Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals
Abstract
:1. Introduction
2. Method
2.1. Search Strategy
2.2. Study Selection Criteria
2.3. Data Extraction
2.4. Results
3. Source and Types of Phytochemical or Bioactive Compounds
4. Phytochemicals Regulate Human Immune System and Metabolic Pathways
5. Pathogenesis and Immunology of Diabetic Ulcer
Pathophysiology and Immune System Alteration
6. Macrophages in Wound Resolution: Molecular Activation Mechanisms
6.1. Stimulation of Wound-Healing Macrophages
6.2. Macrophage Modulators and Promoters of Fibrosis and Wound Healing
6.3. Phytochemicals in Macrophage Activation for Wound Healing
7. Phytonutrients in the Treatment of Diabetic Wounds with Clinical Trials in Rodent Models
Clinical Trials in Humans
8. Meta-Analysis, Systematic Analysis, and Statistical Data on Diabetic Wound Healing
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdulwahab, A.A. Long term complication of poor glycemic control in diabetic patients. EC Microbio. 2020, 16, 1–7. [Google Scholar]
- Abul-Al-Basal, M.A. Healing potential of Rosmarinus officinalis on the full-thickness excision cutaneous wounds in alloxan-induced diabetic BALB/c mice. J. Ethnopharmacol. 2010, 131, 443–450. [Google Scholar] [CrossRef]
- Anisha, B.S.; Biswas, R.; Chennazhi, K.P.; Jayakumar, R. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int. J. Biol. Macromol. 2013, 62, 310–320. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, L.; Zhang, Y. Vitamin D and wound healing: Assessing skin barrier function and implications for chloasma treatment. Int. Wound J. 2024, 21, e14541. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A. Oxidative stress and diabetes-associated complications. Endocr. Pract. 2006, 12, 60–62. [Google Scholar] [CrossRef]
- Chithra, P.; Sajithlai, G.B.; Chandrakasan, G. Influence of aloe vera on the healing of dermal wounds in diabetic rats. J. Ethnopharmacol. 1998, 59, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Garaniya, N.; Bapodra, A. Ethno botanical and phytopharmacological potential of Abrus precatorius L.: A review. Asian Pac. J. Trop. Biomed. 2014, 4, 27–34. [Google Scholar] [CrossRef]
- Lau, T.W.; Sahota, D.S.; Lau, C.H.; Lam, F.C.; Ho, Y.Y.; Fung, K.P.; Lau, C.B.; Leung, P.C.; Chan, C.M. An in vivo investigation on the wound healing effect of two medicinal herbs using an animal model with foot ulcer. Eur. Surg. Res. 2008, 41, 15–23. [Google Scholar] [CrossRef]
- Mahmood, A.A.; Sidik, A.; Salmah, I. Wound healing activity of Carica papaya aqueous leaf extract in rats. Int. J. Mol. Med. Adv. Sci. 2005, 1, 398. [Google Scholar]
- Mohammed, I.; Mohd, I.; Khan, S. Antibacterial activity of Syzigium cumini leaf extracts against multidrug resistant pathogenic bacteria. J. Appl. Pharm. Sci. 2017, 7, 168–174. [Google Scholar]
- Mohandas, A.; Anisha, B.S.; Chennazhi, K.P.; Jayakumar, R. Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surf. B Biointerfaces 2015, 127, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.S.; Pereira, L.P.; Maharaj, D. Wound healing activity of Carica papaya in experimentally induced diabetic rats. Indian J. Exp. Biol. 2007, 45, 739–743. [Google Scholar] [PubMed]
- Ponrasu, T.; Suguna, L. Efficacy of annona squamosal on wound healing in streptozotocin-induced diabetic rats. Int. Wound J. 2012, 9, 613–623. [Google Scholar] [CrossRef]
- Ramachandran, A.; Snehalatha, C.; Nanditha, A. Classification and diagnosis of diabetes. In Textbook of Diabetes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 23–28. [Google Scholar]
- Wong, M.W.N.; Leung, P.C.; Wong, W.C. Limb salvage in extensive diabetic foot ulceration-a preliminary clinical study using simple debridement and herbal drinks. Hong Kong Med. J. 2001, 7, 403–407. [Google Scholar]
- Zhang, R.; Yao, Y.; Wang, Y.; Ren, G. Antidiabetic activity of isoquercetin in diabetic KK-A y mice. Nutr. Metab. 2011, 8, 85. [Google Scholar] [CrossRef]
- Soni, H.; Malik, J.; Yadav, A.P.; Yadav, B. Characterization of rutin isolated by leaves Annona squamosa by modern analytical techniques. Eur. J. Biomed. Pharm. Sci. 2018, 5, 484–489. [Google Scholar]
- Takaki, I.; Bersani-Amado, L.E.; Vendruscolo, A.; Sartoretto, S.M.; Diniz, S.; Bersani-Amado, C.A. Anti-inflammatory and anti-nociceptive effects of Rosmarinus officinalis essential oil in experimental animal models. J. Med. Food 2008, 11, 741–746. [Google Scholar] [CrossRef]
- Rajvaidhya, S.; Nagori, B.; Singh, G.; Dubey, B.; Desai, P.; Jain, S. A review on Acacia arabica—An Indian medicinal plant. Int. J. Pharm. Sci. Res. 2012, 3, 1995–2005. [Google Scholar]
- Xiang, J.; Shen, L.; Hong, Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur. Polym. J. 2020, 130, 109609. [Google Scholar] [CrossRef]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Chen, Y.; Xiang, Y.; Zhang, H.; Zhu, T.; Chen, S.; Li, J.; Du, J.; Yan, X. A multifunctional chitosan composite aerogel based on high density amidation for chronic wound healing. Carbohydr. Polym. 2023, 321, 121248. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.M.; Varga, R.; Ortiz, Y.D. Wound healing properties of Hylocereus undatus on diabetic rats. Phytother. Res. 2005, 19, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.C.; Costa, T.F.; Andrade, Z.A.; Medrado, A.R. Wound healing—A literature review. An. Bras. Dermatol. 2016, 91, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, Y.; Luo, Y.; Du, Y.; Zhang, X.; Fu, J. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-kappa B pathways in BV2 cells. Mol. Immunol. 2019, 116, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Rahimifard, M.; Maqbool, F.; Moeini-Nodeh, S.; Niaz, K.; Abdollahi, M.; Braidy, N.; Nabavi, S.M.; Nabavi, S.F. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res. Rev. 2017, 36, 11–19. [Google Scholar] [CrossRef]
- Li, Q.; Sun, J.; Mohammadtursun, N.; Wu, J.; Dong, J.; Li, L. Curcumin inhibits cigarette smoke-induced inflammation via modulating the PPAR gamma-NF-kappaB signaling pathway. Food Funct. 2019, 10, 7983–7994. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Rafiei, H.; Mohammadinejad, R.; Afshar, E.G.; Farkhondeh, T.; Samarghandian, S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytother. Res. 2020, 34, 1745–1760. [Google Scholar] [CrossRef]
- Kahkhaie, K.R.; Mirhossein, A.; Aliabadi, A.; Mohammadi, A.; Mousavi, M.J.; Haftcheshmeh, S.M.; Sathyapalan, T.; Sahebkar, A. Curcumin: A modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology 2019, 27, 885–900. [Google Scholar] [CrossRef]
- Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res. 2020, 159, 104–921. [Google Scholar] [CrossRef]
- Olcum, M.; Tastan, B.; Ercan, I.; Eltutan, I.B.; Genc, S. Inhibitory effects of phytochemicals on NLRP3 inflammasome activation: A review. Phytomedicine 2020, 75, 153–238. [Google Scholar] [CrossRef]
- Mohanty, C.; Das, M.; Sahoo, S.K. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Mol. Pharm. 2012, 9, 2801–2811. [Google Scholar] [CrossRef] [PubMed]
- Imlay, J.A. Pathways of oxidative damage. Annu. Rev. Microbiol. 2003, 57, 395–418. [Google Scholar] [CrossRef] [PubMed]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yoon, N.Y.; Kim, D.H.; Jung, M.; Jun, M.; Park, H.Y.; Chung, C.H.; Lee, K.; Kim, S.; Park, C.S.; et al. Impaired permeability and antimicrobial barriers in type 2 diabetes skin are linked to increased serum levels of advanced glycation end-product. Exp. Dermatol. 2018, 27, 815–823. [Google Scholar] [CrossRef]
- Alven, S.; Nqoro, X.; Aderibigbe, B.A. Polymer-based materials loaded with curcumin for wound healing applications. Polymers 2020, 12, 2286. [Google Scholar] [CrossRef] [PubMed]
