Synthesis, Absolute Configuration, Biological Profile and Antiproliferative Activity of New 3,5-Disubstituted Hydantoins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Separation of Syn- and Anti-(±)-3,5-Disubstituted Hydantoins 5a–i
2.2. NMR Analysis of Syn- and Anti-5a
2.3. ECD and VCD Analysis and Absolute Configuration Determination of Syn-5a and Anti-5a Allyl Hydantoin
2.4. Antiproliferative Activity of Syn- and Anti-5a–i
2.5. In Silico Physicochemical and Biological Profiling of Syn/Anti-5a–i
3. Materials and Methods
3.1. Chemistry
3.1.1. General
3.1.2. Synthesis of (4-Fluorophenyl)[(4-methoxyphenyl)methylene]amine (1)
3.1.3. Cis/trans-(±)-1-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidin-3-yl-isoindoline-1,3 dione (2)
Cis-2
Trans-2
3.1.4. Trans-3-amino-1-(4-fluorophenyl)-4-(4-methoxyphenyl)-2-azetidinone (3)
3.1.5. General Procedure for the Preparation of (±)-trans-β-lactam Ureas 4a–i
Allyl-3-[(±)-trans-1-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidin-3-yl]urea (4a)
1-Hexyl-3-[(±)-trans-1-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidin-3-yl]urea (4b)
1-Cyclopentyl-3-[(±)-trans-1-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidin 3-yl]urea (4c)
1-[(±)-Trans-1-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidin-3-yl)-3-(furan-2 ylmethyl]urea (4d)
1-Benzyl-3-[(±)-trans-1-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidin-3-yl]urea (4e)
1-(4-(Tert-Butyl)phenyl)-3-[(±)-trans-1-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidin-3-yl]urea (4f)
1-(3-Chloro-4-methylphenyl)-3-[(±)-trans-1-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidin-3-yl]urea (4g)
1-(3,5-Dimethylphenyl)-3-[(±)-trans-1-(4 fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidin 3-yl]urea (4h)
1-(2,6-Dimethylphenyl)-3-[(±)-trans-1-(4-fluorophenyl)-2-(4-methoxyphenyl)-4-oxoazetidin 3-yl]urea (4i)
3.1.6. General Procedure for the Preparation of Syn/anti-(±)-3,5-disubstituted Hydantoins 5a–i
Syn/anti-3-allyl-5-{[(4-fluorophenyl)amino](4-methoxyphenyl)methyl}-imidazolidine-2,4-dione (5a)
Syn/anti-{[(4-fluorophenyl)amino](4-methoxyphenyl)methyl}-3-hexylimidazolidine-2,4-dione (5b)
Syn/anti-3-cyclopentyl-5-[[(4-fluorophenyl)amino](4-methoxyphenyl)methyl}-imidazolidine-2,4-dione (5c)
Syn/anti-5-{[(4-fluorophenyl)amino](4-methoxyphenyl)methyl)-3-(furan-2 ylmethyl}imidazolidine-2,4-dione (5d)
Syn/anti-3-benzyl-5-{[(4-fluorophenyl)amino](4-methoxyphenyl)methyl}imidazolidine-2,4-dione (5e)
Syn/anti-3-[4-(tert-butyl)phenyl]-5-{[(4-fluorophenyl)amino](4-methoxyphenyl)methyl}imidazoli-dine-2,4-dione (5f)
Syn/anti-3-(3-chloro-4-methylphenyl)-5{[(4-fluorophenyl)amino](4-methoxyphenyl)methyl}imidazolidine-2,4-dione (5g)
Syn/anti-3-(3,5-dimethylphenyl)-5-{[(4-fluorophenyl)amino](4-methoxyphenyl)methyl}imidazolidine-2,4-dione (5h)
Syn/anti-3-(2,6-Dimethylphenyl)-5-{[(4-fluorophenyl)amino](4-methoxyphenyl)methyl}imidazolidine-2,4-dione (5i)
3.1.7. Computational Section
3.1.8. Antiproliferative Activity of Syn/anti-(±)-3,5 Disubstituted Hydantoins 5a–i
3.1.9. In Silico Drug-Likeness and Biological Profiling of 3,5-Disubstituted Hydantoins 5a–i
