A Novel Multi-Model High Spatial Resolution Method for Analysis of DCE MRI Data: Insights from Vestibular Schwannoma Responses to Antiangiogenic Therapy in Type II Neurofibromatosis
Abstract
:1. Introduction
1.1. Multi-Model LEGATOS Analysis Theory
1.1.1. Construction of a 4D High Spatiotemporal Resolution GBCA Concentration-Volume Using the LEGATOS Method
1.1.2. Use of LEGATOS with the ETM and ET-CBF Model to Derive High Spatial Resolution Ktrans, vp, ve, and Fp Maps
1.1.3. Theoretical Derivation of the Capillary Permeability-Surface Area Product (PS) from Derived Ktrans and CBFET Values
1.1.4. Use of LEGATOS-Patlak for Measuring Ktrans within Normal-Appearing Brain Regions
2. Results
2.1. High Spatial Multi-Model Assessment of Perfusion and Permeability Parameters within Both Tumour and Normal-Appearing Brain
2.2. High Spatial Evaluation of Changes in Tumour Microvascular Parameters during Antiangiogenic Therapy
2.3. Differences between Responding and Non-Responding Tumours in Baseline (Pre-Treatment) High Spatial Resolution Microvascular Parameters
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. MRI Data Acquisition
4.3. Image Processing
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Symbol | Definition | Units |
CBF | Cerebral blood flow | mL min−1 mL−1 |
CBFET | Absolute cerebral blood flow generated using early time points method | mL min−1 mL−1 |
CBFET-HS | High spatial resolution estimates of CBFET | mL min−1 mL−1 |
CBFET-HT | Low spatial resolution estimates of CBFET | mL min−1 mL−1 |
Cb(t) | Concentration of contrast medium in arterial blood at time t | mmol |
Cp | Concentration of contrast medium in arterial blood plasma at time t | mmol |
Ct(t) | Concentration of contrast medium in the voxel at time t | mmol |
DCE-MRI | Dynamic contrast-enhanced MRI | |
DTR | Dual-temporal resolution | |
ETM | The extended Tofts model | |
ET-CBF | The ‘early time points’ method for absolute cerebral blood flow quantification | |
FP-PP | The hybrid first-pass Patlak plot method | |
ETW | The early time window, i.e., the time window that meets the microsphere prerequisite. | |
FDHS | Full-dose high spatial resolution | |
Fp | Plasma flow | mL min−1 mL−1 |
HS | High spatial (HS) resolution | |
HT | High temporal (HT) resolution | |
Ktrans | Volume transfer constant between blood plasma and extravascular extracellular space | min−1 |
LDHT | Low-dose high temporal resolution | |
LDHTaligned | 4D LDHT DCE images co-registered to subsequent HS DCE series in dual-injection DTR DCE-MRI | |
LEGATOS | A DTR DCE-MRI data construction technique: the level and rescale the gadolinium contrast concentration curves of high temporal to high spatial | |
RFp | The ratio of Fp to the sum of Fp and PS | None |
PS | Capillary permeability–surface area product per unit mass of tissue | mL min−1 mL−1 |
ve | Volume of the extravascular extracellular space per unit volume of tissue | none |
vp | Fractional blood plasma volume | none |
References
- O’Connor, J.P.; Jackson, A.; Parker, G.J.; Roberts, C.; Jayson, G.C. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat. Rev. Clin. Oncol. 2012, 9, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Essig, M.; Anzalone, N.; Combs, S.E.; Dorfler, A.; Lee, S.K.; Picozzi, P.; Rovira, A.; Weller, M.; Law, M. MR imaging of neoplastic central nervous system lesions: Review and recommendations for current practice. AJNR Am. J. Neuroradiol. 2012, 33, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Jain, R. Measurements of tumor vascular leakiness using DCE in brain tumors: Clinical applications. NMR Biomed. 