Prod. 2009, 72, 608–612. [Google Scholar] [CrossRef]
- Alamri, F.F.; Al Shoyaib, A.; Biggers, A.; Jayaraman, S.; Guindon, J.; Karamyan, V.T. Applicability of the Grip Strength and Automated von Frey Tactile Sensitivity Tests in the Mouse Photothrombotic Model of Stroke. Behav. Brain Res. 2018, 336, 250–255. [Google Scholar] [CrossRef]
- Woolfe, G.; Macdonald, A.D. The Evaluation of the Analgesic Action of Pethidine Hydrochloride (Demerol). J. Pharmacol. Exp. Ther. 1944, 80, 300–307. [Google Scholar]
- Walsh, R.N.; Cummins, R.A. The Open-Field Test: A Critical Review. Psychol. Bull. 1976, 83, 482–504. [Google Scholar] [CrossRef]
- Rohn, T.T.; Hinds, T.R.; Vincenzi, F.F. Ion Transport ATPases as Targets for Free Radical Damage. Biochem. Pharmacol. 1993, 46, 525–534. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of Nitrate, Nitrite, and [15N]Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Silva, V.D.G.; Reis, A.S.; Pinz, M.P.; da Fonseca, C.A.R.; Duarte, L.F.B.; Roehrs, J.A.; Alves, D.; Luchese, C.; Wilhelm, E.A. Further Analysis of Acute Antinociceptive and Anti-Inflammatory Actions of 4-Phenylselenyl-7-Chloroquinoline in Mice. Fundam. Clin. Pharmacol. 2017, 31, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.C.; Reis, A.S.; da Motta, K.P.; Luchese, C.; Wilhelm, E.A. Mechanistic Pathways of Fibromyalgia Induced by Intermittent Cold Stress in Mice Is Sex-Dependently. Brain Res. Bull. 2022, 187, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Beirith, A.; Santos, A.R.S.; Calixto, J.B. Mechanisms Underlying the Nociception and Paw Oedema Caused by Injection of Glutamate into the Mouse Paw. Brain Res. 2002, 924, 219–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Motta, K.P.; Martins, C.C.; Macedo, V.M.; dos Santos, B.F.; Domingues, N.L.D.C.; Luchese, C.; Wilhelm, E.A. The Antinociceptive Responses of MTDZ to Paclitaxel−Induced Peripheral Neuropathy and Acute Nociception in Mice: Behavioral, Pharmacological, and Biochemical Approaches. Pharmaceuticals 2023, 16, 1217. https://doi.org/10.3390/ph16091217
da Motta KP, Martins CC, Macedo VM, dos Santos BF, Domingues NLDC, Luchese C, Wilhelm EA. The Antinociceptive Responses of MTDZ to Paclitaxel−Induced Peripheral Neuropathy and Acute Nociception in Mice: Behavioral, Pharmacological, and Biochemical Approaches. Pharmaceuticals. 2023; 16(9):1217. https://doi.org/10.3390/ph16091217
Chicago/Turabian Styleda Motta, Ketlyn P., Carolina C. Martins, Vanessa M. Macedo, Beatriz F. dos Santos, Nelson Luís De C. Domingues, Cristiane Luchese, and Ethel A. Wilhelm. 2023. "The Antinociceptive Responses of MTDZ to Paclitaxel−Induced Peripheral Neuropathy and Acute Nociception in Mice: Behavioral, Pharmacological, and Biochemical Approaches" Pharmaceuticals 16, no. 9: 1217. https://doi.org/10.3390/ph16091217
APA Styleda Motta, K. P., Martins, C. C., Macedo, V. M., dos Santos, B. F., Domingues, N. L. D. C., Luchese, C., & Wilhelm, E. A. (2023). The Antinociceptive Responses of MTDZ to Paclitaxel−Induced Peripheral Neuropathy and Acute Nociception in Mice: Behavioral, Pharmacological, and Biochemical Approaches. Pharmaceuticals, 16(9), 1217. https://doi.org/10.3390/ph16091217