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dapporto, P.; Paoli, P.; Rossi, P.; Altamura, M.; Perrotta, E.; Nannicini, R. Structural characterisation of a tetrasubstituted hydantoin by experimental and theoretical approaches: X-ray and ab initio studies. J. Mol. Struct. THEOCHEM 2000, 532, 195–204. [Google Scholar] [CrossRef]
- Šmit, B.M.; Pavlović, R.Z. Three-step synthetic pathway to fused bicyclic hydantoins involving a selenocyclization step. Tetrahedron 2015, 71, 1101–1108. [Google Scholar] [CrossRef]
- Akpan, E.D.; Dagdag, O.; Ebenso, E.E. Progress on the coordination chemistry and application of hydantoins and its derivatives as anticorrosive materials for steel: A review. Coord. Chem. Rev. 2023, 489, 215207. [Google Scholar] [CrossRef]
- Gawas, P.P.; Ramakrishna, B.; Veeraiah, N.; Nutalapati, V. Multifunctional hydantoins: Recent advances in optoelectronics and medicinal drugs from Academia to the chemical industry. J. Mater. Chem. C 2021, 9, 16341–16377. [Google Scholar] [CrossRef]
- Velázquez-Macías, R.F.; Aguilar-Patiño, S.; Cortez-Betancourt, R.; Rojas-Esquivel, I.; Fonseca-Reyes, G.; Contreras-González, N. Evaluation of efficacy of buserelin plus nilutamide in Mexican Male patients with advanced prostate cancer. Rev. Mex. Urol. 2016, 76, 346–351. [Google Scholar] [CrossRef]
- Ito, Y.; Sadar, M.D. Enzalutamide and blocking androgen receptor in advanced prostate cancer: Lessons learnt from the history of drug development of antiandrogens. Res. Rep. Urol. 2018, 10, 23–32. [Google Scholar] [CrossRef]
- Anderson, J. The role of antiandrogen monotherapy in the treatment of prostate cancer. BJU Int. 2003, 91, 455–461. [Google Scholar] [CrossRef]
- Kassouf, W.; Tanguay, S.; Aprikian, A.G. Nilutamide as Second Line Hormone Therapy for Prostate Cancer After Androgen Ablation Fails. J. Urol. 2003, 169, 1742–1744. [Google Scholar] [CrossRef]
- Krause, T.; Gerbershagen, M.U.; Fiege, M.; Weißhorn, R.; Wappler, F. Dantrolene—A review of its pharmacology, therapeutic use and new developments. Anaesthesia 2004, 59, 364–373. [Google Scholar] [CrossRef]
- Konnert, L.; Lamaty, F.; Martinez, J.; Colacino, E. Recent Advances in the synthesis of hydantoins: The state of the art of a valuable scaffold. Chem. Rev. 2017, 117, 13757–13809. [Google Scholar] [CrossRef]
- Ostrowski, J.; Kuhns, J.E.; Lupisella, J.A.; Manfredi, M.C.; Beehler, B.C.; Krystek, S.R.; Bi, Y.; Sun, C.; Seethala, R.; Golla, R.; et al. Pharmacological and X-Ray structural characterization of a novel selective androgen receptor modulator: Potent hyperanabolic stimulation of skeletal muscle with hypostimulation of prostate in rats. Endocrinol. 2007, 148, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.M.; El-Sayed, W.A.; Eid, S.A.; Abdelwahed, N.A.M. Antimicrobial activity of new synthesized [(oxadiazolyl)methyl]phenytoin derivatives. Acta Pol. Pharm.-Crug Res. 2012, 69, 657–667. [Google Scholar]
- Oliveira, S.M.D.; Silva, J.B.P.D.; Hernandes, M.Z.; Lima, M.D.C.A.D.; Galdino, S.L.; Pitta, I.D.R. Estrutura, reatividade e propriedades biológicas de hidantoínas. Quím. Nova 2008, 31, 614–622. [Google Scholar] [CrossRef]
- Rajic, Z.; Zorc, B.; Raic-Malic, S.; Ester, K.; Kralj, M.; Pavelic, K.; Balzarini, J.; De Clercq, E.; Mintas, M. Hydantoin derivatives of L- and D-amino acids: Synthesis and evaluation of their antiviral and antitumoral activity. Molecules 2006, 11, 837–848. [Google Scholar] [CrossRef]
