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Abstract: Protein tyrosine kinase 6 (PTK6), also known as breast tumor kinase (BRK), serves as a
non-receptor intracellular tyrosine kinase within the Src kinases family. Structurally resembling
other Src kinases, PTK6 possesses an Src homology 3 (SH3) domain, an Src homology 2 (SH2)
domain, and a tyrosine kinase domain (SH1). While considerable efforts have been dedicated to
designing PTK6 inhibitors targeting the SH1 domain, which is responsible for kinase activity in
various pathways, it has been observed that solely inhibiting the SH1 domain does not effectively
suppress PTK6 activity. Subsequent investigations have revealed the involvement of SH2 and SH3
domains in intramolecular and substrate binding interactions, which are crucial for PTK6 function.
Consequently, the identification of PTK6 inhibitors targeting not only the SH1 domain but also the
SH2 and SH3 domains becomes imperative. Through an in silico structural-based virtual screening
approach, incorporating drug repurposing and a consensus docking approach, we have successfully
identified four potential ligands capable of concurrently inhibiting the tyrosine kinase domain and
SH2/SH3 domains of PT6K simultaneously. This finding suggests potential pathways for therapeutic
interventions in PTK6 inhibition.

Keywords: PTK6; drug repurposing; consensus docking; structure based virtual screening; in
silico studies

1. Introduction

Protein tyrosine kinase 6 (PTK6), also known as breast tumor kinase (BRK) [1–3],
functions as an intracellular signal transducer in epithelial tissues [4]. BRK has been
detected in some low-level breast tumors, and cells with overexpressed BRK become
sensitive to epidermal growth factor, leading to a partially transformed phenotype [5].
As a member of the Src kinases family, PTK6 shares structural similarities with other
Src kinases, encompassing an Src homology 3 (SH3) domain, an Src homology 2 (SH2)
domain, and a tyrosine kinase domain (SH1) [6] (Figure 1). While considerable research
effort has focused on designing inhibitors for the SH1 domain due to its kinase activity
in various pathways [7–9], recent studies have indicated that PTK6 functions in a kinase-
independent manner and has complex, context-specific functions in some cancers [10,11].
Further investigations revealed that the SH2 domain binds to substrate phosphotyrosine
motifs and enhanced protein–protein recognition and interactions [12,13]. Additionally,
Trp44 in the SH3 domain and Pro177, Pro175, and Pro179 in the N-terminal half of the
Linker region play important roles in maintaining an inactive conformation of the protein
along with the phosphorylated Tyr447-SH2 interaction [13–15]. Both lines of evidence
suggest that solely inhibiting the SH1 domain is not sufficient to suppress the activity of
PTK6, and it is crucial to target SH2 and SH3 domains as well.
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Figure 1. Structure of full PTK6 protein, encompassing an Src homology 3 (SH3) domain, an Src 
homology 2 (SH2) domain, and a tyrosine kinase domain (SH1). 

In this computational study, we utilized an integrated strategy of drug repurposing 
and consensus docking to search for potential inhibitors for PTK6. Drug discovery and 
development in a traditional way includes several stages for the successful discovery of a 
new drug. Drug repurposing, also known as drug repositioning, is a state-of-the-art strat-
egy to reveal new therapeutic uses for identifying existing clinically used drugs with a 
substantial improvement of the development timeline. The advantages of the drug repur-
posing strategy are manifold. Firstly, as the formulation and preclinical safety for repur-
posed drugs have been tested and accomplished, this approach substantially reduces the 
time required for drug development. Secondly, there is a lower financial investment 
needed for drug development using the drug repurposing strategy. Preclinical and phase 
I and II costs are markedly reduced for a repurposed drug. Thirdly, and most importantly, 
the repurposed drug has been proved to be moderately safe in previous clinical trials, so 
the rate of failure due to safety concerns can be dramatically reduced. As a consequence, 
over the last few years, drug repurposing involves discovering new applications for exist-
ing drugs, and it has been shown to be a promising strategy for a more efficient and cost-
effective pathway to discover innovative treatments [16–18].  

