In Silico Screening of Multi-Domain Targeted Inhibitors for PTK6: A Strategy Integrating Drug Repurposing and Consensus Docking
Abstract
:1. Introduction
2. Results and Discussion
2.1. SH1 Domain Virtual Screening
2.2. SH2 Domain Virtual Screening
2.3. SH3 Domain Virtual Screening
2.4. Full Protein Docking
3. Materials and Methods
3.1. Potential Binding Sites of SH2 and SH3 Domains Using CavityPlus
3.2. Docking with FDA-Approved Drugs
3.3. Consensus Docking
3.4. Full Docking with MOE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brauer, P.M.; Tyner, A.L. Building A Better Understanding of the Intracellular Tyrosine Kinase PTK6-BRK by BRK. Biochim. Biophys. Acta 2010, 1806, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Emmadi, R.; Wang, Z.; Wiley, E.L.; Gann, P.H.; Khan, S.A.; Banerji, N.; McDonald, W.; Asztalos, S.; Pham, T.N.; et al. PTK6/BRK Is Expressed in the Normal Mammary Gland and Activated at the Plasma Membrane in Breast Tumors. Oncotarget 2014, 5, 6038–6048. [Google Scholar] [CrossRef] [PubMed]
- Ostrander, J.H.; Daniel, A.R.; Lange, C.A. Brk/PTK6 Signaling in Normal and Cancer Cell Models. Curr. Opin. Pharm. 2010, 10, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, Z.; Bie, W.; Brauer, P.M.; Perez White, B.E.; Li, J.; Nogueira, V.; Raychaudhuri, P.; Hay, N.; Tonetti, D.A.; et al. PTK6 Activation at the Membrane Regulates Epithelial-Mesenchymal Transition in Prostate Cancer. Cancer Res. 2013, 73, 5426–5437. [Google Scholar] [CrossRef] [PubMed]
- Aubele, M.; Vidojkovic, S.; Braselmann, H.; Ritterswürden, D.; Auer, G.; Atkinson, M.J.; Tapio, S.; Höfler, H.; Rauser, S.; Bartlett, J.M. Overexpression of PTK6 (Breast Tumor Kinase) Protein—A Prognostic Factor for Long-Term Breast Cancer Survival—Is not Due to Gene Amplification. Virchows Arch. Int. J. Pathol. 2009, 455, 117–123. [Google Scholar] [CrossRef]
- Alwanian, W.M.; Vlajic, K.; Bie, W.; Kajdacsy-Balla, A.; Tyner, A.L. Protein Tyrosine Kinase 6 Regulates Activation of SRC Kinase. J. Biol. Chem. 2022, 298, 102584. [Google Scholar] [CrossRef]
- Jerin, S.; Harvey, A.J.; Lewis, A. Therapeutic Potential of Protein Tyrosine Kinase 6 in Colorectal Cancer. Cancers 2023, 15, 3703. [Google Scholar] [CrossRef]
- Liu, C.; Pan, Z.; Chen, Q. Pharmacological Targeting PTK6 Inhibits the JAK2/STAT3 Sustained Stemness and Reverses Chemoresistance of Colorectal Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 297. [Google Scholar] [CrossRef]
- Park, S.H.; Ito, K.; Olcott, W.; Katsyv, I.; Halstead-Nussloch, G.; Irie, H.Y. PTK6 Inhibition Promotes Apoptosis of Lapatinib-Resistant Her2(+) Breast Cancer Cells by Inducing Bim. Breast Cancer Res. BCR 2015, 17, 86. [Google Scholar] [CrossRef]
- Qiu, L.; Levine, K.; Gajiwala, K.S.; Cronin, C.N.; Nagata, A.; Johnson, E.; Kraus, M.; Tatlock, J.; Kania, R.; Foley, T.; et al. Small Molecule Inhibitors Reveal PTK6 Kinase is not an Oncogenic Driver in Breast Cancers. PLoS ONE 2018, 13, e0198374. [Google Scholar] [CrossRef]
- Mathur, P.S.; Gierut, J.J.; Guzman, G.; Xie, H.; Xicola, R.M.; Llor, X.; Chastkofsky, M.I.; Perekatt, A.O.; Tyner, A.L. Kinase-Dependent and -Independent Roles for PTK6 in Colon Cancer. Mol. Cancer Res. MCR 2016, 14, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.I.; Lee, S.T. An Intramolecular Interaction Between SH2-Kinase Linker and Kinase Domain is Essential for the Catalytic Activity of Protein-Tyrosine Kinase-6. J. Biol. Chem. 2005, 280, 28973–28980. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.I.; Jung, J.; Lee, E.S.; Kim, Y.C.; Lee, W.; Lee, S.T. Molecular Dissection of the Interaction Between the SH3 Domain and the SH2-Kinase Linker Region in PTK6. Biochem. Biophys. Res. Commun. 