- Kim, D.; Wang, L.; Caldwell, C.G.; Chen, P.; Finke, P.E.; Oates, B.; MacCoss, M.; Mills, S.G.; Malkowitz, L.; Gould, S.L.; et al. Discovery of human CCR5 antagonists containing hydantoins for the treatment of HIV-1 infection. Bioorg. Med. Chem. Lett. 2001, 11, 3099–3102. [Google Scholar] [CrossRef]
- Verlinden, Y.; Cuconati, A.; Wimmer, E.; Rombaut, E.B. The antiviral compound 5-(3,4 dichlorophenyl) methylhydantoin inhibits the post synthetic cleavages and the assembly of poliovirus in a cell-free system. Antiviral Res. 2000, 48, 61–69. [Google Scholar] [CrossRef]
- Botros, S.; Khalil, N.A.; Naguib, B.H.; El Dash, Y. Synthesis and anticonvulsant activity of new phenytoin derivatives. Eur. J. Med. Chem. 2013, 60, 57–63. [Google Scholar] [CrossRef]
- Deodhar, M.; Sable, P.; Bhosale, A.; Juvale, K.; Dumbare, R.; Sakpal, P. Synthesis and evaluation of phenytoin derivatives as anticonvulsant agents. Turk. J. Chem. 2009, 33, 367–373. [Google Scholar] [CrossRef]
- Thenmozhiyal, J.C.; Wong, P.T.-H.; Chui, W.-K. Anticonvulsant activity of phenylmethylenehydantoins: A structure−activity relationship study. J. Med. Chem. 2004, 47, 1527–1535. [Google Scholar] [CrossRef]
- LeTiran, A.; Stables, J.P.; Kohn, H. Functionalized amino acid anticonvulsants: Synthesis and pharmacological evaluation of conformationally restricted analogues. Bioorg. Med. Chem. 2001, 9, 2693–2708. [Google Scholar] [CrossRef]
- Anger, T.; Madge, D.J.; Mulla, M.; Riddall, D. Medicinal Chemistry of Neuronal Voltage Gated Sodium Channel Blockers. J. Med. Chem. 2001, 44, 115–137. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, M.; Regan, M.M.; Lifsey, D.; Kantoff, P.W.; Taplin, M.; Sartor, O.; Oh, W.K. Efficacy of nilutamide as secondary hormonal therapy in androgen-independent prostate cancer. BJU Int. 2005, 96, 783–786. [Google Scholar] [CrossRef] [PubMed]
- Kiec-Kononowicz, K. Synthesis, structure and antiarrhythmic properties evaluation of new basic derivatives of 5,5-diphenylhydantoin. Eur. J. Med. Chem. 2003, 38, 555–566. [Google Scholar] [CrossRef]
- Ciechanowicz-Rutkowska, M.; Stadnicka, K.; Kiec-Kononowicz, K.; Byrtus, H.; Filipek, B.; Zygmunt, M.; Maciag, D. Structure-Activity Relationship of Some New Anti-Arrhythmic Phenytoin Derivatives. Arch. Pharm. Pharm. Med. Chem. (Weinheim) 2000, 333, 357–364. [Google Scholar] [CrossRef]
- Edmunds, J.J.; Klutchko, S.; Hamby, J.M.; Bunker, A.M.; Connolly, C.J.C.; Winters, R.T.; Quin, J.; Sircar, I.; Hodges, J.C. Derivatives of 5-[[1-4(4 carboxybenzyl)imidazolyl]methylidene]hydantoins as orally active angiotensin II receptor antagonists. J. Med. Chem. 1995, 38, 3759–3771. [Google Scholar] [CrossRef]
- Lu, H.; Kong, D.; Wu, B.; Wang, S.; Wang, Y. Synthesis and Evaluation of Anti-Inflammatory and Antitussive Activity of Hydantion Derivatives. Lett. Drug Des. Discov. 2012, 9, 638–642. [Google Scholar] [CrossRef]
- Somsák, L.; Kovács, L.; Tóth, M.; Ősz, E.; Szilágyi, L.; Györgydeák, Z.; Dinya, Z.; Docsa, T.; Tóth, B.; Gergely, P. Synthesis of and a comparative study on the inhibition of muscle and liver glycogen phosphorylases by epimeric pairs of D-gluco- and D-xylopyranosylidene-spiro(thio)hydantoins and N-(D-glucopyranosyl) amides. J. Med. Chem. 2001, 44, 2843–2848. [Google Scholar] [CrossRef] [PubMed]
