A Ru(II)-Strained Complex with 2,9-Diphenyl-1,10-phenanthroline Ligand Induces Selective Photoactivatable Chemotherapeutic Activity on Human Alveolar Carcinoma Cells via Apoptosis
Abstract
:1. Introduction
2. Results
2.1. Complex 1 Uptake by MSC and A549 Cells
2.1.1. Quantification of Cellular Uptake by LC-MS/MS
2.1.2. Evaluating the Mode of Cellular Uptake
2.2. Effect of Complex 1 on the Survival of A549 and MSCs
2.3. Effect of Complex 1 on A549 Cell Morphology and Detachment
2.4. Effect of Complex 1 on A549 Cell Membrane Integrity
2.5. DNA-Damaging Effect of Complex 1
2.5.1. Plasmid DNA Damage
2.5.2. DNA Damage in A549 Cells
2.6. Effect of Complex 1 on A549 Cell Death
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Synthesis of Complex 1
4.3. Cell Lines and Culture
4.4. Quantification of Cellular Uptake of Complex 1
4.5. Evaluating the Modes of Cellular Uptake of Complex 1
4.6. Irradiation Conditions
4.7. Cell Viability Assay
4.8. Cell Rounding Assay
4.9. Cell Membrane Integrity Assay
4.10. Plasmid DNA Precipitation Assay
4.11. Comet Assay
4.12. Flow Cytometry Assay
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, S.; Mahalingaiah, S.; Delaney, S.; Neale, N.R.; Masood, S. Substitution and Reduction of Platinum(IV) Complexes by a Nucleotide, Guanosine 5′-Monophosphate. Inorg. Chem. 1999, 38, 1800–1805. [Google Scholar] [CrossRef]
- Clarke, M.J.; Stubbs, M. Interactions of Metallopharmaceuticals with DNA. Met. Ions Biol. Syst. 1996, 32, 727–780. [Google Scholar] [PubMed]
- Delferro, M.; Marchiò, L.; Tegoni, M.; Tardito, S.; Franchi-Gazzola, R.; Lanfranchi, M. Synthesis, Structural Characterisation and Solution Chemistry of Ruthenium(III) Triazole-Thiadiazine Complexes. Dalton Trans. 2009, 19, 3766–3773. [Google Scholar] [CrossRef] [PubMed]
- Sava, G.; Zorzet, S.; Giraldi, T.; Mestroni, G.; Zassinovich, G. Antineoplastic Activity and Toxicity of an Organometallic Complex of Ruthenium(II) in Comparison with Cis-PDD in Mice Bearing Solid Malignant Neoplasms. Eur. J. Cancer Clin. Oncol. 1984, 20, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Kostova, I. Ruthenium Complexes as Anticancer Agents. Curr. Med. Chem. 2006, 13, 1085–1107. [Google Scholar] [CrossRef]
- Arsene, A.L.; Uivarosi, V.; Mitrea, N.; Dragoi, C.M.; Nicolae, A. The Binding Properties of Some Novel Ruthenium (III) Complexes with Human Serum Transferrin. Biopolym. Cell 2011, 27, 141–146. [Google Scholar] [CrossRef]
- Li, H.; Qian, Z.M. Transferrin/Transferrin Receptor-Mediated Drug Delivery. Med. Res. Rev. 2002, 22, 225–250. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, A.; Masi, A.; Dyson, P.J.; Sava, G. Modulation of the Metastatic Progression of Breast Cancer with an Organometallic Ruthenium Compound. Int. J. Oncol. 2008, 33, 1281–1289. [Google Scholar] [CrossRef]
- Chan, B.A.; Hughes, B.G.M. Targeted Therapy for Non-Small Cell Lung Cancer: Current Standards and the Promise of the Future. Transl. Lung Cancer Res. 2015, 4, 36–54. [Google Scholar] [CrossRef]