2013, 26, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-L.; Djoukhadar, I.; Zhu, X.; Zhao, S.; Lloyd, S.; McCabe, M.; McBain, C.; Evans, D.G.; Jackson, A. Vascular biomarkers derived from dynamic contrast-enhanced MRI predict response of vestibular schwannoma to antiangiogenic therapy in type 2 neurofibromatosis. Neuro-oncology 2016, 18, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.; Roncaroli, F.; Agushi, E.; Mosses, D.; Williams, R.; Li, K.-L.; Zhu, X.; Hinz, R.; Atkinson, R.; Wadeson, A.; et al. Inflammation and vascular permeability correlate with growth in sporadic vestibular schwannoma. Neuro-oncology 2019, 21, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Larsson, H.B.; Courivaud, F.; Rostrup, E.; Hansen, A.E. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla. Magn. Reson. Med. 2009, 62, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Van Dijken, B.R.J.; van Laar, P.J.; Smits, M.; Dankbaar, J.W.; Enting, R.H.; van der Hoorn, A. Perfusion MRI in treatment evaluation of glioblastomas: Clinical relevance of current and future techniques. J. Magn. Reson. Imaging 2019, 49, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.; Donofrio, C.A.; O’leary, C.; Li, K.-L.; Zhu, X.; Williams, R.; Djoukhadar, I.; Agushi, E.; Hannan, C.J.; Stapleton, E.; et al. The microenvironment in sporadic and neurofibromatosis type II–related vestibular schwannoma: The same tumor or different? A comparative imaging and neuropathology study. J. Neurosurg. 2021, 134, 1419–1429. [Google Scholar] [CrossRef]
- Jackson, A.; O’Connor, J.P.; Parker, G.J.; Jayson, G.C. Imaging Tumor Vascular Heterogeneity and Angiogenesis using Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Clin. Cancer Res. 2007, 13, 3449–3459. [Google Scholar] [CrossRef]
- O’Connor, J.P.B.; Jackson, A.; Parker, G.J.M.; Jayson, G.C. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer 2007, 96, 189–195. [Google Scholar] [CrossRef]
- Ingrisch, M.; Sourbron, S.; Morhard, D.; Ertl-Wagner, B.; Kumpfel, T.; Hohlfeld, R.; Reiser, M.; Glaser, C. Quantification of perfusion and permeability in multiple sclerosis: Dynamic contrast-enhanced MRI in 3D at 3T. Investig. Radiol. 2012, 47, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Rose, C.J.; O’Connor, J.P.; Cootes, T.F.; Taylor, C.J.; Jayson, G.C.; Parker, G.J.; Waterton, J.C. Indexed distribution analysis for improved significance testing of spatially heterogeneous parameter maps: Application to dynamic contrast-enhanced MRI biomarkers. Magn. Reson. Med. 2014, 71, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Mallio, C.A.; Rovira, À.; Parizel, P.M.; Quattrocchi, C.C. Exposure to gadolinium and neurotoxicity: Current status of preclinical and clinical studies. Neuroradiology 2020, 62, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Gulani, V.; Calamante, F.; Shellock, F.G.; Kanal, E.; Reeder, S.B. Gadolinium deposition in the brain: Summary of evidence and recommendations. Lancet Neurol. 2017, 16, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.; Simonsen, H.; Frederiksen, J.; Rostrup, E.; Larsson, H. Abnormal blood–brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin. 2014, 4, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, L.E.; Buckley, D.L. Precision in measurements of perfusion and microvascular permeability withT1-weighted dynamic contrast-enhanced MRI. Magn. Reson. Med. 2006, 56, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Barnes, S.R.; Ng, T.S.C.; Montagne, A.; Law, M.; Zlokovic, B.V.; Jacobs, R. Optimal acquisition and modeling parameters for accurate assessment of low Ktrans blood-brain barrier permeability using dynamic contrast-enhanced MRI. Magn. Reson. Med. 2015, 75, 1967–1977. [Google Scholar] [CrossRef] [PubMed]