- Thangapazham, R.L.; Sharad, S.; Maheshwari, R.K. Skin regenerative potentials of curcumin. BioFactors 2013, 39, 141. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Harikumar, K.B.; Ahn, K.S.; Badmaev, V.; Aggarwal, B.B. Modification of cysteine residue in p65 subunit of nuclear factor kappa B (NF-kappa B) by picroliv suppresses NF-kappa B-regulated gene products and potentiates apoptosis. Cancer Res. 2008, 68, 8861–8870. [Google Scholar] [CrossRef]
- Zhang, K.; Jian-Jie, Y.; Yu-Min, L.; Wei, L.N.; Yu, Y.; Feng, Y.H.; Wang, X. A Picrorhiza kurroa derivative, picroliv, attenuates the development of dextran-sulfate-sodium-induced colitis in mice. Mediat. Inflamm. 2012, 2012, 751629. [Google Scholar] [CrossRef]
- Singh, A.K.; Sharma, A.; Warren, J.; Madhavan, S.; Steele, K.; Rajesh Kumar, N.V.; Thangapazham, R.L.; Sharma, S.C.; Kulshreshtha, D.K.; Gaddipati, J.; et al. Picroliv accelerates epithelialization and angiogenesis in rat wounds. Planta Med. 2007, 73, 251. [Google Scholar] [CrossRef]
- Sidhu, G.S.; Singh, A.K.; Banaudha, K.K.; Gaddipati, J.P.; Patnaik, G.K.; Maheshwari, R.K. Arnebin-1 accelerates normal and hydrocortisone-induced impaired wound healing. J. Investig. Dermatol. 1999, 113, 773. [Google Scholar] [CrossRef]
- Peng, Z.; Lavigne, J.P. Editorial: Pathogenesis of diabetic foot ulcers. Front. Pharmacol. 2023, 14, 1218201. [Google Scholar] [CrossRef] [PubMed]
- Everett, E.; Mathioudakis, N. Update on management of diabetic foot ulcers. Ann. N. Y. Acad. Sci. 2018, 1411, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Yuging, D.; Wang, J.; Fan, W.; Huang, R.; Wang, H.; Liu, G. Preclinical study of diabetic foot ulcers: From pathogenesis to vivo/vitro models and clinical therapeutic transformation. Int. Wound J. 2023, 20, 4394–4409. [Google Scholar]
- Gao, D.; Zang, Y.; Bowers, D.T.; Liu, W.; Ma, M. Functional hydrogels for diabetic wound management. APL Bioeng. 2021, 5, 031503. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, J.; Chen, S.; Zhou, A.; Huang, G.; Huang, S.; Yu, D.; Wu, B. Identifying potential pathogenesis and immune infiltration in diabetic foot ulcers using bioinformatics and in vitro analyses. BMC Med. Genom. 2023, 16, 313. [Google Scholar] [CrossRef] [PubMed]
- Burgess, J.L.; Wyant, W.A.; Abdo Abujamra, B.; Kirsner, R.S.; Jozic, I. Diabetic wound-healing science. Medicina 2021, 57, 1072. [Google Scholar] [CrossRef]
- Frykberg, R.G. Diabetic foot ulcers: Pathogenesis and management. Am. Fam. Physician 2002, 66, 1655–1662. [Google Scholar]
- Deng, H.; Li, B.; Shen, Q.; Zhang, C.; Kuang, L.; Chen, R.; Wang, S.; Ma, Z.; Li, G. Mechanisms of diabetic foot ulceration: A review. Diabetes 2023, 15, 299–312. [Google Scholar] [CrossRef]
- Abbott, C.A.; Carrington, A.L.; Ashe, H.; Bath, S.; Every, L.C.; Griffiths, J. The North-West diabetes foot care study: Incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort. Diabet. Med. 2002, 19, 377–384. [Google Scholar] [CrossRef]
- Aguilar, F.; Rayo, M.D. Part 1, Diabetic neuropathy: Classification, physiopathology and clinical manifestations. Rev. Med. IMSS 2000, 38, 257–266. [Google Scholar]
- Aguilar, F. Diabetic Neuropathy” for doctors. Plast. Rest. Neurol. 2005, 4, 35–47. [Google Scholar]
- Francisco, A.R. (Ed.) Diabetic Foot: Physiopathology and treatment. In Diabetic Neuropathy, Practical Aspects, Treatment, Diagnostic and Prophylactic Measures; Editorial Alfil: Mexico City, Mexico, 2009; pp. 335–336. [Google Scholar]
- Wang, J.; Kubes, P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 2016, 165, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Gudra, U.M.; Girgis, N.M.; Gonzalez, M.A.; San Tang, M.; Van Der Zande, H.J.P.; Lin, J.D.; Ouimet, M.; Ma, L.J.; Poles, J.; Vozhilla, N.; et al. Vitamin A mediates conversion of monocyte-derived macrophages into tissue-resident macrophages during alternative activation. Nat. Immunol. 2017, 18, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Esser-von Bieren, J.; Mosconi, I.; Guiet, R.; Piersgilli, A.; Volpe, B.; Chen, F.; Gause, W.C.; Seitz, A.; Verbeek, J.S.; Harris, N.L. Antibodies traptissue migrating helminth larvae and prevent tissue damage by driving IL-4Ra-independent alternative differentiation of macrophages. PLoS Pathog. 2013, 9, e1003771. [Google Scholar] [CrossRef]
- Esser-von Bieren, J.; Volpe, B.; Sutherland, D.B.; Bürgi, J.; Verbeek, J.S.; Marsland, B.J.; Urban, J.F., Jr.; Harris, N.L. Immune antibodies and helminth products drive CXCR2-dependent macrophage myofibroblast crosstalk to promote intestinal repair. PLoS Pathog. 2015, 11, e1004778. [Google Scholar] [CrossRef]
- Bosurgi, L.; Cao, Y.G.; Cabeza-Cabrerizo, M.; Tucci, A.; Hughes, L.D.; Kong, Y.; Weinstein, J.S.; Licona-Limon, P.; Schmid, E.T.; Pelorosso, F.; et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 2017, 356, 1072–1076. [Google Scholar] [CrossRef]
- Greenlee-Wacker, M.C. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol. Rev. 2016, 273, 357–370. [Google Scholar] [CrossRef]
- Bouchery, T.; Harris, N.L. Specific repair by discerning macrophages. Science 2017, 356, 1014. [Google Scholar] [CrossRef]
- Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; Park, D.; Woodson, R.I.; Ostankovich, M.; Sharma, P.; Lysiak, J.J.; Harden, T.K.; Leitinger, N.; et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009, 461, 282–286. [Google Scholar] [CrossRef]
- Csóka, B.; Selmeczy, Z.; Koscsó, B.; Németh, Z.H.; Pacher, P.; Murray, P.J.; Kepka-Lenhart, D.; Morris, S.M., Jr.; Gause, W.C.; Leibovich, S.J.; et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 2012, 26, 376–386. [Google Scholar] [CrossRef]
- Haynes, S.E.; Hollopeter, G.; Yang, G.; Kurpius, D.; Dailey, M.E.; Gan, W.B.; Julius, D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 2006, 9, 1512–1519. [Google Scholar] [CrossRef]
- Sajjadi, F.G.; Takabayashi, K.; Foster, A.C.; Domingo, R.C.; Firestein, G.S. Inhibition of TNF-alpha expression by adenosine: Role of A3 adenosine receptors. J. Immunol. 1996, 156, 3435–3442. [Google Scholar] [CrossRef] [PubMed]
- Ohta, A.; Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001, 414, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Schingnitz, U.; Hartmann, K.; Macmanus, C.F.; Eckle, T.; Zug, S.; Colgan, S.P.; Eltzschig, H.K. Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. J. Immunol. 2010, 184, 5271–5279. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Wu, W.; Mishra, P.K.; Chen, F.; Millman, A.; Csóka, B.; Koscsó, B.; Eltzschig, H.K.; Haskó, G.; Gause, W.C. A2B adenosine receptor induces protective antihelminth type 2 immune responses. Cell Host Microbe 2014, 15, 339–350. [Google Scholar] [CrossRef]
- Das, A.; Ganesh, K.; Khanna, S.; Sen, C.K.; Roy, S. Engulfment of apoptotic cells by macrophages: A role of microRNA-21 in the resolution of wound inflammation. J. Immunol. 2014, 192, 1120–1129. [Google Scholar] [CrossRef]
- Van Goethem, E.; Poincloux, R.; Gauffre, F.; Maridonneau-Parini, I.; LeCabec, V. Matrix architecture dictates three-dimensional migration modes of human macrophages: Differential involvement of proteases and podosome-like structures. J. Immunol. 2010, 184, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- McWhorter, F.Y.; Wang, T.; Nguyen, P.; Chung, T.; Liu, W.F. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA 2013, 110, 17253–17258. [Google Scholar] [CrossRef]
- Guilliams, M.; Mildner, A.; Yona, S. Developmental and functional heterogeneity of monocytes. Immunity 2018, 49, 595–613. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.D.; Luster, A.D. The role of tissue residence in neutrophil recruitment. Trends Immunol. 2015, 36, 547–555. [Google Scholar] [CrossRef]