- Irace, C.; Misso, G.; Capuozzo, A.; Piccolo, M.; Riccardi, C.; Luchini, A.; Caraglia, M.; Paduano, L.; Montesarchio, D.; Santamaria, R. Antiproliferative Effects of Ruthenium-Based Nucleolipidic Nanoaggregates in Human Models of Breast Cancer in Vitro: Insights into Their Mode of Action. Sci. Rep. 2017, 7, 45236. [Google Scholar] [CrossRef]
- Khamrang, T.; Hung, K.-C.; Hsia, C.-H.; Hsieh, C.-Y.; Velusamy, M.; Jayakumar, T.; Sheu, J.-R. Antiplatelet Activity of a Newly Synthesized Novel Ruthenium (II): A Potential Role for Akt/JNK Signaling. Int. J. Mol. Sci. 2017, 18, 916. [Google Scholar] [CrossRef] [PubMed]
- Pluim, D.; van Waardenburg, R.C.A.M.; Beijnen, J.H.; Schellens, J.H.M. Cytotoxicity of the Organic Ruthenium Anticancer Drug Nami-A Is Correlated with DNA Binding in Four Different Human Tumor Cell Lines. Cancer Chemother. Pharmacol. 2004, 54, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Vacca, A.; Bruno, M.; Boccarelli, A.; Coluccia, M.; Ribatti, D.; Bergamo, A.; Garbisa, S.; Sartor, L.; Sava, G. Inhibition of Endothelial Cell Functions and of Angiogenesis by the Metastasis Inhibitor NAMI-A. Br. J. Cancer 2002, 86, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Zorzet, S.; Bergamo, A.; Cocchietto, M.; Sorc, A.; Gava, B.; Alessio, E.; Iengo, E.; Sava, G. Lack of In Vitro Cytotoxicity, Associated to Increased G(2)-M Cell Fraction and Inhibition of Matrigel Invasion, May Predict In Vivo-Selective Antimetastasis Activity of Ruthenium Complexes. J. Pharmacol. Exp. Ther. 2000, 295, 927–933. [Google Scholar] [PubMed]
- Leijen, S.; Burgers, S.A.; Baas, P.; Pluim, D.; Tibben, M.; van Werkhoven, E.; Alessio, E.; Sava, G.; Beijnen, J.H.; Schellens, J.H.M. Phase I/II Study with Ruthenium Compound NAMI-A and Gemcitabine in Patients with Non-Small Cell Lung Cancer after First Line Therapy. Investig. New Drugs 2015, 33, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Coverdale, J.P.C.; Laroiya-McCarron, T.; Romero-Canelón, I. Designing Ruthenium Anticancer Drugs: What Have We Learnt from the Key Drug Candidates? Inorganics 2019, 7, 31. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Y.; Shi, H.; Wang, Y.; Zhang, J.; Zhang, Q. Ruthenium Complexes as Promising Candidates against Lung Cancer. Molecules 2021, 26, 4389. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, T.; Wang, X.; Song, J.; Zhang, J.; Li, G. Stimuli-Responsive Platinum and Ruthenium Complexes for Lung Cancer Therapy. Front. Pharmacol. 2022, 13, 1035217. [Google Scholar] [CrossRef]
- Dougherty, T.J.; Kaufman, J.E.; Goldfarb, A.; Weishaupt, K.R.; Boyle, D.; Mittleman, A. Photoradiation Therapy for the Treatment of Malignant Tumors. Cancer Res. 1978, 38, 2628–2635. [Google Scholar]
- Cuello-Garibo, J.-A.; Pérez-Gallent, E.; van der Boon, L.; Siegler, M.A.; Bonnet, S. Influence of the Steric Bulk and Solvent on the Photoreactivity of Ruthenium Polypyridyl Complexes Coordinated to L-Proline. Inorg. Chem. 2017, 56, 4818–4828. [Google Scholar] [CrossRef]