Repurposing can be achieved by trial and error or a systematic approach. In this in-
vestigation, we employed a structure-based virtual screening strategy to introduce a more 
rational and systematic approach to drug repurposing. To this end, the 2016 FDA-ap-
proved drugs were used as a virtual library, screening against the three-dimensional 
structure of the PTK6 protein. Molecular docking, a process that involves the docking of 
ligands into the binding site of a particular receptor and using the binding pose and con-
formation to calculate binding affinities, was used to computationally “dock” ligands into 
the binding site of target protein. However, predicting the correct binding pose and cal-
culating the accurate binding affinities pose significant challenges. Incorrectly predicted 
binding poses and binding affinities can significantly impact the success rate of drug re-
purposing predictions. Various docking software tools have different placement methods 
to predict docking poses/conformations as well as different scoring functions to calculate 
binding affinities. Therefore, we embraced a consensus docking approach, involving com-
bining the results of multiple docking simulations. This approach aims to enhance the 
accuracy and reliability of predictions. This strategy is particularly relevant here given the 
current lack of known effective PTK6 inhibitors. Numerous studies highlight that the ac-
curacy of scoring depends on the precision of the docking process, emphasizing the im-
portance of considering the diverse docking placement methods and scoring functions 
employed by different docking methods rather than relying on a single scoring algorithm 

Figure 1. Structure of full PTK6 protein, encompassing an Src homology 3 (SH3) domain, an Src
homology 2 (SH2) domain, and a tyrosine kinase domain (SH1).

In this computational study, we utilized an integrated strategy of drug repurposing
and consensus docking to search for potential inhibitors for PTK6. Drug discovery and
development in a traditional way includes several stages for the successful discovery of
a new drug. Drug repurposing, also known as drug repositioning, is a state-of-the-art
strategy to reveal new therapeutic uses for identifying existing clinically used drugs with
a substantial improvement of the development timeline. The advantages of the drug
repurposing strategy are manifold. Firstly, as the formulation and preclinical safety for
repurposed drugs have been tested and accomplished, this approach substantially reduces
the time required for drug development. Secondly, there is a lower financial investment
needed for drug development using the drug repurposing strategy. Preclinical and phase I
and II costs are markedly reduced for a repurposed drug. Thirdly, and most importantly, the
repurposed drug has been proved to be moderately safe in previous clinical trials, so the rate
of failure due to safety concerns can be dramatically reduced. As a consequence, over the
last few years, drug repurposing involves discovering new applications for existing drugs,
and it has been shown to be a promising strategy for a more efficient and cost-effective
pathway to discover innovative treatments [16–18].

Repurposing can be achieved by trial and error or a systematic approach. In this
investigation, we employed a structure-based virtual screening strategy to introduce a
more rational and systematic approach to drug repurposing. To this end, the 2016 FDA-
approved drugs were used as a virtual library, screening against the three-dimensional
structure of the PTK6 protein. Molecular docking, a process that involves the docking
of ligands into the binding site of a particular receptor and using the binding pose and
conformation to calculate binding affinities, was used to computationally “dock” ligands
into the binding site of target protein. However, predicting the correct binding pose and
calculating the accurate binding affinities pose significant challenges. Incorrectly predicted
binding poses and binding affinities can significantly impact the success rate of drug
repurposing predictions. Various docking software tools have different placement methods
to predict docking poses/conformations as well as different scoring functions to calculate
binding affinities. Therefore, we embraced a consensus docking approach, involving
combining the results of multiple docking simulations. This approach aims to enhance
the accuracy and reliability of predictions. This strategy is particularly relevant here given
the current lack of known effective PTK6 inhibitors. Numerous studies highlight that the
accuracy of scoring depends on the precision of the docking process, emphasizing the
importance of considering the diverse docking placement methods and scoring functions
employed by different docking methods rather than relying on a single scoring algorithm
alone [19,20]. Hence, we adopted a consensus docking approach in our structure-based
virtual study.
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In our investigation, we implemented a drug repurposing strategy with the aim to
identify potential leads capable of targeting multiple domains of the PTK6 protein, specif-
ically SH1, SH2, and SH3. The methodology we employed involved a virtual screening
process that hinged on the intricate details of the protein structure of PTK6, utilizing a
consensus docking approach to improve the accuracy of prediction. Our in silico study
successfully identified four potential ligands exhibiting inhibitory capabilities toward the
SH1 domain and SH2/SH3 domains simultaneously, suggesting a promising therapeutic
approach to inhibit the kinase activities of PTK6.