- Tofts, P.S. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Magn. Reson. Imaging 1997, 7, 91–101. [Google Scholar] [CrossRef]
- Fritz-Hansen, T.; Rostrup, E.; Sørndergaard, L.; Ring, P.B.; Amtorp, O.; Larsson, H.B.W. Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn. Reson. Med. 1998, 40, 922–929. [Google Scholar] [CrossRef]
- Li, K.L.; Lewis, D.; Coope, D.J.; Roncaroli, F.; Agushi, E.; Pathmanaban, O.N.; King, A.T.; Zhao, S.; Jackson, A.; Cootes, T.; et al. The LEGATOS technique: A new tissue-validated dynamic contrast-enhanced MRI method for whole-brain, high-spatial resolution parametric mapping. Magn. Reson. Med. 2021, 86, 2122–2136. [Google Scholar] [CrossRef]
- Lewis, D.; McHugh, D.J.; Li, K.-L.; Zhu, X.; Mcbain, C.; Lloyd, S.K.; Jackson, A.; Pathmanaban, O.N.; King, A.T.; Coope, D.J. Detection of early changes in the post-radiosurgery vestibular schwannoma microenvironment using multinuclear MRI. Sci. Rep. 2021, 11, 15712. [Google Scholar] [CrossRef] [PubMed]
- Tofts, P.S.; Brix, G.; Buckley, D.L.; Evelhoch, J.L.; Henderson, E.; Knopp, M.V.; Larsson, H.B.; Lee, T.-Y.; Mayr, N.A.; Parker, G.J.; et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J. Magn. Reson. Imaging 1999, 10, 223–232. [Google Scholar] [CrossRef]
- Sasi, S.D.; Gupta, R.K.; Patir, R.; Ahlawat, S.; Vaishya, S.; Singh, A. A comprehensive evaluation and impact of normalization of generalized tracer kinetic model parameters to characterize blood-brain-barrier permeability in normal-appearing and tumor tissue regions of patients with glioma. Magn. Reson. Imaging 2021, 83, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Li, K.L.; Zhu, X.; Zhao, S.; Jackson, A. Blood-brain barrier permeability of normal-appearing white matter in patients with vestibular schwannoma: A new hybrid approach for analysis of T1 -W DCE-MRI. J. Magn. Reson. Imaging 2017, 46, 79–93. [Google Scholar] [PubMed]
- Sengupta, A.; Agarwal, S.; Gupta, P.K.; Ahlawat, S.; Patir, R.; Gupta, R.K.; Singh, A. On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images. Eur. J. Radiol. 2018, 106, 199–208. [Google Scholar] [CrossRef]
- Li, K.-L.; Lewis, D.; Jackson, A.; Zhao, S.; Zhu, X. Low-dose T1W DCE-MRI for early time points perfusion measurement in patients with intracranial tumors: A pilot study applying the microsphere model to measure absolute cerebral blood flow. J. Magn. Reson. Imaging 2018, 48, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Larsson, H.B.; Hansen, A.E.; Berg, H.K.; Rostrup, E.; Haraldseth, O. Dynamic contrast-enhanced quantitative perfusion measurement of the brain usingT1-weighted MRI at 3T. J. Magn. Reson. Imaging 2008, 27, 754–762. [Google Scholar] [CrossRef]
- Jackson, A. Imaging microvascular structure with contrast enhanced MRI. Br. J. Radiol. 2003, 76, S159–S173. [Google Scholar] [CrossRef]
- Evans, D.R. Neurofibromatosis type 2 (NF2): A clinical and molecular review. Orphanet J. Rare Dis. 2009, 4, 16. [Google Scholar] [CrossRef]
- Evans, D.G.; Howard, E.; Giblin, C.; Clancy, T.; Spencer, H.; Huson, S.M.; Lalloo, F. Birth incidence and prevalence of tumor-prone syndromes: Estimates from a UK family genetic register service. Am. J. Med. Genet. A 2010, 152, 327–332. [Google Scholar] [CrossRef]