- Hess, J.; Huang, H.; Kaiser, A.; Pierroz, V.; Blacque, O.; Chao, H.; Gasser, G. Evaluation of the Medicinal Potential of Two Ruthenium(II) Polypyridine Complexes as One- and Two-Photon Photodynamic Therapy Photosensitizers. Chemistry 2017, 23, 9888–9896. [Google Scholar] [CrossRef] [PubMed]
- Qiu, K.; Wang, J.; Song, C.; Wang, L.; Zhu, H.; Huang, H.; Huang, J.; Wang, H.; Ji, L.; Chao, H. Crossfire for Two-Photon Photodynamic Therapy with Fluorinated Ruthenium (II) Photosensitizers. ACS Appl. Mater. Interfaces 2017, 9, 18482–18492. [Google Scholar] [CrossRef] [PubMed]
- Ramu, V.; Aute, S.; Taye, N.; Guha, R.; Walker, M.G.; Mogare, D.; Parulekar, A.; Thomas, J.A.; Chattopadhyay, S.; Das, A. Photo-Induced Cytotoxicity and Anti-Metastatic Activity of Ruthenium(Ii)-Polypyridyl Complexes Functionalized with Tyrosine or Tryptophan. Dalton Trans. 2017, 46, 6634–6644. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, S.D.; Sharma, R.; White, J.K.; Aggarwal, N.; Chalasani, A.; Sameni, M.; Moin, K.; Vieira, P.C.; Turro, C.; Kodanko, J.J.; et al. Imaging Sites of Inhibition of Proteolysis in Pathomimetic Human Breast Cancer Cultures by Light-Activated Ruthenium Compound. PLoS ONE 2015, 10, e0142527. [Google Scholar] [CrossRef]
- Sainuddin, T.; Pinto, M.; Yin, H.; Hetu, M.; Colpitts, J.; McFarland, S.A. Strained Ruthenium Metal-Organic Dyads as Photocisplatin Agents with Dual Action. J. Inorg. Biochem. 2016, 158, 45–54. [Google Scholar] [CrossRef]
- Fayad, C.; Audi, H.; Khnayzer, R.S.; Daher, C.F. The Anti-Cancer Effect of Series of Strained Photoactivatable Ru(II) Polypyridyl Complexes on Non-Small-Cell Lung Cancer and Triple Negative Breast Cancer Cells. J. Biol. Inorg. Chem. 2020, 26, 43–55. [Google Scholar] [CrossRef]
- Babak, M.V.; Plażuk, D.; Meier, S.M.; Arabshahi, H.J.; Reynisson, J.; Rychlik, B.; Błauż, A.; Szulc, K.; Hanif, M.; Strobl, S.; et al. Half-Sandwich Ruthenium(II) Biotin Conjugates as Biological Vectors to Cancer Cells. Chemistry 2015, 21, 5110–5117. [Google Scholar] [CrossRef]
- Wachter, E.; Heidary, D.K.; Howerton, B.S.; Parkin, S.; Glazer, E.C. Light-Activated Ruthenium Complexes Photobind DNA and Are Cytotoxic in the Photodynamic Therapy Window. Chem. Commun. 2012, 48, 9649–9651. [Google Scholar] [CrossRef]
- Howerton, B.S.; Heidary, D.K.; Glazer, E.C. Strained Ruthenium Complexes Are Potent Light-Activated Anticancer Agents. J. Am. Chem. Soc. 2012, 134, 8324–8327. [Google Scholar] [CrossRef]
- Deans, A.J.; West, S.C. DNA Interstrand Crosslink Repair and Cancer. Nat. Rev. Cancer 2011, 11, 467–480. [Google Scholar] [CrossRef]
- Lentzen, O.; Constant, J.-F.; Defrancq, E.; Prévost, M.; Schumm, S.; Moucheron, C.; Dumy, P.; Kirsch-De Mesmaeker, A. Photocrosslinking in Ruthenium-Labelled Duplex Oligonucleotides. Chembiochem 2003, 4, 195–202. [Google Scholar] [CrossRef]