- Davies, C.; Rosas, M.; Jenkins, S.J.; Liao, C.T.; Scurr, M.J.; Brombacher, F.; Fraser, D.J.; Allen, J.E.; Jones, S.A.; Taylor, P.R. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat. Commun. 2013, 4, 1886. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, D.; Chow, A.; Noizat, C.; Teo, P.; Beasley, M.B.; Leboeuf, M.; Becker, C.D.; See, P.; Price, J.; Lucas, D.; et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, 38, 792–804. [Google Scholar] [CrossRef]
- Scott, C.L.; Henri, S.; Guilliams, M. Mononuclear phagocytes of the intestine, the skin, and the lung. Immunol. Rev. 2014, 262, 9–24. [Google Scholar] [CrossRef] [PubMed]
- T’Jonck, W.; Guilliams, M.; Bonnardel, J. Niche signals and transcription factors involved in tissue-resident macrophage development. Cell Immunol. 2018, 330, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.L.; T’Jonck, W.; Martens, L.; Todorov, H.; Sichien, D.; Soen, B.; Bonnardel, J.; De Prijck, S.; Vandamme, N.; Cannoodt, R.; et al. The transcription factor ZEB2 is required to maintain the tissue-specific identities of macrophages. Immunity 2018, 49, 312–325.e315. [Google Scholar] [CrossRef]
- Aran, D.; Looney, A.P.; Liu, L.; Wu, E.; Fong, V.; Hsu, A.; Chak, S.; Naikawadi, R.P.; Wolters, P.J.; Abate, A.R.; et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019, 20, 163–172. [Google Scholar] [CrossRef]
- Lai, C.; Stepniak, D.; Sias, L.; Funatake, C. A sensitive flowcytometric method for multiparametric analysis of micro-RNA, messenger RNA and protein in single cells. Methods 2018, 134, 136–148. [Google Scholar] [CrossRef]
- Bellón, T.; Martínez, V.; Lucendo, B.; del Peso, G.; Castro, M.J.; Aroeira, L.S.; Rodríguez-Sanz, A.; Ossorio, M.; Sánchez-Villanueva, R.; Selgas, R.; et al. A Alternative activation of macrophages in human peritoneum: Implications for peritoneal fibrosis. Nephrol. Dial. Transplant. 2011, 26, 2995–3005. [Google Scholar] [CrossRef]
- Mylonas, K.J.; Nair, M.G.; Prieto-Lafuente, L.; Paape, D.; Allen, J.E. Alternatively activated macrophage selicited by helminth infection can be reprogrammed to enable microbial killing. J. Immunol. 2009, 182, 3084–3094. [Google Scholar] [CrossRef] [PubMed]
- Rückerl, D.; Campbell, S.M.; Duncan, S.; Sutherland, T.E.; Jenkins, S.J.; Hewitson, J.P.; Barr, T.A.; Jackson-Jones, L.H.; Maizels, R.M.; Allen, J.E. Macrophage origin limits functional plasticity in helminth-bacterial co-infection. PLoS Pathog. 2017, 13, e1006233. [Google Scholar] [CrossRef]
- Mounier, R.; Théret, M.; Arnold, L.; Cuvellier, S.; Bultot, L.; Göransson, O.; Sanz, N.; Ferry, A.; Sakamoto, K.; Foretz, M.; et al. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 2013, 18, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Smith, A.M.; Everts, B.; Colonna, M.; Pearce, E.L.; Schilling, J.D.; Pearce, E.J. Metabolic reprogramming mediated by mTORC2-IRF4 Signaling axis is essential for macrophage alternative activation. Immunity 2016, 45, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Linehan, E.; Dombrowski, Y.; Snoddy, R.; Fallon, P.G.; Kissenpfennig, A.; Fitzgerald, D.C. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell. 2014, 13, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging: An Evolutionary Perspective on Immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Verschoor, C.P.; Johnstone, J.; Loeb, M.; Bramson, J.L.; Bowdish, D.M. Anti-pneumococcal deficits of monocyte-derived macrophages from the advanced-age, frailelderly and related impairments in PI3K-AKT signaling. Hum. Immunol. 2014, 75, 1192–1196. [Google Scholar] [CrossRef]
- Getchell, M.L.; Getchell, T.V.; Stromberg, A.J.; Bondada, S. Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages. J. Leukoc. Biol. 2006, 79, 1314–1327. [Google Scholar]
- Boehmer, E.D.; Meehan, M.J.; Cutro, B.T.; Kovacs, E.J. Aging negatively skews macrophage TLR2- and TLR4-mediatedpro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech. Ageing Dev. 2005, 126, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa, C.A.; Akula Suresh Babu, R.; Rahman, M.M.; Fernandes, G.; Boyd, A.R.; Orihuela, C.J. Elevated A20 contributes toage-dependent macrophage dysfuncion in the lungs. Exp. Gerontol. 2014, 54, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Arnardottir, H.H.; Dalli, J.; Colas, R.A.; Shinohara, M.; Serhan, C.N. Aging delays resolution of acute inflammation in mice: Reprogramming the host response with novel nano-proresolving medicines. J. Immunol. 2014, 193, 4235–4244. [Google Scholar] [CrossRef]
- Takahashi, R.; Totsuka, S.; Ishigami, A.; Kobayashi, Y.; Nagata, K. Attenuated phagocytosis of secondary necrotic neutrophils by macrophages in aged and SMP30 knock out mice. Geriatr. GerontolInt. 2016, 16, 135–142. [Google Scholar]
- Stout, R.D.; Jiang, C.; Matta, B.; Tietzel, I.; Watkins, S.K.; Suttles, J. Macrophages sequentially change the functional phenotype in response to changes in microenvironmental influences. J. Immunol. 2005, 175, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.; Ladiges, W.C. Exercise enhances wound healing and prevents cancer progression during aging by targeting macrophage polarity. Mech. Ageing Dev. 2014, 139, 41–48. [Google Scholar] [CrossRef]
- Mirza, R.E.; Fang, M.M.; Novak, M.L.; Urao, N.; Sui, A.; Ennis, W.J.; Koh, T.J. Macrophage PPARγ and impaired wound healing in type 2 diabetes. J. Pathol. 2015, 236, 433–444. [Google Scholar] [CrossRef]
- Borthwick, L.A.; Barron, L.; Hart, K.M.; Vannella, K.M.; Thompson, R.W.; Oland, S.; Cheever, A.; Sciurba, J.; Ramalingam, T.R.; Fisher, A.J.; et al. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis. Mucosal Immunol. 2016, 9, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, M.N.; Newstead, M.W.; Zeng, X.; Bhan, U.; Mo, X.M.; Kunkel, S.L.; Moore, B.B.; Flavell, R.; Christman, J.W.; Standiford, T.J.; et al. RAK-M promotes alternative macrophage activation and fibroproliferation in bleomycin-induced lung injury. J. Immunol. 2015, 194, 1894–1904. [Google Scholar] [CrossRef] [PubMed]
- Ichioka, M.; Suganami, T.; Tsuda, N.; Shirakawa, I.; Hirata, Y.; Satoh-Asahara, N.; Shimoda, Y.; Tanaka, M.; Kim-Saijo, M.; Miyamoto, Y.; et al. Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans. Diabetes 2011, 60, 819–826. [Google Scholar] [CrossRef]
- Goh, E.T.; Kirby, G.; Jayakumar, R.; Liang, X.J.; Tan, A. Accelerated wound healing using nanoparticles. In Nanoscience in Dermatology; Hamblin, M.R., Avci, P., Prow, T.W., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Ezhilarasu, H.; Ramalingam, R.; Dhand, C.; Lakshminarayanan, R.; Sadiq, A.; Gandhimathi, C. Biocompatible Aloe vera and tetracycline hydrochloride loaded hybrid nanofibrous scaffolds for skin tissue engineering. Int. J. Mol. Sci. 2019, 20, 5174. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, R.; Dhand, C.; Leung, C.M.; Ezhilarasu, H.; Prasannan, P.; Ong, S.T.; Subramanian, S. Poly-ε-Caprolactone/Gelatin hybrid electrospun composite nanofibrous mats containing ultrasound assisted herbal extract: Antimicrobial and cell proliferation study. Nanomaterials 2019, 9, 462. [Google Scholar] [CrossRef]
- Shan, X.; Liu, C.; Li, F.; Ouyang, C.; Gao, Q.; Zheng, K. Nanoparticles vs. nanofibers: A comparison of two drug delivery systems on assessing drug release performance in vitro. Des. Monomers Polym. 2015, 18, 678–689. [Google Scholar] [CrossRef]
- Ezhilarasu, H.; Sadiq, A.; Ratheesh, G.; Sridhar, S.; Ramakrishna, S.; Ab, R. Functionalized core/shell nanofibers for the differentiation of mesenchymal stem cells for vascular tissue engineering. Nanomedicine 2019, 14, 201–214. [Google Scholar] [CrossRef]