2. Results and Discussion
2.1. SH1 Domain Virtual Screening

A total of 100 top-ranked ligands from DRDOCK drug repurposing [21] were docked
into the PTK6 SH1 domain [6] using Autodock Vina [22,23], DockingPie [24] and MOE [25].
Out of 100 ligands, 20 ligands with the best scores were selected from each docking software.
By comparing the top 20 ligands from each set, nine consensus ligands were identified to
be top-ranked for all sets, namely Regorafenib, Vx-661, Indacaterol, Vemurafenib, Camp-
tothecin, 10-hydroxycamptothecin, Niraparib, Yohimbine, and Meloxicam, with docking
scores ranging from −9.07 to −10.05 kcal/mol (Table 1). The PTK6 in crystal structure 6CZ3
bound to the ligand (3-fluoro-4-{[6-methyl-3-(1H-pyrazol-4-yl)imidazo [1,2-a]pyrazin-8-
yl]amino}phenyl)(morpholin-4-yl)methanone with key residues Leu16, Met86 and Asp149.
All nine ligands were identified to bind to the SH1 domain at the same site through CH–π
and hydrogen bonding (HB) interactions. The original ligand in 6CZ3 binds to the PTK6
receptor at Leu16, Met86, Arg135 and Asp149. Our identified ligands bind to the PTK6
receptor with the same amino acid residues with additional interactions detected involving
Ser18, Val24, Thr83, Glu84, Ser90 and Asn136. Figure 2 illustrates the binding of the ligand
Meloxicam to the SH1 domain via CH–π interactions with residues Val24 and Ser90 as well
as hydrogen bond (HB) interactions with residues Glu84, Arg135 and Asp149.
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Ligands Interaction Receptor Residues Autodock Vina DockingPie MOE 

Regorafenib 
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−9.74 −8.81 −7.85 
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Figure 2. Structure of ligand Meloxicam docked to PTK6 kinase SH1 domain in MOE, showing CH–π
interactions with Val24 and Ser90, and HB interactions with Glu84, Arg135 and Asp149.

The highest ranked ligand Indacaterol binds to the PTK6 SH1 domain at amino acid
residues Ser18, Leu16 and Thr83 via CH–π and hydrogen bonding interactions with a bind-
ing affinity of −10.05 kcal/mol. The second-ranked ligand 10-hydroxycamptothecin binds
to the receptor at amino acid residues Val24, Arg135 and Asp149 via CH–π and hydrogen
bonding interactions with a binding affinity of −10.03 kcal/mol. As for the third-ranked
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ligand Regorafenib, it binds to the PTK6 SH1 domain at Val24 and Met86 via similarly
CH–π and hydrogen bonding interactions with −9.74 kcal/mol in binding affinity.

Table 1. Consensus ligands bind to SH1 domain, interactions with receptor residues and correspond-
ing docking scores (kcal/mol).

Ligands Interaction Receptor Residues Autodock Vina DockingPie MOE

Regorafenib
CH–π Val24

−9.74 −8.81 −7.85
HB Met86

Vx-661
CH–π Ser90

−9.39 −9.33 −7.93
HB Ser18, Thr83, Ser90

Indacaterol
CH–π Ser18

−10.05 −9.92 −7.53
HB Leu16, Thr83

Vemurafenib
CH–π Val24

−9.07 −9.46 −7.39
HB Ser90

Camptothecin
CH–π Val24

−9.23 −9.31 −6.95
HB Asp149

10-hydroxy-camptothecin
CH–π Val24

−10.03 −9.51 −7.16
HB Arg135, Asp149

Niraparib
CH–π Val24

−9.62 −9.13 −7.21
HB Glu84, Asn136

Yohimbine
CH–π Leu16

−9.53 −9.17 −7.23
HB Asn136, Asp149

Meloxicam
CH–π Val24, Ser90

−9.59 −8.76 −7.11
HB Glu84, Arg135, Asp149

2.2. SH2 Domain Virtual Screening

For the SH2 domain [26], since the binding site is not well defined in the literature,
web-based server CavityPlus [27] was utilized to detect the binding site. Based on cavity
information from CavityPlus, residues 74–78 were selected as the target site for drug re-
purposing using DRDOCK. The top-ranked 100 ligands from DRDOCK were docked into
the PTK6 SH2 domain using Autodock Vina, DockingPie and MOE. Out of 100 ligands,
20 ligands with the best score were selected for each docking software. By comparing
the top 20 ligands, 13 consensus ligands were found to be top ranked for all sets, namely
Leucovorin, Lifitegrast, Lumacaftor, 1370468-36-2, Zafirlukast, Fluralaner, Telmisartan,
Nintedanib, Azilsartan Medoxomil, Daclatasvir, Aclacinomycin A, Epirubicin, and Doxoru-
bicin, with docking scores ranging from −7.86 to −9.81 kcal/mol (Table 2).

