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Infectious diseases encompass a range of conditions stemming from parasites [1,2],
bacteria [3], viruses [4], fungi [5], or other parasitic organisms that negatively affect millions
of individuals globally, particularly in low-income countries. Contemporary obstacles,
such as the rise of resistance [6–8], the presence of severe adverse effects without adequate
safety, subpar effectiveness, therapy non-adherence [9], and limited access to healthcare
services, stand as barriers that must be surmounted. These challenges underscore the need
to devise immediate and short-term strategies capable of reducing the burdens imposed by
infectious diseases [1].

This Special Issue (SI) features the contribution of 20 papers and involves 161 authors
representing 18 countries: Poland, Spain, France, Italy, Switzerland, Latvia, Mexico, Brazil,
Ecuador, Japan, Korea, China, Russia, Kazakhstan, Israel, Saudi Arabia, Egypt, and Aus-
tralia. All of the papers published in this SI investigated distinct microorganisms, such
as protozoans (Plasmodium falciparum, Trypanosoma cruzi, Giardia intestinalis), nematode
parasites (Haemonchus contortus, Nippostrongylus brasiliensis), viruses (SARS-CoV-2,
hepatitis B virus and HIV), fungus (Candida ssp), mycobacteria (Mycobacterium smegma-
tis), bacteria (Chromobacterium violaceum, Staphylococcus epidermidis, Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
Enterobacter spp., Vibrio cholerae) and the amoeba Naegleria fowleri.

This SI showcases several approaches for uncovering novel drugs derived from both
synthetic and natural sources [10–12]. The compilation of papers delved into phenotypic
assays [13], target-based drug discovery [14,15], high-throughput screening [16,17], compu-
tational methodologies [18], and natural biotechnological platforms [19–21]. These efforts
aimed to pinpoint fresh prototypes warranting subsequent evaluation.

In the context of protozoans, Komatsuya and collaborators elucidated the impact
of the natural product siccanin as an inhibitor of the mitochondrial electron transport
chain (ETC) complex II of P. falciparum at nanomolar concentrations [22]. To delve into the
structure–activity relationship (SAR) of gamhepathiopine, approximately 28 thieno[3,2-
d]pyrimidines with substitutions at the 4-position were synthesized. These compounds
were discovered to demonstrate in vitro efficacy against both the erythrocytic stage of
P. falciparum and the hepatic stage of P. berghei [23]. Barbosa and collaborators detailed the
synthesis, SAR exploration, and assessment of brussonol derivatives active against P. falci-
parum, including resistant strains [24]. Argüello-García reported on the giardicidal effects
of the neo-clerodane type diterpene named linearolactone. This compound was postulated
to interact with the aldose reductase homologue (GdAldRed) from G. intestinalis [25]. In a
separate study, Imperador and colleagues conducted a systematic review to evaluate the
effects of the natural products resveratrol and curcumin for Chagas disease [26].

Nematode infections are categorized among the neglected tropical diseases. Marc-
hand and colleagues have devised a compelling in vitro screening platform that relies on

Pharmaceuticals 2023, 16, 1257. https://doi.org/10.3390/ph16091257 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16091257
https://doi.org/10.3390/ph16091257
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0003-4141-0455
https://orcid.org/0000-0002-2460-2829
https://doi.org/10.3390/ph16091257
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16091257?type=check_update&version=1


Pharmaceuticals 2023, 16, 1257 2 of 4

fluorescence-based measurements to assess parasite viability [27]. Meanwhile, Shanley and
collaborators conducted high-throughput screening employing the ‘pandemic response
box’. Through this approach, they identified a prospective quinoline derivative exhibiting
IC50 values of 3.4 µM and 7.1 µM against the motility of H. contortus larvae and adult
C. elegans [28].

In the realm of viral infections, Assylbekova and colleagues were pioneers in reporting
that camostat does not impede the proteolytic activity of neutrophil serine protease during
SARS-CoV-2 infection [29]. Singh and Arkin detailed the impact of arapladib and flumatinib
in obstructing the 3a ion channel linked to SARS-CoV-2 [30]. For HIV, Lopes and her
research team elucidated the epigenetic modulation through histone deacetylase inhibitors.
This approach is being explored in the ‘kick and kill’ strategy, with the aim of reactivating
HIV from its reservoirs [31].

Spunde and colleagues undertook the synthesis and evaluation of capsid assembly
modulators for hepatitis B virus (HBV), revealing a robust antiviral compound that demon-
strated reduced cytotoxicity [32]. The acquisition and evaluation of homoisoflavonoid
derivatives against Candida species exhibited a promising antifungal effect by diminishing
ergosterol biosynthesis [33]. In a separate study, Buravchenko and collaborators synthe-
sized 2-acyl-3-trifluoromethylquinoxaline 1,4-dioxides that displayed antibacterial effects
against Gram-positive strains, as well as anti-mycobacterial activity [34].

The search for new antibacterial agents was also described by Mingoia et al. [35] and
Frolov et al. [36], which described cinnamic acid-based and quaternary ammonium-based
derivatives. Calzada et al. [37] detailed the effects of incomptines A and B against Vib-
rio cholerae and its enterotoxin. Utilizing computational chemistry, strategies were devised
for the structure-based lead optimization of TcaR inhibitors [38], as well as the identification
of alpha and beta-adrenoreceptor blockers targeting bacterial virulence factors [39]. Rizo-
Liendo and collaborators elucidated the effects of naphthyridine derivatives in inducing
programmed cell death in the pathogenic amoeba Naegleria fowleri [40].

This Special Issue delves into the core challenges associated with drug discovery for
infectious diseases, showcasing these obstacles through a collection of exemplar cases
outlined in the published articles. Finally, the Guest Editors would like to extend their
gratitude for the collaborative spirit and diligent contributions of all authors in submitting
their papers and reviewers for their valuable contributions.
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