- Stivaros, S.M.; Stemmer-Rachamimov, A.O.; Alston, R.; Plotkin, S.R.; Nadol, J.B.; Quesnel, A.; O’Malley, J.; Whitfield, G.A.; McCabe, M.G.; Freeman, S.R.; et al. Multiple synchronous sites of origin of vestibular schwannomas in neurofibromatosis Type 2. J. Med. Genet. 2015, 52, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S.K.; Evans, D.G. Neurofibromatosis type 2 (NF2): Diagnosis and management. Handb. Clin. Neurol. 2013, 115, 957–967. [Google Scholar] [PubMed]
- Evans, D.G.; Stivaros, S.M. Multifocality in neurofibromatosis type 2. Neuro-Oncology 2014, 17, 481–482. [Google Scholar] [CrossRef] [PubMed]
- Hannan, C.J.; Hammerbeck-Ward, C.; Pathmanaban, O.N.; Smith, M.J.; Rutherford, S.A.; Lloyd, S.K.; Freeman, S.R.M.; Wallace, A.J.; King, A.T.; Evans, D.G.R. Multiple Meningiomas as a Criterion for the Diagnosis of Neurofibromatosis Type 2 and Other Tumor Predisposition Syndromes. Neurosurgery 2022, 90, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.R.; Merker, V.L.; Halpin, C.; Jennings, D.; McKenna, M.J.; Harris, G.J.; Barker, F.G., 2nd. Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: A retrospective review of 31 patients. Otol. Neurotol. 2012, 33, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Mautner, V.-F.; Nguyen, R.; Kutta, H.; Fuensterer, C.; Bokemeyer, C.; Hagel, C.; Friedrich, R.E.; Panse, J. Bevacizumab induces regression of vestibular schwannomas in patients with neurofibromatosis type 2. Neuro-oncology 2010, 12, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.R.; Stemmer-Rachamimov, A.O.; Barker, F.G., 2nd; Halpin, C.; Padera, T.P.; Tyrrell, A.; Sorensen, A.G.; Jain, R.K.; di Tomaso, E. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N. Engl. J. Med. 2009, 361, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Sourbron, S.P.; Buckley, D.L. On the scope and interpretation of the Tofts models for DCE-MRI. Magn. Reson. Med. 2011, 66, 735–745. [Google Scholar] [CrossRef]
- Chang, Y.-C.C.; Ackerstaff, E.; Tschudi, Y.; Jimenez, B.; Foltz, W.; Fisher, C.; Lilge, L.; Cho, H.; Carlin, S.; Gillies, R.J.; et al. Delineation of Tumor Habitats based on Dynamic Contrast Enhanced MRI. Sci. Rep. 2017, 7, 9746. [Google Scholar] [CrossRef]
- Patlak, C.S.; Blasberg, R.G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 1985, 5, 584–590. [Google Scholar]
- Ewing, J.R.; Knight, R.A.; Nagaraja, T.N.; Yee, J.S.; Nagesh, V.; Whitton, P.A.; Li, L.; Fenstermacher, J.D. Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of14C-sucrose in areas of blood-brain opening. Magn. Reson. Med. 2003, 50, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Durukan, A.; Marinkovic, I.; Strbian, D.; Pitkonen, M.; Pedrono, E.; Soinne, L.; Abo-Ramadan, U.; Tatlisumak, T. Post-ischemic blood–brain barrier leakage in rats: One-week follow-up by MRI. Brain Res. 2009, 1280, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Abo-Ramadan, U.; Durukan, A.; Pitkonen, M.; Marinkovic, I.; Tatlisumak, E.; Pedrono, E.; Soinne, L.; Strbian, D.; Tatlisumak, T. Post-ischemic leakiness of the blood–brain barrier: A quantitative and systematic assessment by Patlak plots. Exp. Neurol. 2009, 219, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Gasparovic, C.; Shah, N.J.; Rosenberg, G.A. Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping. Magn. Reson. Med. 2011, 65, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.C.; Koay, C.G.; Basser, P.J.; Pierpaoli, C. Linear least-squares method for unbiased estimation of T1 from SPGR signals. Magn. Reson. Med. 2008, 60, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Li, K.L.; Zhu, X.P.; Waterton, J.; Jackson, A. Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J. Magn. Reson. Imaging 2000, 12, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Li, K.L.; Zhu, X.P.; Checkley, D.R.; Tessier, J.J.L.; Hillier, V.F.; Waterton, J.C.; Jackson, A. Simultaneous mapping of blood volume and endothelial permeability surface area product in gliomas using iterative analysis of first-pass dynamic contrast enhanced MRI data. Br. J. Radiol. 2003, 76, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, T.T.; Sorensen, A.G.; di Tomaso, E.; Zhang, W.-T.; Duda, D.G.; Cohen, K.S.; Kozak, K.R.; Cahill, D.P.; Chen, P.-J.; Zhu, M.; et al. AZD2171, a Pan-VEGF Receptor Tyrosine Kinase Inhibitor, Normalizes Tumor Vasculature and Alleviates Edema in Glioblastoma Patients. Cancer Cell 2007, 11, 83–95. [Google Scholar] [CrossRef]
- Pishko, G.L.; Muldoon, L.L.; Pagel, M.A.; Schwartz, D.L.; Neuwelt, E.A. Vascular endothelial growth factor blockade alters magnetic resonance imaging biomarkers of vascular function and decreases barrier permeability in a rat model of lung cancer brain metastasis. Fluids Barriers CNS 2015, 12, 5. [Google Scholar] [CrossRef]
- Gerstner, E.R.; Emblem, K.E.; Chang, K.; Vakulenko-Lagun, B.; Yen, Y.F.; Beers, A.L.; Dietrich, J.; Plotkin, S.R.; Catana, C.; Hooker, J.M.; et al. Bevacizumab Reduces Permeability and Concurrent Temozolomide Delivery in a Subset of Patients with Recurrent Glioblastoma. Clin. Cancer Res. 2020, 26, 206–212. [Google Scholar] [CrossRef]
- Wong, H.K.; Lahdenranta, J.; Kamoun, W.S.; Chan, A.W.; McClatchey, A.I.; Plotkin, S.R.; Jain, R.K.; di Tomaso, E. Anti–Vascular Endothelial Growth Factor Therapies as a Novel Therapeutic Approach to Treating Neurofibromatosis-Related Tumors. Cancer Res. 2010, 70, 3483–3493. [Google Scholar] [CrossRef] [PubMed]
- Navis, A.C.; Hamans, B.C.; Claes, A.; Heerschap, A.; Jeuken, J.W.; Wesseling, P.; Leenders, W.P. Effects of targeting the VEGF and PDGF pathways in diffuse orthotopic glioma models. J. Pathol. 2011, 223, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Buemi, F.; Guzzardi, G.; Del Sette, B.; Sponghini, A.P.; Matheoud, R.; Soligo, E.; Trisoglio, A.; Carriero, A.; Stecco, A. Apparent diffusion coefficient and tumor volume measurements help stratify progression-free survival of bevacizumab-treated patients with recurrent glioblastoma multiforme. Neuroradiol. J. 2019, 32, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Cazzador, D.; Astolfi, L.; Daloiso, A.; Tealdo, G.; Simoni, E.; Mazzoni, A.; Zanoletti, E.; Marioni, G. Tumor Microenvironment in Sporadic Vestibular Schwannoma: A Systematic, Narrative Review. Int. J. Mol. Sci. 2023, 24, 6522. [Google Scholar] [CrossRef] [PubMed]
- Varatharaj, A.; Liljeroth, M.; Darekar, A.; Larsson, H.B.; Galea, I.; Cramer, S.P. Blood-brain barrier permeability measured using dynamic contrast-enhanced magnetic resonance imaging: A validation study. J. Physiol. 2018, 597, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Heye, A.K.; Thrippleton, M.J.; Armitage, P.A.; Hernández, M.d.C.V.; Makin, S.D.; Glatz, A.; Sakka, E.; Wardlaw, J.M. Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability. Neuroimage 2016, 125, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Liu, L.; Luo, J.; Liu, L.; Hui, X.; Feng, H. Research on the Mechanism of Cognitive Decline in Patients with Acoustic Neuroma. Front. Neurosci. 2022, 16, 933825. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Liu, L.; Zhen, Z.; Chen, Q.; Liu, L.; Hui, X. Cognitive decline in acoustic neuroma patients: An investigation based on resting-state functional magnetic resonance imaging and voxel-based morphometry. Front. Psychiatry 2022, 13, 968859. [Google Scholar] [CrossRef]