Among the 13 ligands, two ligands Fluralaner and Telmisartan bound to the PTK6
SH2 domain via hydrophobic interactions, while the rest of the ligands were identified to
bind to the SH2 domain via CH–π and hydrogen bonding (HB) interactions. Key amino
acid residues from the receptor—Pro03, Tyr40, Val50, Tyr53, Lys54, Arg5, Leu74, Pro75, and
Asn79—were identified as contributing to the binding of ligands into the PTK6 SH2 domain.
Figure 3 illustrated ligand Daclatasvir binding to the SH2 domain via HB interactions with
residues Pro75 and Asn79.
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Table 2. Consensus ligands bind to SH2 domain, detailing their interactions with receptor residues
and corresponding docking scores (kcal/mol).

Ligands Interaction Receptor Residues Autodock Vina DockingPie MOE

Leucovorin
CH–π Pro75

−8.61 −7.16 −6.38
HB Tyr40, Arg57, Asn79

Lifitegrast
CH–π Tyr40

−9.81 −8.63 −6.53
HB Leu74, Arg57, Asp39

Lumacaftor HB Pro3, Val78 −9.58 −8.87 −5.56

1370468-36-2
CH–π Pro75

−8.96 −9.15 −7.38
HB Leu74

Zafirlukast HB Pro3, Glu2, Gly7 −9.07 −7.97 −6.51

Fluralaner Hyd Int 1 −9.01 −7.86 −6.59

Telmisartan Hyd Int 1 −8.89 −8.79 −6.28

Nintedanib
CH–π Phe5

−8.41 −8.21 −6.82
HB Pro75

Azilsartan
Medoxomil HB Ser73 −8.54 −7.24 −6.37

Daclatasvir HB Pro75, Asn79 −8.97 −8.03 −7.01

Aclacinomycin A HB Val50, Tyr53, Lys54 −7.89 −6.94 −6.54

Epirubicin HB Lys54 −7.86 −7.03 −5.95

Epirubicin HB Lys54 −7.86 −7.03 −5.95

Doxorubicin
CH–π Tyr53

−8.09 −6.85 5.46
HB Lys54, Ser87

1 hydrophobic interaction.
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Figure 3. Structure of lead ligand Daclatasvir bound to PTK6 kinase SH2 domain in MOE, showing
HB interactions with Pro75 and Asn79.

The top-ranked ligand Lifitegrast binds to the PTK6 SH2 domain through CH–π and
hydrogen bonding interactions at amino acid residues Tyr40, Leu74, Arg57 and Asp39, with
a binding affinity of −9.81 kcal/mol. In contrast, the second-ranked ligand Lumacaftor,
with a binding affinity of −9.58 kcal/mol, lacks the CH–π interaction, but it binds to the
receptor at amino acid residues Pro3 and Val78 via hydrogen bonding interactions. The
third-ranked ligand, Zafirlukast, binds to the PTK6 SH2 domain at Pro3, Glu2 and Gly7
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via hydrogen bonding interactions with −9.74 kcal/mol in binding affinity. Similar to
Lumacaftor, Zafirlukast also lacks the CH–π interaction.

2.3. SH3 Domain Virtual Screening

Concerning the SH3 domain [28], given the lack of well-defined binding sites in the
literature, web-based server CavityPlus was utilized to identify potential binding sites.
However, all three detected binding cavities exhibited weak drug score and druggability.
Since there are no common ligands that bind with both the SH1 and SH2 domains, the
100 top-ranked ligands with the SH3 domain from DRDOCK were compared with consen-
sus ligands from the SH1 and SH2 domains, respectively. Five ligands were identified to
bind to both the SH1 and SH3 domains, namely Regorafenib, Vemurafenib, Vx-661, 10-
hydroxycamptothecin, and Yohimbine (Figure 4). Additionally, five ligands were found to
bind to both the SH2 and SH3 domains, namely Aclacinomycin A, Epirubicin, Zafirlukast,
Telmisartan, and Daclatasvir (Figure 4). The docking scores of these 10 ligands with the
SH3 domain calculated using MOE are listed in Table 3. In Figure 5, the illustration depicts
the binding of the ligand Zafirlukast to the PTK6 kinase SH3 domain via CH–π interactions
with Lys12 and Thr72, and HB interactions with Met01 and Gln06.
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Figure 4. The top 10 ligands identified through consensus docking.