- Oka, M.; Matsumoto, Y.; Sugiyama, S.; Tsuruta, N.; Matsushima, M. A potent aldose reductase inhibitor, (2S,4S)-6-fluoro-2‘,5‘ dioxospiro[chroman-4,4‘-imidazolidine]-2 carboxamide (Fidarestat): Its absolute configuration and interactions with the aldose reductase by X-ray crystallography. J. Med. Chem. 2000, 43, 2479–2483. [Google Scholar] [CrossRef]
- Mizuno, T.; Kino, T.; Ito, T.; Miyata, T. Synthesis of aromatic urea herbicides by the selenium-assisted carbonylation using carbon monoxide with sulfur. Synth. Commun. 2000, 30, 1675–1688. [Google Scholar] [CrossRef]
- Fiallo, M.M.L.; Kozlowski, H.; Garnier-Suillerot, A. Mitomycin antitumor compounds. Eur. J. Pharm. Sci. 2001, 12, 487–494. [Google Scholar] [CrossRef]
- Youssef, D.; Shaala, L.; Alshali, K. Bioactive hydantoin alkaloids from the Red Sea marine sponge Hemimycale arabica. Mar. Drugs 2015, 13, 6609–6619. [Google Scholar] [CrossRef] [PubMed]
- Kalník, M.; Gabko, P.; Bella, M.; Koóš, M. The Bucherer–Bergs multicomponent synthesis of hydantoins—Excellence in simplicity. Molecules 2021, 26, 4024. [Google Scholar] [CrossRef]
- Uemoto, H.; Tsuda, M.; Kobayashi, J. Mukanadins A−C, new bromopyrrole alkaloids from marine sponge Agelas nakamurai. J. Nat. Prod. 1999, 62, 1581–1583. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, C.; Crews, P. Mauritamide A and accompanying oroidin alkaloids from the sponge Agelas mauritiana. Tetrahedron Lett. 1994, 35, 1375–1378. [Google Scholar] [CrossRef]
- Cachet, N.; Genta-Jouve, G.; Regalado, E.L.; Mokrini, R.; Amade, P.; Culioli, G.; Thomas, O.P. Parazoanthines A−E, hydantoin alkaloids from the Mediterranean Sea anemone Parazoanthus axinellae. J. Nat. Prod. 2009, 72, 1612–1615. [Google Scholar] [CrossRef]
- Audoin, C.; Cocandeau, V.; Thomas, O.; Bruschini, A.; Holderith, S.; Genta-Jouve, G. Metabolome consistency: Additional parazoanthines from the Mediterranean zoanthid Parazoanthus Axinellae. Metabolites 2014, 4, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Colacino, E.; Lamaty, F.; Martinez, J.; Parrot, I. Microwave-assisted solid-phase synthesis of hydantoin derivatives. Tetrahedron Lett. 2007, 48, 5317–5320. [Google Scholar] [CrossRef]
- Lu, G.-J.; Nie, J.-Q.; Chen, Z.-X.; Yang, G.-C.; Lu, C.-F. Synthesis and evaluation of a new non-cross-linked polystyrene supported hydantoin chiral auxiliary for asymmetric aldol reactions. Tetrahedron Asymmetry 2013, 24, 1331–1335. [Google Scholar] [CrossRef]
- Metallinos, C.; John, J.; Zaifman, J.; Emberson, K. Diastereoselective synthesis of N-substituted planar chiral ferrocenes using a proline hydantoin-derived auxiliary. Adv. Synth. Catal. 2012, 354, 602–606. [Google Scholar] [CrossRef]
- Meusel, M.; Gütschow, M. Recent developments in hydantoin chemistry. A review. Org. Prep. Proced. Int. 2004, 36, 391–443. [Google Scholar] [CrossRef]
- Zhang, D.; Xing, X.; Cuny, G.D. Synthesis of hydantoins from enantiomerically pure α-amino amides without epimerization. J. Org. Chem. 2006, 71, 1750–1753. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Su, L.; Yang, X.; Pan, W.; Fang, H. Enantioselective synthesis of 3,5-disubstituted thiohydantoins and hydantoins. Tetrahedron 2015, 71, 9234–9239. [Google Scholar] [CrossRef]