- Vanderlinden, W.; Blunt, M.; David, C.C.; Moucheron, C.; Kirsch-De Mesmaeker, A.; De Feyter, S. Mesoscale DNA Structural Changes on Binding and Photoreaction with Ru[(TAP)2PHEHAT]2+. J. Am. Chem. Soc. 2012, 134, 10214–10221. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Zheng, Y.; Tan, C.-P.; Sun, J.-H.; Zhang, W.; Ji, L.-N.; Mao, Z.-W. Graphene Oxide Decorated with Ru(II)–Polyethylene Glycol Complex for Lysosome-Targeted Imaging and Photodynamic/Photothermal Therapy. ACS Appl. Mater. Interfaces 2017, 9, 6761–6771. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-J.; Mu, X.; Tan, C.-P.; Wang, Y.-J.; Zhang, Y.; Li, G.; Mao, Z.-W. Induction and Monitoring of DNA Phase Separation in Living Cells by a Light-Switching Ruthenium Complex. J. Am. Chem. Soc. 2021, 143, 11370–11381. [Google Scholar] [CrossRef]
- Shapiro, H.M. Membrane Potential Estimation by Flow Cytometry. Methods 2000, 21, 271–279. [Google Scholar] [CrossRef]
- Heuser, J.E.; Anderson, R.G. Hypertonic Media Inhibit Receptor-Mediated Endocytosis by Blocking Clathrin-Coated Pit Formation. J. Cell Biol. 1989, 108, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Mansour, N.; Mehanna, S.; Mroueh, M.A.; Audi, H.; Bodman-Smith, K.; Daher, C.F.; Taleb, R.I.; El-Sibai, M.; Khnayzer, R.S. Photoactivatable RuII Complex Bearing 2,9-Diphenyl-1,10-Phenanthroline: Unusual Photochemistry and Significant Potency on Cisplatin-Resistant Cell Lines. Eur. J. Inorg. Chem. 2018, 2018, 2524–2532. [Google Scholar] [CrossRef]
- Mansour, N.; Bodman-Smith, K.; Khnayzer, R.S.; Daher, C.F. A Photoactivatable Ru (II) Complex Bearing 2,9-Diphenyl-1,10-Phenanthroline: A Potent Chemotherapeutic Drug Inducing Apoptosis in Triple Negative Human Breast Adenocarcinoma Cells. Chem.-Biol. Interact. 2020, 336, 109317. [Google Scholar] [CrossRef]
- Lu, Z.; Huang, F.-Y.; Cao, R.; Zhang, L.; Tan, G.-H.; He, N.; Huang, J.; Wang, G.; Zhang, Z. Long Blood Residence and Large Tumor Uptake of Ruthenium Sulfide Nanoclusters for Highly Efficient Cancer Photothermal Therapy. Sci. Rep. 2017, 7, 41571. [Google Scholar] [CrossRef]
- Piccolo, M.; Misso, G.; Ferraro, M.G.; Riccardi, C.; Capuozzo, A.; Zarone, M.R.; Maione, F.; Trifuoggi, M.; Stiuso, P.; D’Errico, G.; et al. Exploring Cellular Uptake, Accumulation and Mechanism of Action of a Cationic Ru-Based Nanosystem in Human Preclinical Models of Breast Cancer. Sci. Rep. 2019, 9, 7006. [Google Scholar] [CrossRef]
- Romero-Canelón, I.; Pizarro, A.M.; Habtemariam, A.; Sadler, P.J. Contrasting Cellular Uptake Pathways for Chlorido and Iodido Iminopyridine Ruthenium Arene Anticancer Complexes. Metallomics 2012, 4, 1271–1279. [Google Scholar] [CrossRef]
- Kilsdonk, E.P.; Yancey, P.G.; Stoudt, G.W.; Bangerter, F.W.; Johnson, W.J.; Phillips, M.C.; Rothblat, G.H. Cellular Cholesterol Efflux Mediated by Cyclodextrins. J. Biol. Chem. 1995, 270, 17250–17256. [Google Scholar] [CrossRef]
- Ehrenberg, B.; Montana, V.; Wei, M.D.; Wuskell, J.P.; Loew, L.M. Membrane Potential Can Be Determined in Individual Cells from the Nernstian Distribution of Cationic Dyes. Biophys. J. 1988, 53, 785–794. [Google Scholar] [CrossRef]