Table 3. Ligands bind to the SH3 domain, detailing their interactions with receptor residues and
corresponding docking scores (kcal/mol).

Ligands Receptor Resides MOE Score

Regorafenib Glu69 −6.67
Vemurafenib Met01, Lys12 −6.66
Vx-661 Lys12 −7.45
10-hydroxy-camptothecin no interactions detected −5.95
Yohimbine Trp45 −5.96
Aclacinomycin A Met01, Lys12 −8.62
Epirubicin Met01, His08, Lys12 −7.04
Zafirlukast Met01, Gln06, Lys12, Thr72 −7.08
Telmisartan Met01, Lys12 −7.27
Daclatasvir Ser03, Pro11, Lys12, Arg70, Thr72 −7.98

The highest-ranked ligand Aclacinomycin A has a binding affinity of −8.62 kcal/mol.
However, it binds to only two amino acid residues at the SH3 domain. The second-ranked
ligand Daclatasvir, with a binding affinity of −7.98 kcal/mol, binds to the PTK6 SH3
domain with the most amino acid residues compared to other ligands. Ser03, Pro11, Lys12,
Arg70 and Thr72 collectively contribute to the overall binding score. Epirubicin, Zafirlukast
and Telmisartan, with binding affinities of −7.04 kcal/mol, −7.02 kcal/mol and T he
location of Figure 6 is fine −7.27 kcal/mol, respectively, bind to the PTK6 SH3 domain with
amino acid residues Met01, Gln06, His08, Lys12 and Thr72.
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The highest-ranked ligand Aclacinomycin A has a binding affinity of −8.62 kcal/mol. 
However, it binds to only two amino acid residues at the SH3 domain. The second-ranked 
ligand Daclatasvir, with a binding affinity of −7.98 kcal/mol, binds to the PTK6 SH3 do-
main with the most amino acid residues compared to other ligands. Ser03, Pro11, Lys12, 
Arg70 and Thr72 collectively contribute to the overall binding score. Epirubicin, 

Figure 5. Ligand Zafirlukast bound to the PTK6 kinase SH3 domain in MOE, showing CH–π
interactions with Lys12 and Thr72 as well as HB interactions with Met01 and Gln06.

2.4. Full Protein Docking

Finally, molecular docking with the full PTK6 protein using MOE was performed
for the top 10 lead ligands (Figure 4) to validate their binding preferences across multiple
domains. The top-ranked 15 poses were analyzed for each ligand. The binding scores
and domains of the 10 ligands are listed in Table 4. Epirubicin (Figure 6A) and Rego-
rafenib (Figure 6B) demonstrated binding to the SH1 and SH3 domains, while Zafirlukast
(Figure 6C) exhibited binding to the SH2 and SH3 domains. Intriguingly, Declatasvir
(Figure 6D) displayed binding to all three domains with similar binding scores. These four
ligands capable of binding to multiple domains exhibited the best binding scores. On the
other hand, VX-611, Vemurafenib, and Yohimbine showed binding at the center of the
protein with moderate binding scores only, indicating a lesser preference toward the full
protein. Aclacinomycin A and 10-hydroxycamptothecin, despite high binding scores for
full protein binding, tend to bind solely to the SH1 domain only, which is contrary to our
goal to target multiple domains. Telmisartan bound exclusively to SH3, yielding a less
favorable binding score.
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Table 4. MOE binding scores (kcal/mol) of lead ligands bind to multiple domains of PTK6.

Ligands SH1 Domain SH2 Domain SH3 Domain

Regorafenib −7.33 NA −5.87
Epirubicin −6.48 NA −5.96
Zafirlukast NA −6.42 5.91
Daclatasvir −6.39 −6.41 −6.57
Vx-661 −6.11 1

Vemurafenib −5.98 1

Yohimbine −5.15 1

Aclacinomycin A −6.84 NA NA
10-hydroxy-camptothecin −6.51 NA NA
Telmisartan NA NA −6.05

1 Bind at the center of protein.

In summary, four ligands exhibited a preference for binding to multiple domains with
favorable scores (Table 4). Specifically, Epirubicin and Regorafenib bind to the SH1 and SH3
domains with binding scores of −6.48 kcal/mol and –7.33 kcal/mol, respectively. Zafir-
lukast shows affinity to the SH2 and SH3 domains, with a binding score −6.42 kcal/mol,
while Declatasvir binds to all three domains with a binding score of −6.57 kcal/mol.
These results indicate a successful prediction of multi-domain targeted inhibitors for PTK6,
employing an integrated approach that combines drug repurposing and structure-based
virtual screening through consensus docking methods.