- Deng, X.; Liu, L.; Li, J.; Yao, H.; He, S.; Guo, Z.; Sun, J.; Liu, W.; Hui, X. Brain structural network to investigate the mechanism of cognitive impairment in patients with acoustic neuroma. Front. Aging Neurosci. 2022, 14, 970159. [Google Scholar] [CrossRef]
- Wang, X.; Xu, P.; Li, P.; Wang, Z.; Zhao, F.; Gao, Z.; Xu, L.; Luo, Y.-J.; Fan, J.; Liu, P. Alterations in gray matter volume due to unilateral hearing loss. Sci. Rep. 2016, 6, 25811. [Google Scholar] [CrossRef]
- Kurtcan, S.; Alkan, A.; Kilicarslan, R.; Bakan, A.A.; Toprak, H.; Aralasmak, A.; Aksoy, F.; Kocer, A. Auditory Pathway Features Determined by DTI in Subjects with Unilateral Acoustic Neuroma. Clin. Neuroradiol. 2016, 26, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-L.; Buonaccorsi, G.; Thompson, G.; Cain, J.R.; Watkins, A.; Russell, D.; Qureshi, S.; Evans, D.G.; Lloyd, S.K.; Zhu, X.; et al. An improved coverage and spatial resolution-using dual injection dynamic contrast-enhanced (ICE-DICE) MRI: A novel dynamic contrast-enhanced technique for cerebral tumors. Magn. Reson. Med. 2012, 68, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Koenig, M.; Klotz, E.; Luka, B.; Venderink, D.J.; Spittler, J.F.; Heuser, L. Perfusion CT of the brain: Diagnostic approach for early detection of ischemic stroke. Radiology 1998, 209, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Keil, V.C.; Mädler, B.; Gieseke, J.; Fimmers, R.; Hattingen, E.; Schild, H.H.; Hadizadeh, D.R. Effects of arterial input function selection on kinetic parameters in brain dynamic contrast-enhanced MRI. Magn. Reson. Imaging 2017, 40, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.; Zhu, X.; Coope, D.J.; Zhao, S.; King, A.T.; Cootes, T.; Jackson, A.; Li, K.-L. Surrogate vascular input function measurements from the superior sagittal sinus are repeatable and provide tissue-validated kinetic parameters in brain DCE-MRI. Sci. Rep. 2022, 12, 8737. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K. Multimodal Image Coregistration and Partitioning—A Unified Framework. NeuroImage 1997, 6, 209–217. [Google Scholar] [CrossRef]
Ktrans Statistics of NAGM/NAWM Segments | NAGM Segment Statistics Mean ± SD | NAWM Segment Statistics Mean ± SD | p Value Paired t-Test |
---|---|---|---|
Mean (min−1) | 0.00089 ± 0.0011 | 0.00062 ± 0.00030 | 0.30 |
Median (min−1) | 0.00047 ± 0.00037 | 0.00028 ± 0.00034 | 0.03 |
SD (min−1) | 0.0030 ± 0.0026 | 0.0012 ± 0.00021 | 0.04 |
Max (min−1) | 0.050 ± 0.034 | 0.014 ± 0.0058 | 0.002 |
Min (min−1) | −0.023 ± 0.0074 | −0.015 ± 0.0040 | 0.002 |
Microvascular Parameter | Day 0 Mean ± SD (Median) | Day 90 Mean ± SD (Median) | p Value Paired t-Test |
---|---|---|---|
Ktrans (min−1) | |||
Res (N = 12) | 0.121 ± 0.023 (0.121) | 0.083 ± 0.031 (0.082) | 0.001 |
Non (N = 8) | 0.095 ± 0.037 (0.100) | 0.086 ± 0.025 (0.096) | 0.18 |
All (N = 20) | 0.111 ± 0.059 (0.123) | 0.085 ± 0.028 (0.093) | 0.0008 |
PS (mL min−1 mL−1) | |||
Res (N = 12) | 0.169 ± 0.039 (0.174) | 0.109 ± 0.043 (0.106) | 0.0002 |
Non (N = 8) | 0.125 ± 0.053 (0.128) | 0.107 ± 0.032 (0.118) | 0.10 |
All (N = 20) | 0.151 ± 0.087 (0.162) | 0.108 ± 0.038 (0.117) | 0.0001 |
Fp (mL min−1 mL−1) | |||
Res (N = 12) | 0.514 ± 0.114 (0.496) | 0.414 ± 0.103 (0.423) | 0.08 |
Non (N = 8) | 0.485 ± 0.175 (0.470) | 0.541 ± 0.139 (0.579) | 0.36 |
All (N = 20) | 0.502 ± 0.270 (0.477) | 0.465 ± 0.132 (0.452) | 0.37 |
RFp (%) | |||