- Dikhtiarenko, A.; Villanueva-Delgado, P.; Valiente, R.; García, J.R.; Gimeno, J. Tris(Bipyridine)Metal(II)-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction. Polymers 2016, 8, 48. [Google Scholar] [CrossRef]
- Harris, M.R.; Davis, D.J.; Durham, B.; Millett, F. Temperature and Viscosity Dependence of the Electron-Transfer Reaction between Plastocyanin and Cytochrome c Labeled with a Ruthenium(II) Bipyridine Complex. Biochim. Biophys. Acta 1997, 1319, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Frasca, D.R.; Gehrig, L.E.; Clarke, M.J. Cellular Effects of Transferrin Coordinated to [Cl(NH3)5Ru]Cl2 and Cis-[Cl2(NH3)4Ru]Cl. J. Inorg. Biochem. 2001, 83, 139–149. [Google Scholar] [CrossRef]
- Beckford, F.A.; Thessing, J.; Shaloski, M.; Mbarushimana, P.C.; Brock, A.; Didion, J.; Woods, J.; Gonzalez-Sarrías, A.; Seeram, N.P. Synthesis and Characterization of Mixed-Ligand Diimine-Piperonal Thiosemicarbazone Complexes of Ruthenium(II): Biophysical Investigations and Biological Evaluation as Anticancer and Antibacterial Agents. J. Mol. Struct. 2011, 992, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, A.; Masi, A.; Jakupec, M.A.; Keppler, B.K.; Sava, G. Inhibitory Effects of the Ruthenium Complex KP1019 in Models of Mammary Cancer Cell Migration and Invasion. Met. Based Drugs 2009, 2009, 681270. [Google Scholar] [CrossRef] [PubMed]
- Elie, B.T.; Pechenyy, Y.; Uddin, F.; Contel, M. A Heterometallic Ruthenium-Gold Complex Displays Antiproliferative, Antimigratory and Antiangiogenic Properties and Inhibits Metastasis and Angiogenesis-Associated Proteases in Renal Cancer. J. Biol. Inorg. Chem. 2018, 23, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Díaz, M.; Elie, B.T.; Gómez-Sal, P.; Pérez-Serrano, J.; Gómez, R.; Contel, M.; de la Mata, F.J. Synthesis and Anticancer Activity of Carbosilane Metallodendrimers Based on Arene Ruthenium (II) Complexes. Dalton Trans. 2016, 45, 7049–7066. [Google Scholar] [CrossRef] [PubMed]
- del Pino, J.M.V.; Scalambra, F.; Bermejo-Casadesús, C.; Massaguer, A.; García-Maroto, F.; Romerosa, A. Study of the Biological Activity of Photoactive Bipyridyl-Ru(II) Complexes Containing 1,3,5-Triaza-7-Phosphaadamantane (PTA). J. Inorg. Biochem. 2023, 246, 112291. [Google Scholar] [CrossRef]
- Mehanna, S.; Mansour, N.; Audi, H.; Bodman-Smith, K.; Mroueh, M.; Taleb, R.; Daher, C.; Khnayzer, R. Enhanced Cellular Uptake and Photochemotherapeutic Potential of a Lipophilic Strained Ru (II) Polypyridyl Complex. RSC Adv. 2019, 9, 17254–17265. [Google Scholar] [CrossRef]
- Beckham, T.H.; Lu, P.; Jones, E.E.; Marrison, T.; Lewis, C.S.; Cheng, J.C.; Ramshesh, V.K.; Beeson, G.; Beeson, C.C.; Drake, R.R.; et al. LCL124, a Cationic Analog of Ceramide, Selectively Induces Pancreatic Cancer Cell Death by Accumulating in Mitochondria. J. Pharmacol. Exp. Ther. 2013, 344, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Zielonka, J.; Ouari, O.; Lopez, M.; McAllister, D.; Boyle, K.; Barrios, C.S.; Weber, J.J.; Johnson, B.D.; Hardy, M.; et al. Mitochondria-Targeted Analogs of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells. Cancer Res. 2016, 76, 3904–3915. [Google Scholar] [CrossRef] [PubMed]