- Tanwar, D.; Ratan, A.; Gill, M. Facile one pot synthesis of substituted hydantoins from carbamates. Synlett 2017, 28, 2285–2290. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Z.; Pan, Z. Synthesis of highly substituted imidazolidine-2,4-dione (hydantoin) through Tf2O-mediated dual activation of Boc-protected dipeptidyl compounds. Org. Lett. 2014, 16, 5902–5905. [Google Scholar] [CrossRef]
- Mehra, V.; Kumar, V. Facile diastereoselective synthesis of functionally enriched hydantoins via base-promoted intramolecular amidolysis of C-3 functionalized azetidin-2-ones. Tetrahedron Lett. 2013, 54, 6041–6044. [Google Scholar] [CrossRef]
- Konnert, L.; Dimassi, M.; Gonnet, L.; Lamaty, F.; Martinez, J.; Colacino, E. Poly(ethylene) glycols and mechanochemistry for the preparation of bioactive 3,5-disubstituted hydantoins. RSC Adv. 2016, 6, 36978–36986. [Google Scholar] [CrossRef]
- Konnert, L.; Gonnet, L.; Halasz, I.; Suppo, J.-S.; De Figueiredo, R.M.; Campagne, J.-M.; Lamaty, F.; Martinez, J.; Colacino, E. Mechanochemical preparation of 3,5-disubstituted hydantoins from dipeptides and unsymmetrical ureas of amino acid derivatives. J. Org. Chem. 2016, 81, 9802–9809. [Google Scholar] [CrossRef]
- Mascitti, A.; Lupacchini, M.; Guerra, R.; Taydakov, I.; Tonucci, L.; d’Alessandro, N.; Lamaty, F.; Martinez, J.; Colacino, E. Poly(ethylene glycol)s as grinding additives in the mechanochemical preparation of highly functionalized 3,5 disubstituted hydantoins. Beilstein J. Org. Chem. 2017, 13, 19–25. [Google Scholar] [CrossRef]
- DeWitt, S.H.; Kiely, J.S.; Stankovic, C.J.; Schroeder, M.C.; Cody, D.M.; Pavia, M.R. “Diversomers”: An approach to nonpeptide, nonoligomeric chemical diversity. Proc. Natl. Acad. Sci. 1993, 90, 6909–6913. [Google Scholar] [CrossRef]
- Colacino, E.; Porcheddu, A.; Charnay, C.; Delogu, F. From Enabling Technologies to Medicinal Mechanochemistry: An Eco-Friendly Access to Hydantoin-Based Active Pharmaceutical Ingredients. React. Chem. Eng. 2019, 4, 69–80. [Google Scholar] [CrossRef]
- Monteiro, J.L.; Pieber, B.; Corrêa, A.G.; Kappe, C.O. Continuous Synthesis of Hydantoins: Intensifying the Bucherer-Bergs Reaction. Synlett 2016, 27, 83–87. [Google Scholar] [CrossRef]
- Vukelić, S.; Koksch, B.; Seeberger, P.H.; Gilmore, K. A Sustainable, Semi-Continuous Flow Synthesis of Hydantoins. Chem. Eur. J. 2016, 22, 13451–13454. [Google Scholar] [CrossRef] [PubMed]
- Lawless, M.S.; Waldman, M.; Fraczkiewicz, R.; Clark, R.D. Using cheminformatics in drug discovery. In New Approaches to Drug Discovery; Nielsch, U., Fuhrmann, U., Jaroch, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 139–168. [Google Scholar] [CrossRef]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019, 35, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Filimonov, D.; Poroikov, V. Probabilistic approaches in activity prediction. In Chemoinformatics Approaches to Virtual Screening; Varnek, A., Tropsha, A., Eds.; The Royal Society of Chemistry: London, UK, 2008; pp. 182–216. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of 30 small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Dražić, T.; Roje, M.; Jurin, M.; Pescitelli, G. Synthesis, separation and absolute configuration determination by ECD spectroscopy and TDDFT calculations of 3-amino-β-lactams and derived guanidines. Eur. J. Org. Chem. 2016, 2016, 4189–4199. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Cruz, J.; Banik, B.K. Novel synthesis of 3-pyrrole substituted β-lactams via microwave-induced bismuth nitrate-catalyzed reaction. Tetrahedron 2012, 68, 10686–10695. [Google Scholar] [CrossRef]