2007, 362, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, A.R.; Kerkvliet, C.P.; Krutilina, R.I.; Playa, H.C.; Parke, D.N.; Thomas, W.A.; Smeester, B.A.; Moriarity, B.S.; Seagroves, T.N.; Lange, C.A. Breast Tumor Kinase (Brk/PTK6) Mediates Advanced Cancer Phenotypes via SH2-Domain Dependent Activation of RhoA and Aryl Hydrocarbon Receptor (AhR) Signaling. Mol. Cancer Res. MCR 2021, 19, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Miller, W.T. Role of the Brk SH3 Domain in Substrate Recognition. Oncogene 2004, 23, 2216–2223. [Google Scholar] [CrossRef] [PubMed]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug Repurposing: A Promising Tool to Accelerate the Drug Discovery Process. Drug Discov. Today 2019, 24, 2076–2085. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Fierro, A.; Dueñas-González, A. Drug Repurposing for Cancer Therapy, Easier Said Than Done. Semin. Cancer Biol. 2021, 68, 123–131. [Google Scholar] [CrossRef]
- Dos Santos Maia, M.; Soares Rodrigues, G.C.; Silva Cavalcanti, A.B.; Scotti, L.; Scotti, M.T. Consensus Analyses in Molecular Docking Studies Applied to Medicinal Chemistry. Mini-Rev. Med. Chem. 2020, 20, 1322–1340. [Google Scholar] [CrossRef]
- Houston, D.R.; Walkinshaw, M.D. Consensus Docking: Improving the Reliability of Docking in a Virtual Screening Context. J. Chem. Inf. Model. 2013, 53, 384–390. [Google Scholar] [CrossRef]
- Tsai, K.L.; Yang, L.W. DRDOCK: A Drug Repurposing Platform Integrating Automated Docking, Simulation and a Log-Odds-Based Drug Ranking Scheme. Available online: https://dyn.life.nthu.edu.tw/drdock/ (accessed on 24 November 2023).
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Rosignoli, S.; Paiardini, A. DockingPie: A Consensus Docking Plugin for PyMOL. Bioinformatics 2022, 38, 4233–4234. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE); 2022.02; Chemical Computing Group ULC: Montreal, QC, Canada, 2023.
- Hong, E.; Shin, J.; Kim, H.I.; Lee, S.T.; Lee, W. Solution Structure and Backbone Dynamics of the Non-Receptor Protein-Tyrosine Kinase-6 Src Homology 2 Domains. J. Biol. Chem. 2004, 279, 29700–29708. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, S.; Hu, Q.; Gao, S.; Ma, X.; Zhang, W.; Shen, Y.; Chen, F.; Lai, L.; Pei, J. CavityPlus: A Web Server for Protein Cavity Detection with Pharmacophore Modelling, Allosteric Site Identification and Covalent Ligand Binding Ability Prediction. Nucleic Acids Res. 2018, 46, W374–W379. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Ko, S. 2KGT: The Solution Structure of SH3 Domain of PTK6. Available online: https://www.rcsb.org/structure/2kgt (accessed on 24 November 2023).
- Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73-4506): A New Oral Multikinase Inhibitor of Angiogenic, Stromal and Oncogenic Receptor Tyrosine Kinases with Potent Preclinical Antitumor Activity. Int. J. Cancer 2011, 129, 245–255. [Google Scholar] [CrossRef]
- Plosker, G.L.; Faulds, D. Epirubicin. A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Use in Cancer Chemotherapy. Drugs 1993, 45, 788–856. [Google Scholar] [CrossRef]
- Montuschi, P. Role of Leukotrienes and Leukotriene Modifiers in Asthma. Pharmaceuticals 2010, 3, 1792–1811. [Google Scholar] [CrossRef]
- Lee, C. Daclatasvir: Potential Role in Hepatitis C. Drug Des. Devel. Ther. 2013, 7, 1223–1233. [Google Scholar] [CrossRef]
- Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment; Release 2017; Dassault Systèmes: San Diego, CA, USA, 2016. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in Docking Success Rates Due to Dataset Preparation. J. Comput. Aided Mol. Des. 2012, 26, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wong, M.W. Halogen Bonding in Haspin-Halogenated Tubercidin Complexes: Molecular Dynamics and Quantum Chemical Calculations. Molecules 2022, 27, 706. [Google Scholar] [CrossRef] [PubMed]