- Kalyanaraman, B. Teaching the Basics of Cancer Metabolism: Developing Antitumor Strategies by Exploiting the Differences between Normal and Cancer Cell Metabolism. Redox Biol. 2017, 12, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, S.K.; McNeil, A.K.; Novak, I.; McNeil, P.L.; Gehl, J. Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line. J. Membr. Biol. 2016, 249, 569–576. [Google Scholar] [CrossRef]
- Chen, B.; Le, W.; Wang, Y.; Li, Z.; Wang, D.; Ren, L.; Lin, L.; Cui, S.; Hu, J.J.; Hu, Y.; et al. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes. Theranostics 2016, 6, 1887–1898. [Google Scholar] [CrossRef] [PubMed]
- Khalil, C.; Chahine, J.B.; Chahla, B.; Hobeika, T.; Khnayzer, R.S. Characterization and Cytotoxicity Assessment of Nargile Smoke Using Dynamic Exposure. Inhal. Toxicol. 2019, 31, 343–356. [Google Scholar] [CrossRef]
- Ndhundhuma, I.M.; Abrahamse, H. Susceptibility of In Vitro Melanoma Skin Cancer to Photoactivated Hypericin versus Aluminium(III) Phthalocyanine Chloride Tetrasulphonate. Biomed. Res. Int. 2017, 2017, 5407012. [Google Scholar] [CrossRef]
- Higgins, N.P.; Vologodskii, A.V. Topological Behavior of Plasmid DNA. Microbiol. Spectr. 2015, 3, 105–131. [Google Scholar] [CrossRef]
- Hightower, R.C.; Metge, D.W.; Santi, D.V. Plasmid Migration Using Orthogonal-Field-Alternation Gel Electrophoresis. Nucleic Acids Res. 1987, 15, 8387–8398. [Google Scholar] [CrossRef] [PubMed]
- De Lima, A.P.; Pereira, F.d.C.; Vilanova-Costa, C.A.S.T.; Ribeiro, A.d.S.B.B.; Pavanin, L.A.; Dos Santos, W.B.; Silveira-Lacerda, E.d.P. The Ruthenium Complex Cis-(Dichloro)Tetrammineruthenium(III) Chloride Induces Apoptosis and Damages DNA in Murine Sarcoma 180 Cells. J. Biosci. 2010, 35, 371–378. [Google Scholar] [CrossRef] [PubMed]
- de Souza Oliveira, M.; de Santana, Á.A.D.; Correa, R.S.; Soares, M.B.P.; Batista, A.A.; Bezerra, D.P. Ru(II)-Thymine Complex Causes Cell Growth Inhibition and Induction of Caspase-Mediated Apoptosis in Human Promyelocytic Leukemia HL-60 Cells. Int. J. Mol. Sci. 2018, 19, 1609. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.R.; Corrêa, R.S.; Santos, L.d.S.; Soares, M.B.P.; Batista, A.A.; Bezerra, D.P. A Ruthenium-Based 5-Fluorouracil Complex with Enhanced Cytotoxicity and Apoptosis Induction Action in HCT116 Cells. Sci. Rep. 2018, 8, 288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, C.; Ye, H.; Yan, H.; Wang, X. Nanoscaled Carborane Ruthenium(II)-Arene Complex Inducing Lung Cancer Cells Apoptosis. J. Nanobiotechnol. 2011, 9, 6. [Google Scholar] [CrossRef]
- Azqueta, A.; Collins, A.R. The Essential Comet Assay: A Comprehensive Guide to Measuring DNA Damage and Repair. Arch. Toxicol. 2013, 87, 949–968. [Google Scholar] [CrossRef]