- Gao, W.; Vecchio, D.; Li, J.; Zhu, J.; Zhang, Q.; Fu, V.; Thamphiwatana, S.; Lu, D.; Zhang, L. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano 2014, 8, 2900–2907. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21, 3307–3329. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017, 3, 6. [Google Scholar] [CrossRef]
- Mauricio, M.D.; Guerra-Ojeda, S.; Marchio, P.; Valles, S.L.; Aldasoro, M.; Escribano-Lopez, I.; Herance, J.R.; Rocha, M.; Vila, J.M.; Victor, V.M. Nanoparticles in medicine: A focus on vascular oxidative stress. Oxid. Med. Cell. Longev. 2018, 2018, 6231482. [Google Scholar] [CrossRef]
- Paladini, F.; Pollini, M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials 2019, 12, 2540. [Google Scholar] [CrossRef] [PubMed]
- Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010, 28, 580–588. [Google Scholar] [CrossRef]
- Alarcon, E.C.; Griffith, M.; Udekwu, K.I. Silver Nanoparticle Applications; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Akturk, O.; Kismet, K.; Yasti, A.C.; Kuru, S.; Duymus, M.E.; Kaya, F.; Caydere, M.; Hucumenoglu, S.; Keskin, D. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J. Biomater. Appl. 2016, 31, 283–301. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, Z.; Saha, K.; Kim, C.S.; Kim, S.T.; Landis, R.F.; Rotello, V.M. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 2014, 22, 1075–1083. [Google Scholar] [CrossRef]
- El-Gharbawy, R.M.; Emara, A.M.; Abu-Risha, S.E. Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomed. Pharm. 2016, 84, 810–820. [Google Scholar] [CrossRef]
- Carvalho, M.T.; Araújo-Filho, H.G.; Barreto, A.S.; Quintans-Júnior, L.J.; Quintans, J.S.; Barreto, R.S. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine 2021, 90, 153636. [Google Scholar] [CrossRef]
- Sychrová, A.; Škovranová, G.; Čulenová, M.; Bittner Fialová, S. Prenylated flavonoids in topical infections and wound healing. Molecules 2022, 27, 4491. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.L.; Tsai, Y.C.; Korivi, M.; Chang, C.T.; Hseu, Y.C. Lucidone promotes the cutaneous wound healing process via activation of the PI3K/AKT, Wnt/β-catenin and NF-κB signaling pathways. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.; Chi, L.; Tian, H.; Cai, W.; Sun, C.; Wang, T.; Zhou, X.; Shao, M.; Zhu, Y.; Niu, C.; et al. The activation of the NF-κB-JNK pathway is independent of the PI3K-Rac1-JNK pathway involved in the bFGF-regulated human fibroblast cell migration. J. Dermatol. Sci. 2016, 82, 28–37. [Google Scholar] [CrossRef]
- Chanu, N.R.; Gogoi, P.; Barbhuiya, P.A.; Dutta, P.P.; Pathak, M.P.; Sen, S. Natural flavonoids as potential therapeutics in the management of diabetic wound: A review. Curr. Top. Med. Chem. 2023, 23, 690–710. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Mu, L.; Tang, J.; Shen, C.; Gao, C.; Rong, M.; Zhang, Z.; Liu, J.; Wu, X.; Yu, H.; et al. A potential wound healing-promoting peptide from frog skin. Int. J. Biochem. Cell Biol. 2014, 49, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Güzel, S.; Özay, Y.; Kumaş, M.; Uzun, C.; Özkorkmaz, E.G.; Yıldırım, Z.; Ülger, M.; Güler, G.; Çelik, A.; Çamlıca, Y.; et al. Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed. Pharmacother. 2019, 111, 1260–1276. [Google Scholar]
- Jain, J.; Arora, S.; Rajwade, J.M.; Omray, P.; Khandelwal, S.; Paknikar, K.M. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol. Pharm. 2009, 6, 1388–1401. [Google Scholar] [CrossRef]
- Škovranová, G.; Čulenová, M.; Treml, J.; Dzurická, L.; Marova, I.; Sychrová, A. Prenylated phenolics from Morus alba against MRSA infections as a strategy for wound healing. Front. Pharmacol. 2022, 13, 1068371. [Google Scholar] [CrossRef]
- Pang, D.; Liao, S.; Zhou, P.; Liu, F.; Zou, Y. The pyran ring isopentene group: An overlooked antimicrobial active group in prenylated flavonoids. Nat. Prod. Res. 2022, 36, 5894–5898. [Google Scholar] [CrossRef]
- Xiao, W.; Tang, H.; Wu, M.; Liao, Y.; Li, K.; Li, L.; Xu, X. Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway. Biosci. Rep. 2017, 37, BSR20170658. [Google Scholar] [CrossRef] [PubMed]
- Vallée, A.; Guillevin, R.; Vallée, J.N. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev. Neurosci. 2018, 29, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.J.; Yang, H.L.; Tsai, Y.C.; Hung, P.C.; Chang, S.H.; Lo, H.W.; Shen, P.C.; Chen, S.C.; Wang, H.M.; Wang, S.Y.; et al. Lucidone protects human skin keratinocytes against free radical-induced oxidative damage and inflammation through the up-regulation of HO-1/Nrf2 antioxidant genes and down-regulation of NF-κB signaling pathway. Food Chem. Toxicol. 2013, 59, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Blitsman, Y.; Hollander, E.; Benafsha, C.; Yegodayev, K.M.; Hadad, U.; Goldbart, R.; Traitel, T.; Rudich, A.; Elkabets, M.; Kost, J. The potential of PIP3 in enhancing wound healing. Int. J. Mol. Sci. 2024, 25, 1780. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Peng, D.; Wang, J.; Reinach, P.S.; Yan, D. Unraveling the intricate network of lncRNAs in corneal epithelial wound healing: Insights into the regulatory role of linc17500. Transl. Vis. Sci. Technol. 2024, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C.; Fan, P.; Yang, Y.; Hu, C. MiR-488-3p facilitates wound healing through CYP1B1-mediated Wnt/β-catenin signaling pathway by targeting MeCP2. J. Diabetes Investig. 2024, 15, 145–158. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Du, C.C.; Xuan, Y.; Huang, D.; Qi, B.; Shi, Y.; Shen, X.; Zhang, Y.; Fu, Y.; Chen, Y.; et al. Bilirubin/morin self-assembled nanoparticle-engulfed collagen/polyvinyl alcohol hydrogel accelerates chronic diabetic wound healing by modulating inflammation and ameliorating oxidative stress. Int. J. Biol. Macromol. 2024, 26, 129704. [Google Scholar] [CrossRef] [PubMed]
- Zulkefli, N.; CheZahari, C.N.M.; Sayuti, N.H.; Kamarudin, A.A.; Saad, N.; Hamezah, H.S.; Bunawan, H.; Baharum, S.N.; Mediani, A.; Ahmed, Q.U.; et al. Flavonoids as potential wound-healing molecules: Emphasis on pathways perspective. Int. J. Mol. Sci. 2023, 24, 4607. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Balahbib, A.; Khalid, A.; Makeen, H.A.; Alhazmi, H.A.; Albratty, M.; El Omari, N. Clinical applications and mechanism insights of natural flavonoids against type 2 diabetes mellitus. Heliyon 2024, 10, e29718. [Google Scholar] [CrossRef]
- Lin, C.Y.; Ni, C.C.; Yin, M.C.; Lii, C.K. Flavonoids protect pancreatic beta-cells from cytokines mediated apoptosis through the activation of PI3-kinase pathway. Cytokine 2012, 59, 65–71. [Google Scholar] [CrossRef]
- Shanmugasundaram, D.; Roza, J.M. Assessment of anti-inflammatory and antioxidant activities of a proprietary preparation of quercetin–rutin blend (SophorOx™) in exercised rats. Sci. World J. 2024, 2024, 9063936. [Google Scholar] [CrossRef]
- Donnapee, S.; Li, J.; Yang, X.; Ge, A.H.; Donkor, P.O.; Gao, X.M.; Chang, Y.X. Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine. J. Ethnopharmacol. 2014, 157, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Morguette, A.E.B.; Bartolomeu-Gonçalves, G.; Andriani, G.M.; Bertoncini, G.E.S.; Castro, I.M.D.; Spoladori, L.F.D.A.; Yamada-Ogatta, S.F. The antibacterial and wound healing properties of natural products: A review on plant species with therapeutic potential against Staphylococcus aureus wound infections. Plants 2023, 12, 2147. [Google Scholar] [CrossRef] [PubMed]
- Chaibub, B.A.; Parente, L.M.L.; Lino Jr, R.D.S.; Cirilo, H.N.C.; Garcia, S.A.D.S.; Nogueira, J.C.M.; Bara, M.T.F. Investigation of wound healing activity of Lafoensiapacari (Lythraceae) leaves extract cultivated in Goiás state, Brazil. Rodriguésia 2020, 71, e00992019. [Google Scholar] [CrossRef]