Regorafenib functions as an orally administered inhibitor of multiple kinases, demon-
strating anti-angiogenic activity through its dual-targeted VEGFR2-TIE2 tyrosine kinase
inhibition. This drug is employed in the treatment of metastatic colorectal cancer, advanced
gastrointestinal stromal tumors, and hepatocellular carcinoma [29]. Epirubicin, an anthra-
cycline topoisomerase II inhibitor, exerts its antitumor effects by disrupting the synthesis
and function of DNA. It serves as an adjuvant in treating axillary node metastases for
patients who have undergone surgical resection of primary breast cancer [30]. Zafirlukast,
classified as an oral leukotriene receptor antagonist (LTRA), blocks the action of cysteinyl
leukotrienes on the CysLT1 receptors. This drug is utilized for the maintenance treatment
of asthma [31]. Daclatasvir, a direct-acting antiviral agent against Hepatitis C Virus (HCV),
targets both cis- and trans-acting functions of NS5A. By modulating the NS5A phospho-
rylation status, it disrupts the function of new HCV replication complexes. Daclatasvir is
prescribed for the treatment of chronic HCV genotype 1 and 3 infections [32].

As a member of the Src kinase family, the non-receptor intracellular tyrosine kinase
Protein tyrosine kinase 6 (PTK6) comprises an Src homology 3 (SH3) domain, an Src
homology 2 (SH2) domain, and a tyrosine kinase domain (SH1). It is observed that by
solely blocking PTK6 phosphorylation and make it catalytically inactive, leaving the SH2
and SH3 domains free to interact with other substrates, breast cancer cells are still able to
proliferate. While considerable efforts have been dedicated to designing PTK6 inhibitors
targeting the SH1 domain, which is responsible for kinase activity in various pathways, it
has been observed that solely inhibiting the SH1 domain does not effectively suppress PTK6
activity. Further investigations have revealed the involvement of SH2 and SH3 domains
in intramolecular and substrate binding interactions, which play an essential role in the
functionality of PTK6. Free SH2 and SH3 domains may still potentially promote cancer cells’
proliferation. Consequently, it becomes imperative to identify PTK6 inhibitors that not
only target the SH1 domain but also effectively interact with the SH2 and SH3 domains to
comprehensively inhibit PTK6 activity. This holistic approach is crucial for developing more
effective strategies to curb the proliferative potential of cancer cells associated with aberrant
PTK6 function. The four ligands identified here show promise as potential candidates for
such multi-domain targeted inhibitors.



Pharmaceuticals 2024, 17, 60 9 of 12

3. Materials and Methods
3.1. Potential Binding Sites of SH2 and SH3 Domains Using CavityPlus

Unlike the tyrosine kinase domain SH1, the PTK6 SH2 and SH3 domains lack informa-
tion regarding ligand binding and cavities. Before engaging in ligand docking, we used
a web-based server named CavityPlus [27] to identify potential binding cavities for SH2
and SH3 domains. PDB structures of SH2 (1RJA) [26] and SH3 (2KGT) [28] were uploaded
to the CavityPlus web server: chain A was selected, the ligand-free mode was implicated,
and other parameters served as the default. In the case of the SH2 domain, four cavities
were detected and ranked using drug score and druggability. The top-ranked cavity #1 was
chosen for subsequent docking steps. Similarly, for the SH3 domain, three cavities were
detected with ranked based on drug score and druggability with the top-ranked cavity #1
chosen for the next stage of docking.