- Shah, A.J.; Lakkad, B.C.; Rao, M.V. Genotoxicity in Lead Treated Human Lymphocytes Evaluated by Micronucleus and Comet Assays. Indian J. Exp. Biol. 2016, 54, 502–508. [Google Scholar]
- Khalil, C.; Chahine, J.B.; Haykal, T.; Al Hageh, C.; Rizk, S.; Khnayzer, R.S. E-Cigarette Aerosol Induced Cytotoxicity, DNA Damages and Late Apoptosis in Dynamically Exposed A549 Cells. Chemosphere 2021, 263, 127874. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Yang, C. Evaluating In Vitro DNA Damage Using Comet Assay. J. Vis. Exp. 2017, 128, e56450. [Google Scholar] [CrossRef]
- Rogakou, E.P.; Nieves-Neira, W.; Boon, C.; Pommier, Y.; Bonner, W.M. Initiation of DNA Fragmentation during Apoptosis Induces Phosphorylation of H2AX Histone at Serine 139. J. Biol. Chem. 2000, 275, 9390–9395. [Google Scholar] [CrossRef]
- Mehanna, S.; Mansour, N.; Daher, C.F.; Elias, M.G.; Dagher, C.; Khnayzer, R.S. Drug-Free Phototherapy of Superficial Tumors: White Light at the End of the Tunnel. J. Photochem. Photobiol. B Biol. 2021, 224, 112324. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, S. Shifting the Light Activation of Metallodrugs to the Red and Near-Infrared Region in Anticancer Phototherapy. Comments Inorg. Chem. 2015, 35, 179–213. [Google Scholar] [CrossRef]
- National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 2011; ISBN 978-0-309-15400-0. [Google Scholar]
- Haykal, T.; Nasr, P.; Hodroj, M.H.; Taleb, R.I.; Sarkis, R.; Moujabber, M.N.E.; Rizk, S. Annona Cherimola Seed Extract Activates Extrinsic and Intrinsic Apoptotic Pathways in Leukemic Cells. Toxins 2019, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Shebaby, W.; Abdalla, E.K.; Saad, F.; Faour, W.H. Data on Isolating Mesenchymal Stromal Cells from Human Adipose Tissue Using a Collagenase-Free Method. Data Brief 2016, 6, 974–979. [Google Scholar] [CrossRef]
- Mehanna, S.; Bodman-Smith, K.; Daher, C.F.; Khnayzer, R.S. Rapid Quantification of Ruthenium(II) Polypyridyl Anti-Cancer Drugs Using a Selective Ligand Dissociation LC-MS/MS Method. Anal. Methods 2020, 12, 4517–4525. [Google Scholar] [CrossRef]
- Younes, M.; Ammoury, C.; Haykal, T.; Nasr, L.; Sarkis, R.; Rizk, S. The Selective Anti-Proliferative and pro-Apoptotic Effect of A. Cherimola on MDA-MB-231 Breast Cancer Cell Line. BMC Complement. Med. Ther. 2020, 20, 343. [Google Scholar] [CrossRef] [PubMed]
- Tannous, S.; Haykal, T.; Dhaini, J.; Hodroj, M.H.; Rizk, S. The Anti-Cancer Effect of Flaxseed Lignan Derivatives on Different Acute Myeloid Leukemia Cancer Cells. Biomed. Pharmacother. 2020, 132, 110884. [Google Scholar] [CrossRef]
- Al-Koussa, H.; Al-Haddad, M.; Abi-Habib, R.; El-Sibai, M. Human Recombinant Arginase I [HuArgI (Co)-PEG5000]-Induced Arginine Depletion Inhibits Colorectal Cancer Cell Migration and Invasion. Int. J. Mol. Sci. 2019, 20, 6018. [Google Scholar] [CrossRef]