- Noureen, S.; Noreen, S.; Ghumman, S.A.; Batool, F.; Bukhari, S.N.A. The genus Cuscuta (Convolvolaceac): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran J. Basic Med. Sci. 2019, 22, 1225. [Google Scholar]
- Akash, M.S.H.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of Type 2 diabetes mellitus. J. Cell. Biochem. 2013, 114, 525–531. [Google Scholar] [CrossRef]
- Attah, M.O.; Jacks, T.W.; Jacob, A.; Eduitem, O.; John, B. The effect of Aloe vera on cutaneous wound healing and wound contraction rate in adult rabbits. Nova J. Med. Biol. Sci. 2016, 5, 1–8. [Google Scholar]
- Bahmani, M.; Eftekhari, Z.; Saki, K. Chicory: A review on ethnobotanical effects of Cichoriu mintybus L. J. Evid. Based Complement. Alternat. Med. 2015, 2015, 1–12. [Google Scholar]
- Biswas, T.K.; Maity, L.N.; Mukherjee, B. Wound healing potential of Pterocarpus santalinus. Int. J. Low Extrem. Wounds 2002, 3, 143–150. [Google Scholar] [CrossRef]
- Jha, R.K.; Garud, N.; Nema, R.K. Excision and incision wound healing activity of flower head alcoholic extract of Sphaeranthus indicus in albino rats. Glob. J. Pharmacol. 2009, 3, 32–37. [Google Scholar]
- Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer: Berlin/Heidelberg, Germany, 2007; pp. 399–400. [Google Scholar]
- Kim, L.E.; Lee, J.H.; Kim, S.H.; Jung, Y. Skin regeneration with self-assembled peptide hydrogels conjugated with substance in a diabetic rat model. Tissue Eng. 2018, 24, 21–33. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Brendt, A.R.; Deery, H.G.; Embil, W.S.; Joseph, A.W.; Karchmer, B.A. Diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 2004, 39, 885–910. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, S.; Singhai, A.K. Wound healing effect of flavonoid-rich fraction and luteolin isolated from Martyniaannua on streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Med. 2013, 6, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.; Nayeen, N.; Kamati, J.V.; Asad, M. Evaluation of Tectona grandis leaves for wound healing activity. Pak. J. Pharm. Sci. 2005, 20, 120–124. [Google Scholar]
- Mali, P.C.; Ansari, A.S.; Chaturvedi, M. Antifertility effect of chronically administered Martynia annua root extract on male rats. J. Ethnopharmacol. 2002, 82, 61–67. [Google Scholar] [CrossRef]
- Maquart, F.R.X.; Bellon, G.; Gillery, P.; Wegrowski, Y.; Borel, J.P. Stimulation of collagen synthesis in fibroblast cultures by a triterpene extracted from Centella asiatica. Connect. Tissue Res. 1990, 24, 197–206. [Google Scholar] [CrossRef]
- Nayak, S. Influence of ethanol extract of Vinca rosea on wound healing in diabetic rats. Online J. Biol. Sci. 2006, 6, 51–55. [Google Scholar] [CrossRef]
- Nganlasom, J.; Suttitum, T.; Jirakulsomchok, D.; Puapatrol, A. Effects of Centella asiatica leaves and Garcinia mangostana hull on the healing of dermal wounds in diabetic rats. Srinagarind Med. J. 2008, 23, 402–407. [Google Scholar]
- Perez-Gutierrez, R.M.; Vargas, R.S. Evaluation of the wound properties of Acalypha langiana in diabetic rats. Fitoterapia 2006, 77, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A.; Hamedi, B. Wound healing activity of Malva sylvestris and Punica granatum in alloxan-induced diabetic rats. Acta Pol. Pharm. Drug Res. 2010, 67, 51–56. [Google Scholar]
- Rasinenis, K.; Bellamkonda, R.; Singareddy, S.R.; Desireddy, S. Antihyperglycemic activity of Catharanthus roseus leaf powder in STZ-induced diabetic rats. Pharmacogn. Res. 2010, 2, 195–201. [Google Scholar]
- Singh, S.N.; Vats, P.; Suri, S.; Shyam, R.; Kumria, M.M.L.; Ranganathan, S.; Sridharan, K. Effect of an extract of C. roseus on enzymatic activities in STZ induced diabetic rats. J. Ethnopharmacol. 2001, 76, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Suh, D.H.; Lee, S.; Heo, D.Y.; Kim, Y.S.; Cho, S.K.; Lee, S.; Lee, C.H. Metabolite profiling of red and white Pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity. J. Agric. Food Chem. 2014, 64, 8764–8771. [Google Scholar] [CrossRef] [PubMed]
- Minutti, C.M.; Knipper, J.A.; Allen, J.E.; Zaiss, D.M. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 2017, 61, 3–11. [Google Scholar] [CrossRef]
- Murray, P.J.; Allen, J.E.; Biswas, S.K. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Gause, W.C.; Wynn, T.A.; Allen, J.E. Type 2 immunity and wound healing: Evolutionary refinement of adaptive immunity by helminths. Nat. Rev. Immunol. 2013, 13, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ding, J.; Ma, Z.; Iwashina, T.; Treet, E.E. Alternatively activated macrophages derived fromTHP-1cells promote the fibrogenic activities of human dermal fibroblasts. Wound Repair Regen. 2017, 25, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Knipper, J.A.; Willenborg, S.; Brinckmann, J. Interleukin-4 receptor a signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity 2015, 43, 803–816. [Google Scholar] [CrossRef]
- Minutti, C.M.; Jackson-Jones, L.H.; Garc´ıa-Fojeda, B. Local amplifiers of IL-4Ra-mediated macrophage activation promote repair in lung and liver. Science 2017, 356, 1076–1080. [Google Scholar] [CrossRef]
- Weng, S.Y.; Wang, X.; Vijayan, S. IL-4 receptor alpha signalling through macrophages differentially regulates liver fibrosis progression and reversal. E. Bio. Medicine. 2018, 29, 92–103. [Google Scholar]
- Campbel, I.L.; Saville, C.R.; Murray, P.J.; Cruickshank, S.M.; Hardman, M.J. Local arginase 1 activity is required for cutaneous wound healing. J. Investig. Dermatol. 2013, 133, 2461–2470. [Google Scholar] [CrossRef]
- Pine, G.M.; Batugedara, H.M.; Nair, M.G. Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders. Cytokine 2018, 110, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, T.E.; Rückerl, D.; Logan, N.; Duncan, S.; Wynn, T.A.; Allen, J.E. Ym1 induces RELMα and rescues IL-4Rα deficiency in lung repair during nematode infection. PLoS Pathog. 2018, 14, e1007423. [Google Scholar] [CrossRef] [PubMed]
- Batugedara, H.M.; Li, J.; Chen, G. Hematopoietic cell-derived RELMα regulates hookworm immunity through effects on macrophages. J. Leukoc. Biol. 2018, 104, 855–869. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, S.H.; Jang, J.C.; Odegaard, J.I.; Nair, M.G. Comparison of RELMα and RELMβ single- and double-gene-deficient mice reveals that RELMα expression dictates inflammation and worm expulsion in hookworm infection. Infect. Immun. 2016, 84, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.G.; Herbert, D.R. Immune polarization by hook worms: Taking cues from T helper type 2, type 2 innate lymphoid cells and alternatively activated macrophages. Immunology 2016, 148, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, S.J.; Ruckerl, D.; Cook, P.C. Local macrophage proliferation, rather than recruitment from the blood is a signature of TH2 inflammation. Science 2011, 332, 1284–1288. [Google Scholar] [CrossRef]
- Sheokand, B.; Vats, M.; Kumar, A.; Srivastava, C.M.; Bahadur, I.; Pathak, S.R. Natural polymers used in the dressing materials for wound healing: Past, present and future. J. Polym. Sci. 2023, 61, 1389–1414. [Google Scholar] [CrossRef]
- Sivakumar, P.M.; Prabhakar, P.K.; Cetinel, S.R.N.; Prabhawathi, V. Molecular insights on the therapeutic effect of selected flavonoids on diabetic neuropathy. Mini Rev. Med. Chem. 2022, 22, 1828–1846. [Google Scholar]
- Kim, E.K.; Kwon, K.B.; Song, M.Y.; Han, M.J.; Lee, J.H.; Lee, Y.R.; Lee, J.H.; Ryu, D.G.; Park, B.H.; Park, J.W. Flavonoids protect against cytokine-induced pancreatic beta-cell damage through suppression of nuclear factor kappa-B activation. Pancreas 2007, 35, e1–e9. [Google Scholar] [CrossRef]
- Shanmugasundaram, D.; Roza, J.M. Assessment of anti-inflammatory and antioxidant activity of quercetin-rutin blend (SophorOx™)—An in vitro cell based assay. J. Complement. Integr. Med. 2022, 19, 637–644. [Google Scholar] [CrossRef]