- Ang, H.L.; Yuan, Y.; Lai, X.N.; Tan, T.Z.; Wang, L.Z.; Huang, B.B.; Pandey, V.; Huang, R.Y.J.; Lobie, P.E.; Goh, B.C.; et al. Putting the BRK on Breast Cancer: From Molecular Target to Therapeutics. Theranostics 2021, 11, 1115–1128. [Google Scholar] [CrossRef]
Ligands | Interaction | Receptor Residues | Autodock Vina | DockingPie | MOE |
---|---|---|---|---|---|
Regorafenib | CH–π | Val24 | −9.74 | −8.81 | −7.85 |
HB | Met86 | ||||
Vx-661 | CH–π | Ser90 | −9.39 | −9.33 | −7.93 |
HB | Ser18, Thr83, Ser90 | ||||
Indacaterol | CH–π | Ser18 | −10.05 | −9.92 | −7.53 |
HB | Leu16, Thr83 | ||||
Vemurafenib | CH–π | Val24 | −9.07 | −9.46 | −7.39 |
HB | Ser90 | ||||
Camptothecin | CH–π | Val24 | −9.23 | −9.31 | −6.95 |
HB | Asp149 | ||||
10-hydroxy-camptothecin | CH–π | Val24 | −10.03 | −9.51 | −7.16 |
HB | Arg135, Asp149 | ||||
Niraparib | CH–π | Val24 | −9.62 | −9.13 | −7.21 |
HB | Glu84, Asn136 | ||||
Yohimbine | CH–π | Leu16 | −9.53 | −9.17 | −7.23 |
HB | Asn136, Asp149 | ||||
Meloxicam | CH–π | Val24, Ser90 | −9.59 | −8.76 | −7.11 |
HB | Glu84, Arg135, Asp149 |
Ligands | Interaction | Receptor Residues | Autodock Vina | DockingPie | MOE |
---|---|---|---|---|---|
Leucovorin | CH–π | Pro75 | −8.61 | −7.16 | −6.38 |
HB | Tyr40, Arg57, Asn79 | ||||
Lifitegrast | CH–π | Tyr40 | −9.81 | −8.63 | −6.53 |
HB | Leu74, Arg57, Asp39 | ||||
Lumacaftor | HB | Pro3, Val78 | −9.58 | −8.87 | −5.56 |
1370468-36-2 | CH–π | Pro75 | −8.96 | −9.15 | −7.38 |
HB | Leu74 | ||||
Zafirlukast | HB | Pro3, Glu2, Gly7 | −9.07 | −7.97 | −6.51 |
Fluralaner | Hyd Int 1 | −9.01 | −7.86 | −6.59 | |
Telmisartan | Hyd Int 1 | −8.89 | −8.79 | −6.28 | |
Nintedanib | CH–π | Phe5 | −8.41 | −8.21 | −6.82 |
HB | Pro75 | ||||
Azilsartan Medoxomil | HB | Ser73 | −8.54 | −7.24 | −6.37 |
Daclatasvir | HB | Pro75, Asn79 | −8.97 | −8.03 | −7.01 |
Aclacinomycin A | HB | Val50, Tyr53, Lys54 | −7.89 | −6.94 | −6.54 |
Epirubicin | HB | Lys54 | −7.86 | −7.03 | −5.95 |
Epirubicin | HB | Lys54 | −7.86 | −7.03 | −5.95 |
Doxorubicin | CH–π | Tyr53 | −8.09 | −6.85 | 5.46 |
HB | Lys54, Ser87 |
Ligands | Receptor Resides | MOE Score |
---|---|---|
Regorafenib | Glu69 | −6.67 |
Vemurafenib | Met01, Lys12 | −6.66 |
Vx-661 | Lys12 | −7.45 |
10-hydroxy-camptothecin | no interactions detected | −5.95 |
Yohimbine | Trp45 | −5.96 |
Aclacinomycin A | Met01, Lys12 | −8.62 |
Epirubicin | Met01, His08, Lys12 | −7.04 |
Zafirlukast | Met01, Gln06, Lys12, Thr72 | −7.08 |
Telmisartan | Met01, Lys12 | −7.27 |
Daclatasvir | Ser03, Pro11, Lys12, Arg70, Thr72 | −7.98 |
Ligands | SH1 Domain | SH2 Domain | SH3 Domain |
---|---|---|---|
Regorafenib | −7.33 | NA | −5.87 |
Epirubicin | −6.48 | NA | −5.96 |
Zafirlukast | NA | −6.42 | 5.91 |
Daclatasvir | −6.39 | −6.41 | −6.57 |
Vx-661 | −6.11 1 | ||
Vemurafenib | −5.98 1 | ||
Yohimbine | −5.15 1 | ||
Aclacinomycin A | −6.84 | NA | NA |
10-hydroxy-camptothecin | −6.51 | NA | NA |
Telmisartan | NA | NA | −6.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wong, M.W. In Silico Screening of Multi-Domain Targeted Inhibitors for PTK6: A Strategy Integrating Drug Repurposing and Consensus Docking. Pharmaceuticals 2024, 17, 60. https://doi.org/10.3390/ph17010060
Zhou Y, Wong MW. In Silico Screening of Multi-Domain Targeted Inhibitors for PTK6: A Strategy Integrating Drug Repurposing and Consensus Docking. Pharmaceuticals. 2024; 17(1):60. https://doi.org/10.3390/ph17010060
Chicago/Turabian StyleZhou, Yujing, and Ming Wah Wong. 2024. "In Silico Screening of Multi-Domain Targeted Inhibitors for PTK6: A Strategy Integrating Drug Repurposing and Consensus Docking" Pharmaceuticals 17, no. 1: 60. https://doi.org/10.3390/ph17010060
APA StyleZhou, Y., & Wong, M. W. (2024). In Silico Screening of Multi-Domain Targeted Inhibitors for PTK6: A Strategy Integrating Drug Repurposing and Consensus Docking. Pharmaceuticals, 17(1), 60. https://doi.org/10.3390/ph17010060