- Khalil, C.; Shebaby, W. UVB Damage Onset and Progression 24 h Post Exposure in Human-Derived Skin Cells. Toxicol. Rep. 2017, 4, 441–449. [Google Scholar] [CrossRef]
- Al Hageh, C.; Al Assaad, M.; El Masri, Z.; Samaan, N.; El-Sibai, M.; Khalil, C.; Khnayzer, R.S. A Long-Lived Cuprous Bis-Phenanthroline Complex for the Photodynamic Therapy of Cancer. Dalton Trans. 2018, 47, 4959–4967. [Google Scholar] [CrossRef]
Conditions | Treatment | Findings |
---|---|---|
1 | Replace DMEM with special PBS buffer supplemented with KCl (2.7 mM) and add 3 µM of complex 1 (at 37 ℃) | No change → Uptake is not by passive nor facilitated diffusion |
2 | Replace DMEM with fresh DMEM and add 3 µM of complex 1 (at 4 or 37 °C) | Significant decrease at 37 °C → Uptake is possibly via an active (energy-dependent) mode of entry |
3 | Replace DMEM with fresh DMEM supplemented with 0.45 M sucrose and add 3 µM of complex 1 (at 37 °C) | Significant decrease → Uptake is via endocytosis |
IC50—Complex 1 | |||
---|---|---|---|
24 h | 48 h | 72 h | |
A549 | Dark: >100 a Light: 6.2 b ± 0.1 PI: >16 | Dark: >100 a Light: 4.0 c ± 0.1 PI: >25 | * Dark: >100 a Light: 2.6 c ± 1.7 PI: >39 |
MSCs | Dark: >100 Light: >100 |
Conditions | Live Cells | Early Apoptotic | Late Apoptotic | Necrotic Cells |
---|---|---|---|---|
Control Dark | 93.6 ± 1.2 | 2.2 ± 0.89 | 2.5 ± 1.3 | 1.8 ± 0.3 |
Treated in Dark | 92.7 ± 1.5 | 2.4 ± 1.7 | 2.4 ± 1.9 | 2.5 ± 0.36 |
Control Light | 94.2 ± 1.3 | 2.2 ± 1.6 | 2.5 ± 1.2 | 1.1 ± 1.7 |
Treated in Light | 10.8 ± 1.2 * | 62.5 ± 1.3 * | 21.3 ± 1.6 * | 5.5 ± 2.9 |
Etoposide, 40 μM | 20.5 ± 2.0 * | 34.4 ± 1.7 * | 40.8 ± 0.72 * | 4.4 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, N.; Mehanna, S.; Bodman-Smith, K.; Daher, C.F.; Khnayzer, R.S. A Ru(II)-Strained Complex with 2,9-Diphenyl-1,10-phenanthroline Ligand Induces Selective Photoactivatable Chemotherapeutic Activity on Human Alveolar Carcinoma Cells via Apoptosis. Pharmaceuticals 2024, 17, 50. https://doi.org/10.3390/ph17010050
Mansour N, Mehanna S, Bodman-Smith K, Daher CF, Khnayzer RS. A Ru(II)-Strained Complex with 2,9-Diphenyl-1,10-phenanthroline Ligand Induces Selective Photoactivatable Chemotherapeutic Activity on Human Alveolar Carcinoma Cells via Apoptosis. Pharmaceuticals. 2024; 17(1):50. https://doi.org/10.3390/ph17010050
Chicago/Turabian StyleMansour, Najwa, Stephanie Mehanna, Kikki Bodman-Smith, Costantine F. Daher, and Rony S. Khnayzer. 2024. "A Ru(II)-Strained Complex with 2,9-Diphenyl-1,10-phenanthroline Ligand Induces Selective Photoactivatable Chemotherapeutic Activity on Human Alveolar Carcinoma Cells via Apoptosis" Pharmaceuticals 17, no. 1: 50. https://doi.org/10.3390/ph17010050
APA StyleMansour, N., Mehanna, S., Bodman-Smith, K., Daher, C. F., & Khnayzer, R. S. (2024). A Ru(II)-Strained Complex with 2,9-Diphenyl-1,10-phenanthroline Ligand Induces Selective Photoactivatable Chemotherapeutic Activity on Human Alveolar Carcinoma Cells via Apoptosis. Pharmaceuticals, 17(1), 50. https://doi.org/10.3390/ph17010050