- Nitthikan, N.; Preedalikit, W.; Supadej, K.; Chaichit, S.; Leelapornpisid, P.; Kiattisin, K. Exploring the wound healing potential of a Cuscuta chinensis Extract-Loaded Nanoemulsion-Based Gel. Pharmaceutics 2024, 16, 573. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, H.W.; Zhao, Z.Y.; Li, L.; Song, C.; Xiong, J.; Yang, G.X.; Zhu, Q.; Hu, J.F. Carbopol 940-based hydrogels loading synergistic combination of quercetin and luteolin from the herb Euphorbia humifusa to promote Staphylococcus aureus infected wound healing. RSC Med. Chem. 2024, 15, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.O.M.; Vilegas, W.; Tangerina, M.M.P.; Arunachalam, K.; Balogun, S.O.; Orlandi-Mattos, P.E.; Colodel, E.M.; Martins, D.T.O.; Lafoensiapacari, A. Wound healing activity and mechanism of action of standardized hydroethanolic leaves extract. J. Ethnopharmacol. 2018, 219, 337–350. [Google Scholar] [CrossRef]
- Yen, F.L.; Wu, T.H.; Lin, L.T.; Cham, T.M.; Lin, C.C. Concordance between antioxidant activities and flavonol contents in different extracts and fractions of Cuscuta chinensis. Food Chem. 2008, 108, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.D.F.; Campos, M.G.N.; Ribeiro, G.P.; Salles, B.C.C.; Cardoso, N.S.; Ribeiro, J.R.; Souza, R.M.; Leme, K.C.; Soares, C.B.; de Oliveira, C.M.; et al. Development of a chitosan hydrogel containing flavonoids extracted from Passiflora edulis leaves and the evaluation of its antioxidant and wound healing properties for the treatment of skin lesions in diabetic mice. J. Biomed. Mater. Res. A 2020, 108, 654–662. [Google Scholar] [CrossRef]
- Kant, V.; Jangir, B.L.; Sharma, M.; Kumar, V.; Joshi, V.G. Topical application of quercetin improves wound repair and regeneration in diabetic rats. Immunopharmacol. Immunotoxicol. 2021, 43, 536–553. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, X.; Xu, Z.; Yi, C. ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. Int. J. Pharm. 2017, 534, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.E.; Jin, H.E. Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics 2019, 11, 575. [Google Scholar] [CrossRef]
- Yang, L.; Sheldon, B.; Webster, T. Nanophase ceramics for improved drug delivery: Current opportunities and challenges. Am. Ceram. Soc. Bull. 2010, 89, 24–32. [Google Scholar]
- Kraft, J.C.; Freeling, J.P.; Wang, Z.; Ho, R.J. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 2014, 103, 29–52. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lin, J.H.; Hong, Y.S. Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin Nanoparticles in chitosan dressings for wound regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Blaževic, F.; Milekic, T.; Romic, M.D.; Juretic, M.; Pepic, I.; Filipovic-Grcic, J.; Lovric, J.; Hafner, A. Nanoparticle-mediated interplay of chitosan and melatonin for improved wound epithelialisation. Carbohydr. Polym. 2016, 146, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Chereddy, K.K.; Vandermeulen, G.; Préat, V. PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen. 2016, 24, 223–236. [Google Scholar] [CrossRef]
- Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-based nanoparticles: A new paradigm in biomedical applications. TrAC Trends Anal. Chem. 2016, 80, 30–40. [Google Scholar] [CrossRef]
- Adhikary, K.; Sarkar, R.; Maity, S.; Banerjee, I.; Chatterjee, P.; Bhattacharya, K.; Ahuja, D.; Sinha, N.K.; Maiti, R. The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: A narrative review. J. Basic Clin. Physiol. Pharmacol. 2024, 35, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, K.; Banerjee, P.; Barman, S.; Bandyopadhyay, B.; Bagchi, D. Nutritional Aspects, Chemistry Profile, Extraction Techniques of Lemongrass Essential Oil and It’s Physiological Benefits. J. Am. Nutr. Assoc. 2024, 43, 183–200. [Google Scholar] [CrossRef]
- Das, P.; Mukherjee, T.; Adhikary, K.; Mohanty, S. Progressive approaches in adipose radio imaging: Cancer utilization and necessity for advancements. Infect. Disord. Drug Targets 2024, 25, e220524230197. [Google Scholar] [CrossRef]
- Adhikary, K.; Mohanty, S.; Bandyopadhyay, B.; Maiti, R.; Bhattacharya, K.; Karak, P. β-Amyloid peptide modulates peripheral immune responses and neuroinflammation in rats. Biomol. Concepts 2024, 15, 20220042. [Google Scholar] [CrossRef]
- Mukherjee, T.; Das, T.; Basak, S.; Mohanty, S.; Adhikary, K.; Chatterjee, P.; Maiti, R.; Karak, P. Mucormycosis during COVID-19 era: A retrospective assessment. Infect. Med. 2024, 3, 100112. [Google Scholar] [CrossRef]
- Mukherjee, T.; Mohanty, S.; Kaur, J.; Das, M.; Adhikary, K.; Chatterjee, P.; Maiti, R. Exploring small-molecule inhibitors targeting MAPK pathway components: Focus on ERK, MEK1, and MEK2 kinases in cancer treatment. Chem. Biol. Lett. 2024, 11, 659. [Google Scholar] [CrossRef]
- Chowdhury, M.; Chowdhury, S.; Bhattacharya, A.; Roy, C.; Sarkar, R.; Adhikary, K.; Maiti, R.; Karak, P. Natural antioxidants and nutraceuticals to fight against common human diseases: An overview. Eur. Chem. Bull. 2023, 12, 1505–15021. [Google Scholar]
- Adhikary, K.; Chatterjee, A.; Banerjee, P. An updated review on nanomaterials for biomedical advancements: Concepts and applications. Biosci. Biotech. Res. 2021, 14, 1428–1434. [Google Scholar] [CrossRef]
- Banerjee, P.; Adhikary, K.; Chatterjee, A.; Sarkar, R.; Bagchi, D.; Ghosh, N.; Das, A. Digestion and gut microbiome. In Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Health; Academic Press: Cambridge, MA, USA, 2022; pp. 123–140. [Google Scholar]
- Banerjee, P.; Adhikary, K.; Sarkar, R.; Chakraborty, S.; Jana, S. Prion Diseases: A Rare Group of Neurodegenerative Disorders. Inviral, Parasitic, Bacterial, and Fungal Infections; Academic Press: Cambridge, MA, USA, 2023; pp. 651–666. [Google Scholar]
- Herman, A.; Herman, A.P. Herbal products and their active constituents for diabetic wound healing-preclinical and clinical studies: A systematic review. Pharmaceutics 2023, 15, 281. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.S.; Chien, H.F.; Lu, W. Plectranthus amboinicus and Centella asiatica cream for the treatment of diabetic foot ulcers. Evid. Based Complement. Alternat. Med. 2012, 2012, 418679. [Google Scholar] [CrossRef]
- Abbas, M.; Uçkay, I.; Lipsky, B.A. In diabetic foot infections antibiotics are to treat infection, not to heal wounds. Expert Opin. Pharmacother. 2015, 16, 821–832. [Google Scholar] [CrossRef]
- Game, F.L.; Hinchliffe, R.J.; Apelqvist, J.; Armstrong, D.G.; Bakker, K.; Hartemann, A.; Löndahl, M.; Price, P.E.; Jeffcoate, W.J. A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metab. Res. Rev. 2012, 28, 119–141. [Google Scholar] [CrossRef]
- Wang, Z.; Hasan, R.; Firwana, B.; Elraiyah, T.; Tsapas, A.; Prokop, L.; Mills, J.L.; Murad, M.H. A systematic review and meta-analysis of tests to predict wound healing in diabetic foot. J. Vasc. Surg. 2016, 63, 29S–36S.e2. [Google Scholar] [CrossRef]
- Huynh, P.; Phie, J.; Krishna, S.M.; Golledge, J. Systematic review and meta-analysis of mouse models of diabetes-associated ulcers. BMJ Open Diabetes Res. Care 2020, 8, e000982. [Google Scholar] [CrossRef]
- Elraiyah, T.; Domecq, J.P.; Prutsky, G.; Tsapas, A.; Nabhan, M.; Frykberg, R.G. A systematic review and meta-analysis of débridement methods for chronic diabetic foot ulcers. J. Vasc. Surg. 2016, 63, 37S–45S.e2. [Google Scholar] [CrossRef] [PubMed]
- Jehan, B.A.; Huda, A.; Ahmed, S.; Ali, A.A.; Sahar, S.A. Effect of 3-hydrazinylquinoxaline-2-thiol hydrogel on skin wound healing process in diabetic rats. Sci. Rep. 2024, 14, 1. [Google Scholar]