Res (N = 12) | 0.752 ± 0.065 (0.744) | 0.792 ± 0.048 (0.788) | 0.004 |
Non (N = 8) | 0.784 ± 0.063 (0.790) | 0.826 ± 0.045 (0.820) | 0.04 |
All (N = 20) | 0.765 ± 0.114 (0.761) | 0.806 ±0.049 (0.799) | 0.0003 |
vp (%) | |||
Res (N = 12) | 0.047 ± 0.012 (0.043) | 0.038 ± 0.009 (0.040) | 0.07 |
Non (N = 8) | 0.045 ± 0.019 (0.040) | 0.045 ± 0.010 (0.047) | 0.94 |
All (N = 20) | 0.046 ± 0.025 (0.042) | 0.040 ± 0.010 (0.041) | 0.13 |
ve (%) | |||
Res (N = 12) | 0.519 ± 0.047 (0.523) | 0.498 ± 0.103 (0.457) | 0.56 |
Non (N = 8) | 0.431 ± 0.042 (0.423) | 0.511 ± 0.063 (0.500) | 0.01 |
All (N = 20) | 0.484 ± 0.259 (0.500) | 0.504 ± 0.196 (0.488) | 0.43 |
Linear Regression Analysis (N = 20) | Tumour Volume (cm3; Day 0) | Tumour Volume Change (cm3; Day 90) | Percentage Tumour Volume Change (%; Day 90) |
---|---|---|---|
Ktrans (min−1) | R2 = 0.19 p = 0.05 | R2 = 0.13 p = 0.12 | R2 = 0.08 p = 0.23 |
PS (mL min−1 mL−1) | R2 = 0.24 p = 0.03 | R2 = 0.18 p = 0.06 | R2 = 0.10 p = 0.18 |
Fp (mL min−1 mL−1) | R2 = 0.01 p = 0.71 | R2 = 0.01 p = 0.67 | R2 = 0.01 p = 0.66 |
vp (%) | R2 = 0.02 p = 0.55 | R2 = 0.03 p = 0.48 | R2 = 0.00 p = 0.90 |
ve (%) | R2 = 0.16 p = 0.08 | R2 = 0.21 p = 0.04 | R2 = 0.56 p < 0.001 |
Prediction of Response | AUC-ROC (p Value) | Sensitivity | Specificity | Overall Classification |
---|---|---|---|---|
A. Univariate analysis | ||||
ve (%) | 0.896 (0.024) | 0.830 | 0.875 | 0.850 |
PS (mL min−1 mL−1) | 0.708 (0.10) | 0.920 | 0.500 | 0.750 |
Ktrans (min−1) | 0.688 (0.11) | 0.92 | 0.375 | 0.700 |
Fp (mL min−1 mL−1) | 0.667 (0.50) | 1.00 | 0.125 | 0.650 |
vp (%) | 0.615 (0.61) | - | - | - |
B. Multivariate analysis with backward selection | ||||
Step 1 ve + PS + Ktrans + Fp + vp | 0.948 (0.031; 0.92; 0.93; 0.69; 0.83) | 0.830 | 0.875 | 0.850 |
Step 2 ve + PS + Fp + vp | 0.948 (0.030; 0.31; 0.70; 0.78) | 0.830 | 0.875 | 0.850 |
Step 3 ve + PS + Fp | 0.948 (0.032; 0.35; 0.70) | 0.830 | 0.875 | 0.850 |
Step 4 ve + PS | 0.938 (0.036; 0.37) | 0.830 | 0.750 | 0.800 |
Step 5 ve | 0.896 (0.024) | 0.830 | 0.875 | 0.850 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.-L.; Lewis, D.; Zhu, X.; Coope, D.J.; Djoukhadar, I.; King, A.T.; Cootes, T.; Jackson, A. A Novel Multi-Model High Spatial Resolution Method for Analysis of DCE MRI Data: Insights from Vestibular Schwannoma Responses to Antiangiogenic Therapy in Type II Neurofibromatosis. Pharmaceuticals 2023, 16, 1282. https://doi.org/10.3390/ph16091282
Li K-L, Lewis D, Zhu X, Coope DJ, Djoukhadar I, King AT, Cootes T, Jackson A. A Novel Multi-Model High Spatial Resolution Method for Analysis of DCE MRI Data: Insights from Vestibular Schwannoma Responses to Antiangiogenic Therapy in Type II Neurofibromatosis. Pharmaceuticals. 2023; 16(9):1282. https://doi.org/10.3390/ph16091282
Chicago/Turabian StyleLi, Ka-Loh, Daniel Lewis, Xiaoping Zhu, David J. Coope, Ibrahim Djoukhadar, Andrew T. King, Timothy Cootes, and Alan Jackson. 2023. "A Novel Multi-Model High Spatial Resolution Method for Analysis of DCE MRI Data: Insights from Vestibular Schwannoma Responses to Antiangiogenic Therapy in Type II Neurofibromatosis" Pharmaceuticals 16, no. 9: 1282. https://doi.org/10.3390/ph16091282
APA StyleLi, K. -L., Lewis, D., Zhu, X., Coope, D. J., Djoukhadar, I., King, A. T., Cootes, T., & Jackson, A. (2023). A Novel Multi-Model High Spatial Resolution Method for Analysis of DCE MRI Data: Insights from Vestibular Schwannoma Responses to Antiangiogenic Therapy in Type II Neurofibromatosis. Pharmaceuticals, 16(9), 1282. https://doi.org/10.3390/ph16091282