- Jurin, M.; Stepanić, V.; Bojanić, K.; Vadlja, D.; Kontrec, D.; Dražić, T.; Roje, M. Novel (±) trans-β-lactam ureas: Synthesis, in silico and in vitro biological profiling. Acta Pharm. 2024, 74, 37–59. [Google Scholar] [CrossRef] [PubMed]
- Hosseyni, S.; Jarrahpour, A. Recent advances in β-lactam synthesis. Org. Biomol. Chem. 2018, 16, 6840–6852. [Google Scholar] [CrossRef]
- Cossío, F.P.; De Cózar, A.; Sierra, M.A.; Casarrubios, L.; Muntaner, J.G.; Banik, B.K.; Bandyopadhyay, D. Role of imine isomerization in the stereocontrol of the Staudinger reaction between ketenes and imines. RSC Adv. 2022, 12, 104–117. [Google Scholar] [CrossRef]
- Deketelaere, S.; Van Nguyen, T.; Stevens, C.V.; D’Hooghe, M. Synthetic approaches toward monocyclic 3-amino-β-lactams. ChemistryOpen 2017, 6, 301–319. [Google Scholar] [CrossRef]
- Habuš, I.; Radolović, K.; Kralj, B. New thiazolidinone and triazinethione conjugates derived from amino-β-lactams. Heterocycles 2009, 78, 1729. [Google Scholar] [CrossRef]
- Mehra, V.; Singh, P.; Manhas, N.; Kumar, V. β-Lactam-synthon-interceded facile synthesis of functionally decorated thiohydantoins. Synlett 2014, 25, 1124–1126. [Google Scholar] [CrossRef]
- Trisovic, N.; Uscumlic, G.; Petrovic, S. Hydantoins: Synthesis, properties and anticonvulsant activity. Hem. Ind. 2009, 63, 17–31. [Google Scholar] [CrossRef]
- Srebro-Hooper, M.; Autschbach, J. Calculating natural optical activity of molecules from first principles. Annu. Rev. Phys. Chem. 2017, 68, 399–420. [Google Scholar] [CrossRef]
- Pescitelli, G.; Bruhn, T. Good computational practice in the assignment of absolute configurations by TDDFT calculations of ECD spectra. Chirality 2016, 28, 466–474. [Google Scholar] [CrossRef]
- Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef]
- Iwahana, S.; Iida, H.; Yashima, E.; Pescitelli, G.; Di Bari, L.; Petrovic, A.G.; Berova, N. Absolute stereochemistry of a 4 a-hydroxyriboflavin analogue of the key intermediate of the FAD-Monooxygenase cycle. Chem. Eur. J. 2014, 20, 4386–4395. [Google Scholar] [CrossRef]
- Mándi, A.; Kurtán, T. Applications of OR/ECD/VCD to the structure elucidation of natural products. Nat. Prod. Rep. 2019, 36, 889–918. [Google Scholar] [CrossRef]
- Superchi, S.; Scafato, P.; Gorecki, M.; Pescitelli, G. Absolute configuration determination by quantum mechanical calculation of chiroptical spectra: Basics and applications to fungal metabolites. Curr. Med. Chem. 2018, 25, 287–320. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Haddad-Tóvolli, R.; Dragano, N.R.V.; Ramalho, A.F.S.; Velloso, L.A. Development and function of the blood-brain barrier in the context of metabolic control. Front. Neurosci. 2017, 11, 224. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Hranjec, M.; Kralj, M.; Piantanida, I.; Sedić, M.; Šuman, L.; Pavelić, K.; Karminski-Zamola, G. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2 a]quinolines. synthesis, photochemical synthesis, DNA binding and antitumor evaluation, Part 3. J. Med. Chem. 2007, 50, 5696–5711. [Google Scholar] [CrossRef] [PubMed]