- Qiao, Z.; Wang, X.; Zhao, H.; Deng, Y.; Zeng, W.; Yang, K.; Chen, H.; Yan, Q.; Li, C.; Wu, J.; et al. The effectiveness of cell-derived exosome therapy for diabetic wound: A systematic review and meta-analysis. Ageing Res. Rev. 2023, 85, 101858. [Google Scholar] [CrossRef] [PubMed]
- Malone, M.; Schwarzer, S.; Walsh, A.; Xuan, W.; Al Gannass, A.; Dickson, H.G.; Bowling, F.L. Monitoring wound progression to healing in diabetic foot ulcers using three-dimensional wound imaging. J. Diabetes Complicat. 2020, 34, 107471. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, Z.A.; Adebayo, O.; Ahmed, Z. Localised insulin administration for wound healing in non-diabetic adults: A systematic review and meta-analysis of randomised controlled trials. Wound Repair Regen. 2023, 31, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lee, M.J.; Byun, S.B. Analysis of the factors of wound healing problems after transtibial amputation in diabetic patients. Int. J. Low Extrem. Wounds 2023. [Google Scholar] [CrossRef]
Sl. No. | Name of Herbal Plants | Parts Use | Phytochemicals | Traditional Application and Pharmacological Impacts | Refs. |
---|---|---|---|---|---|
1. | Rosmarinus officinalis | Aerial parts | Alkaloids, flavonoids | Diabetic wound treatment, antimicrobial, anti-inflammatory, and antioxidant activities | [2] |
2. | Carica papaya | Unripe fruits | Terpenoids, phenolics, and alkaloids | Wound healing, antimicrobial, antioxidant, and anti-inflammatory activities | [9,11,12] |
3. | Radix rehmanniae | Leaves | Tannins, saponins, xanthones, and alkaloids | Diabetic foot ulcer healing, tissue regeneration, angiogenesis, and inflammation control, antimicrobial, anti-cancer, antioxidant | [8] |
4. | Annona squamosa | Leaves | Glycosides, phenolic, alkaloids | Diabetic ulcer treatment, fever treatment, anti-inflammatory, anti-cancer, anti-allergic, antiviral, and antioxidative | [13,14] |
5. | Azadirachta indica | Leaves | Flavonoid rutin like quercetin and tetranortriterpenoid meliacinolin, glycocides | Diabetic wounds, anti-inflammatory, anti-cancer, anti-allergic, antiviral, and antioxidative | [15,16] |
6. | Annona squamosa | Leaves | Flavonoids like quercetin and isoquercetin, glycocides | Diabetic wounds | [17,18] |
7. | Abrus precatorius | Leaves, seeds | Flavonoids, triterpene glycosides, abrin, and alkaloids | Diabetes, wounds, tetanus fever, cold, cough | [7] |
8. | Acacia arabica | Bark, roots | Alkaloids, flavonoids, and glycosides | Diabetes, wound, diarrhea, diuretic, liver tonic | [19] |
9. | Catharanthus roseus | Leaves | Flavonoids and alkaloids | Chronic diabetic wounds | [20] |
10. | Centella asiatica | Leaves | Alkaloids, flavonoids, and glycosides | Diabetic dermal wound healing, antibacterial, antioxidant, and anti-inflammatory activities | [21] |
11. | Acalypha langiana | Fresh leaves | Flavonoids, triterpene, and glycosides | Diabetic wound healing, antibacterial, increased tissue regeneration | [22] |
12. | Hylocereus undatus | Leaves, flowers, and fruits | Flavonoids, alkaloids, saponins, and steroids | Antibacterial, increased tensile strength | [23] |
13. | Punica granatum | Flowers | Polyphenolic compounds found in P. granatum include pomegranatate, ellagic acid, ethyl brevifolincarboxylate, and maslinic and urolic acids, as well as daucostero. | Astringent and hemostatic agent, possessing antibacterial, antifungal, and antiviral properties. Utilized as a remedy for cut wounds, diarrhea, and digestive issues. | [24] |
14. | Aloe vera | Leaves | Flavonoids, anthraquinones, steroids, tannins, chromones, alkaloids, anthrones, and phenols | Wound-healing activity, antidiabetic, anti-inflammatory, and antibacterial activities | [6] |
15. | Martynia annua | Flowers | Anthocyanin, niacin malvin, malvaline malvidin 3-(6î-malonylglucoside)-5-glucoside, and folic acid | Agents with antibacterial, antifungal, and antiviral properties are commonly employed in the management of wounds. | [24] |
Phytochemical | Source | Mechanisms of Action | Affects | Refs. |
---|---|---|---|---|
Curcumin | Curcuma longa | - Blocks NF-κB pathway - Regulates TLRs, MAPK, and AP-1 - PPARγ inhibits the activity of NF-κB - Regulates the JAK/STAT pathway - Prevents NLRP3 inflammasome construction and activation | - Anti-inflammatory - Antioxidant - Antimicrobial - Angiogenic - Enhances wound healing | [25,26,27,28,29,30,31,32] |
Picroliv | Picrorhiza kurroa | - Improves angiogenesis - Promotes re-epithelialization and neovascularization - Increases VEGF and insulin-like growth factor production | - Enhances wound healing | [25,26,27,28,29,30,31,32] |
Arnebin-1 | Arnebia nobilis | Traditional use in wound healing | - Enhances wound healing | [40] |
Medicinal Plants with Family | Utilized Segments | Type of Extractions | Phytochemicals/Bioactive Compounds | Effects |
---|---|---|---|---|
Aloe vera (Asphodelaceae) | Leaves | Methanolic extracts | Polysaccharide | Antidiabetic, inhibiting the enzymes named alpha-amylase and alpha-glucosidase |
Annona squamosa (Annonaceae) | Seeds, foliage | Ethanolic extracts | Phenols | Increase the synthesis of collagen along with wound contraction |
Acalypha langiana (Euphorbiaceae) | Leaves | Aqueous extracts | Flavonoids | Enhance the regeneration of tissue |
Catharanthus roseus (Apocynaceae) | Leaves | Ethanolic extracts | Alkaloids, tannins, triterpenoids | Increased incidence of epithelialization due to astringent and antibacterial actions |
Carica papaya (Caricaceae) | Leaves | Ethanolic extracts | Flavonoids, alkaloids, glycoside, phenols | Hypoglycemic and antimicrobial effects |
Centella asiatica (Apiaceae) | Foliage | Ethanolic extracts | Polyphenolic compounds | Fibroblast proliferation, collagen formation |
Martynia annua (Martyniaceae) | Whole plants | Methanolic extracts | Tannins, terpenoids, flavonoids, glycosides, phenolic compounds | Antidiabetic, antimicrobial, and antioxidant properties |
Punica granatum (Punicaceae) | Leaves | Methanolic extracts | Flavonoids | Antidiabetic, antimicrobial effects |
Plant Source | Main Bioactive Components | Biological Activity | Mechanism of Action | In vivo Wound Model, Doses and Routes of Administration |
---|---|---|---|---|
Achillea millefolium | Flavonoids (chlorogenic acid, apigenin, artemetin, luteolin, quercetina and shaftoside) | Antibacterial Anti-inflammatory Re-epithelialization process | Modulates inflammatory cytokines and growth factors, activates Akt signaling pathways, stimulates collagen expression, stimulates keratinocyte differentiation and motility, reduces inflammatory mediators NO and PGE2. | Full-thickness incisional wound in Sprague Dawley rats—topical: 3% aqueous extract (AAE). |
Aloe vera | Flavonoids (aloin, aleosin, emodin, rhein) Polysaccharides (acemannan, acetylated polymannan, and glucomannan) | Antibacterial Anti-inflammatory Re-epithelialization process | Modulates the inflammatory response, modulates signaling protein phosphorylation, stimulates collagen deposition and angiogenesis, strongly promotes fibroblast proliferation, and moderately stimulates keratinocyte migration. | Full-thickness wound in Wistar rats—topical: 25–50 mg/mL in gel. Full-thickness wounds in hairless mice—topical: 0.1% and 0.5% w/w. Full-thickness wounds in mice—topical: 10 and 50 mg/kg. Burn wounds in BALB/c mice—topical: aloe-emodin 12% w/w. |
Bletilla striata | Flavonoids (anthocyanins) Polysaccharides (glucomannan) Triterpenoids Stilbenoids (bibenzyl, bletilol D, bletilol E, dihydrophenanthrene, and phenanthrene) | Antimicrobial and antiviral Antioxidative Anti-aging Anti-inflammatory Re-epithelialization process Hemostatic activity | Promotes expression of mediators of the inflammatory response (TNF-α, IL-1β, and IFN-γ); increases NO and promotes neutrophils, monocytes, and macrophages chemotaxis; promotes epithelial cell growth and fibroblast proliferation. | Partial-thickness burn wound model in mice—topical: 1 mg/mL BSP extract or BSP polysaccharide residue extract or mix |