3.2. Docking with FDA-Approved Drugs

DRDOCK is a web-based server designed for the virtual screening of 2016 FDA-
approved drugs on the user-submitted protein target [21]. It is worth noting that the per-
formance assessment of DRDOCK revealed that the true binders are within the top-ranked
100 examined drugs [21]. The 2016 FDA-approved drugs were sourced and consolidated
from the MedChemExpress (MCE) FDA-Approved Drug Library (Cat. No.: HY-L022)
and Enzo Life Sciences, Inc. (Farmingdale, NY, USA) Screen-Well® FDA Approved Drug
Library (Version 1.5). There are a total of 2016 small molecule drugs encompassed within
this library. These small molecule drugs were represented with structures created using
BIOVIA Discovery Studio [33], considering the protonation states of ionizable groups at
pH = 7. The input PDBQT files for drug docking were generated using AutoDock Tools [34].
In the case of SH1, PDB file 6CZ3 [10] was submitted with chain A selected for docking.
Residues 85–91 were selected as the target site. For SH2, PDB file 1RJA was submitted with
chain A selected for docking. Residues 74–78, which were detected from CavityPlus, were
selected as the target site. Similarly, for SH3, PDB file 2KGT was submitted, with chain
A selected for docking, and residues 36–40, which were detected from CavityPlus, were
selected as the target site. Docking results for each domain were ranked with novel drug
ranking method log-odds (LOD) scores combining feature distributions of true binders
and decoys, including terms of docking affinity, contact number, distance to target site,
cluster size and number of clusters. The top 100 ranked drugs were subsequently chosen
for further consensus docking analysis.

3.3. Consensus Docking

The top-ranked 100 ligands from DRDOCK for SH1 and SH2 domains were selected for
consensus docking using three different docking methods, namely Autodock Vina [22,23],
DockingPie [24] and Molecular Operating Environment (MOE) [25]. For Autodock Vina,
Autodock Tools 1.5.4 [34] were utilized for ligands and receptor preparation. Water
molecules and other heteroatoms were removed, protonated hydrogen atoms and Gasteiger
charges were assigned to atoms, and the grid box size was set to be 60 Å. PDBQT files of
ligand structures were generated using OpenBabel 2.3.0 [35]. For Autodock Vina and Dock-
ingPie, the same prepared files were used for five runs of repeated docking with 10 poses
each. For docking with MOE, a library of the top-ranked 100 ligands from DRDOCK were
generated. Docking with the library with the Triangle Matcher placement method and
rescoring was conducted with GBVI/WSA dG [36,37] scoring function to predict poses and
scores. Docking results for each method were plotted, and the top 20 ligands from each
set were compared. After the comparison, 10 consensus ligands were identified for the
SH1 domain and 13 were identified for the for SH2 domain. In the case of the SH3 domain,
the top 100 ligands from DRDOCK were used to compare with the ligands set from the
SH1/SH2 domains, and the 10 lead ligands were identified that bind multiple domains.
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3.4. Full Docking with MOE

Finally, the 10 lead ligands identified from consensus docking were docked into the
complete PTK6 protein to check their binding conformations. Given the absence of an
established crystallized structure for the entire PTK6 protein, we sourced the structure
from the Alphafold Protein Structure Database, specifically from UniProt Q13882. Triangle
matcher was selected as the placement method and the GBVI/WSA dG rescoring function
was chosen to predict the binding score. The top 15 poses for each ligand were checked for
binding-domain preference. Ligand–receptor interaction analysis was conducted using the
MOE user–graphical interface.

4. Conclusions

A collection of 2016 FDA-approved drugs were screened virtually through consen-
sus docking to identify potential lead ligands. This strategy capitalizes on the wealth of
existing pharmacokinetics, pharmacodynamics, and safety data from human trials for
FDA-approved drugs, streamlining the drug discovery process, saving time and reducing
complexity. The top-ranking ligands from the structure-based virtual screening were further
refined using a consensus docking approach that incorporated Autodock Vina, Docking-
Pie, and MOE docking methods. The final selection was based on ranks obtained from
individual docking programs. This integrated approach led us to identify 10 repurposed
FDA-approved drugs which have promising binding affinity toward the PTK6 protein.
After thorough full protein docking validation, four drugs, namely Epirubicin, Regorafenib,
Zafirlukast, and Declatasvir, were identified for their remarkable ability to simultaneously
bind to multiple domains of the PTK6 protein. We believe this discovery opens up potential
new avenues for therapeutic interventions in PTK6 inhibition [38]. These findings not only
underscore the potential efficacy of repurposing existing drugs for novel therapeutic appli-
cations but also contribute to the advancement of targeted interventions for PTK6-related
conditions. The identification of multiple ligands capable of concurrently targeting distinct
domains of PTK6 not only paves the way for further experimental validation but also holds
promise for the development of more effective treatments specifically targeting this kinase.
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