- Hranjec, M.; Piantanida, I.; Kralj, M.; Šuman, L.; Pavelić, K.; Karminski-Zamola, G. Novel amidino-substituted thienyl- and furylvinyl benzimidazole derivatives and their photochemical conversion into corresponding diaza cyclopenta[c]fluorenes. Synthesis, interactions with DNA and RNA and antitumor evaluation. J. Med. Chem. 2008, 51, 4899–4910. [Google Scholar] [CrossRef]
- Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res. 1995, 34, 91–109. [Google Scholar] [CrossRef]
Entry | β-Lactam Urea | Hydantoin | R | η (%) | HPLC Syn:Anti |
---|---|---|---|---|---|
1 | 4a | 5a | allyl | 85.8 | 52.5:47.5 |
2 | 4b | 5b | hexyl | 91.8 | 50.1:49.9 |
3 | 4c | 5c | cylopentyl | 79.5 | 51.8:48.2 |
4 | 4d | 5d | furfuryl | 81.5 | 57.1:42.9 |
5 | 4e | 5e | benzyl | 86.4 | 52.2:47.8 |
6 | 4f | 5f | 4-tert-butylphenyl | 88.8 | 66.0:34.0 |
7 | 4g | 5g | 3-chloro-4-methylphenyl | 75.3 | 48.3:51.7 |
8 | 4h | 5h | 3,5-dimethylphenyl | 58.8 | 64.3:35.7 |
9 | 4i | 5i | 2,6-dimethylphenyl | 75.8 | 58.8:41.2 |
Compound | HepG2 * | A2780 * | MCF7 * | HFF-1 * |
---|---|---|---|---|
syn-5a | >100 | 71 ± 34 | >100 | >100 |
anti-5a | >100 | >100 | >100 | >100 |
syn-5b | >100 | 93 ± 123 | 55 ± 1.8 | >100 |
anti-5b | 35 ± 12 | 33 ± 12 | 34 ± 9 | 52 ± 15 |
syn-5c | >100 | 35 ± 7.9 | 41 ± 5.4 | >100 |
anti-5c | >100 | 42 ± 57 | 4.5 ± 0.45 | 12 ± 13 |
syn-5d | >100 | >100 | >100 | >100 |
anti-5d | >100 | 79 ± 5.4 | >100 | >100 |
syn-5e | >100 | 59 ± 17 | >100 | >100 |
anti-5e | >100 | 58 ± 7.7 | 55 ± 2.4 | >100 |
syn-5f | 15 ± 1.2 | 15 ± 1.7 | 20 ± 0.15 | 20 ± 0.48 |
anti-5f | 33 ± 1.4 | 22 ± 5.9 | 39 ± 9.5 | >100 |
syn-5g | >100 | 28 ± 13 | 21 ± 0.35 | 33 ± 18 |
anti-5g | 30 ± 3.0 | 43 ± 13 | 27 ± 1.4 | 35 ± 55 |
syn-5h | >100 | 43 ± 4.0 | 27 ± 2.2 | 21 ± 49 |
anti-5h | >100 | 59 ± 2.4 | 48 ± 14 | 18 ± 27 |
syn-5i | >100 | 77 ± 3.0 | 87 ± 32 | >100 |
anti-5i | >100 | 48 ± 10 | 52 ± 21 | 94 ± 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurin, M.; Čikoš, A.; Stepanić, V.; Górecki, M.; Pescitelli, G.; Kontrec, D.; Jakas, A.; Dražić, T.; Roje, M. Synthesis, Absolute Configuration, Biological Profile and Antiproliferative Activity of New 3,5-Disubstituted Hydantoins. Pharmaceuticals 2024, 17, 1259. https://doi.org/10.3390/ph17101259
Jurin M, Čikoš A, Stepanić V, Górecki M, Pescitelli G, Kontrec D, Jakas A, Dražić T, Roje M. Synthesis, Absolute Configuration, Biological Profile and Antiproliferative Activity of New 3,5-Disubstituted Hydantoins. Pharmaceuticals. 2024; 17(10):1259. https://doi.org/10.3390/ph17101259
Chicago/Turabian StyleJurin, Mladenka, Ana Čikoš, Višnja Stepanić, Marcin Górecki, Gennaro Pescitelli, Darko Kontrec, Andreja Jakas, Tonko Dražić, and Marin Roje. 2024. "Synthesis, Absolute Configuration, Biological Profile and Antiproliferative Activity of New 3,5-Disubstituted Hydantoins" Pharmaceuticals 17, no. 10: 1259. https://doi.org/10.3390/ph17101259
APA StyleJurin, M., Čikoš, A., Stepanić, V., Górecki, M., Pescitelli, G., Kontrec, D., Jakas, A., Dražić, T., & Roje, M. (2024). Synthesis, Absolute Configuration, Biological Profile and Antiproliferative Activity of New 3,5-Disubstituted Hydantoins. Pharmaceuticals, 17(10), 1259. https://doi.org/10.3390/ph17101259