Calendula officinalis | Triterpenoids Flavonoids (rosmarinic acid, caffeic acid, 5-O-caffeoylquinic acid, isorhamnetin-3-oglucoside, isorhamnetin-3-orutinoside, kaempferol-3-orutinoside, quercetin-3-oglucoside, and quercetin-3-orutinoside) Coumarines Quinones | Anti-inflammatory Re-epithelialization process | Promotes expression of mediators of the inflammatory response; increases keratinocyte and fibroblast proliferation; stimulates collagen production and angiogenesis; inhibits lipoxygenase activity; reduces glutathione levels. | Full-thickness excisional wound in BALB/c—topical: 150 mg/kg BW ethanolic or water extract ointment. Metallic punch Wistar rats—topical: 100 μL of aqueous solution of 1% ethanolic extract. Incisional wound in Sprague Dawley rats—topical: 5–10% gel. Full-thickness wound in Wistar rats—topical: wound dressing in nanofibers with 2% Calendula officinalis extract. |
Casearia sylvestris | Triterpenoids (clerodane diterpenes) Phenolic acids | Anti-inflammatory | Reduces early and late edema; reduces myeloperoxidase activity. | Full-thickness lesions—topical: 0.1, 0.3, 1.0 mg/site extract. Second-degree burns in Wistar rats—topical: biofilm with 1 g of lyophilized extract or spray with extract. |
Crocus sativus | Carotenoids (crocin, crocetin, picrocrocin and safranal) Monoterpenoids Flavonoids (kempherol and quercetin) Phenolic acids | Fibroblasts from newborn mice: hydrogel with 160 mg/L crocin from saffron. Human dermal fibroblasts: 3.12–50 g/mL for 6–24 h C2C12, MCF7, HCT116 cell lines: 125 ug/mL of saffron anther extract | Reduces the level of pro-inflammatory cytokines (TNF-α and IL-6); increases level of anti-inflammatory cytokines (IL-4 and IL-10); inhibits lipid peroxidation; enhances vascularization; increases fibroblast proliferation. | Second-degree burns in Wistar rats—topical: cream with 20% pollen saffron. Full-thickness wound in Sprague Dawley rats—topical: pomade with 20% saffron extract |
Curcuma longa | Curcuminoids (bisdemethoxycurcumin, curcumin, and demethoxycurcumin) | Antioxidant Radical-scavenging Anti-inflammatory Re-epithelialization process | Regulates many genes implicated in the initiation of inflammatory responses (NF-ƙB, AKT, PI3K, IKK); enhances fibroblast migration, granulation tissue formation, collagen deposition; increases TGF-β production; increases fibroblast proliferation. | Full-thickness wound in Balb/c mice—topical: gel 3% curcumin. Full-thickness wound in Wistar rats—topical: PCL nanofibers, 10% curcumin. Full-thickness wound in Wistar rats—topical: PVA nanofibers, 1% curcumin. Full-thickness wound model in SD rats—topical: 100–200 μg/mL curcumin nanoparticle-loaded dermal patch |
Glycyrrhiza glabra | Flavonoids Terpenoids (glycyrrhizic acid, saponins, and triterpene) Chalcones (glycyglabrone and licochalcone C) | Antimicrobial Anti-inflammatory Antioxidant Re-epithelialization process | Increases collagen deposition; increases the wound-healing rate; reduces superoxide anions; inhibits NO production; increases fibroblast proliferation. | Sprague Dawley rat wounds—topical: 3% extract in cream. Guinea pig full-thickness wound—topical: 5% and 10% extract in cream. |
Malva sylvestris | Polysaccharides Flavonoids (malvidin, malvin, delphinidin, genistein, myricetin, apigenin, quercetin, and kaempferol) Terpenoids (monoterpenes, diterpenes, sesquiterpenes, and norterpenes) | Antibacterial Antioxidant Anti-aging Anti-inflammatory | Modulates the inflammatory response; increases collagen deposition; Enhances vascularization; increases the wound-healing rate. | BALB/c mice cut wound—topical: 1% extract in cream. Second-degree burn wounds in rats—topical: 1–5–10% extract in cream. Diabetic streptozotocin-induced wound in Wistar rats—topical: 5–20% extract containing nanofibers |
Plantago L. | Monoterpenoids (aucubin, acteoside, calceorioside B, catalpol, homoplantaginin, and plantamajoside) | Antibacterial Antioxidant Anti-inflammatory | Inhibits NO production; reduces superoxide anions; reduces pro-inflammatory cytochine levels (PGE2, TNF-α); decreases fibroblasts H2O2 cytotoxicity. | |
Salvia officinalis | Terpenes (1,8-cineole) Oxysesquiterpenes (camphor, nonacosane, and pentacosane viridiflorol) | Anti-inflammatory Antimicrobial Antioxidant | Reduces pro-inflammatory cytokines; downregulates mRNA expression levels of IL-6, IL-1β, and TNF-α; augments fibroblast proliferation via enhancing cyclin-D1 expression. | BALB/c mouse excisional splinting model—topical: 0.5% w/w dry extract in cream. BALB/c mouse full-thickness wounds—topical: 2% and 4% essential oil ointment. Wistar rat wound models—topical: 1%, 3%, and 5% hydroalcoholic extract. Excision on streptozotocin-induced diabetic rats—topical: 0.5% and 1% essential oil. |
Rosmarinus officinalis | Flavonoids (diosmin, eriocitrin, genkwanin isoscutellarein 7-O-glucoside, hispidulin 7-oglucosidehesperidin, and luteolin 3-o-β-D-glucuronide) | Antimicrobial Antioxidant Anti-inflammatory | Inhibits NO production; reduces inflammatory cytokine expression (IL-1β, IL-6, TNF-α); reduces expression of iNOS, COX-2, PIB and NFkβ/p65. | Full-thickness excision cutaneous wounds in alloxan-induced diabetic BALB/c mice—topical: 100% essential oil—intraperitoneal injection: 0.2 mL, 10% (v/v). Excision on streptozotocin-induced diabetic rats—topical: 100% essential oil. Full-thickness excision wound in Sprague Dawley rats—topical: 10% rosemary essential oil in chitosan. |
Types of Study | Objective | Key Outcomes | Refs. |
---|---|---|---|
Meta-analysis | Mechanism of ROS in diabetic ulcer wounds. | Origin of diabetes mellitus | [1,2,3,4,5] |
Types of various pharmaceutical compounds in diabetic wound healing. | Mechanism of diabetic wound healing by various pharmaceutical compounds | [6,8,9,12,16,17,19,20,21,22,23,24] | |
Phytochemicals regulate the human immune system and metabolic pathways. | Role of interleukin, cytokines, transcription factors | [25,26,27,28,29,30,31] | |
Regulation of phytochemicals in AP-1, NF-kβ, ERK1/2-MAPK, PPAR gamma, JAK-STAT pathway. | Role and regulation of signaling pathways | [25,32,40] | |
Systematic review | To create solutions that address elements of cell biology and wound biochemistry related to chronic wound healing. | There are several challenges in this topic when analyzing the data, especially since there are few controlled studies and most of them have low methodological quality. | [200] |
Noninvasive screening assessments for predicting wound healing and the risk of amputation in diabetic foot ulcers. | Numerous assessments may forecast wound healing in diabetic foot ulcers; yet, the majority of existing information focuses only on transcutaneous oxygen measurement and the ankle–brachial index. The quality of the evidence is inadequate, necessitating more study to provide superior comparative effectiveness data. | [201] | |
To evaluate the impairment of wound healing in diabetic mice models and to assess the quality of previous studies. | Numerous rodent models of diabetes may mimic poor wound healing; however, these models still need to be refined to make them more clinically relevant. | [202] | |
There are now many techniques for the debridement of diabetic foot ulcers. It is unclear how effective any of these approaches is in comparison. | Due to methodologic constraints and imprecision, comparative efficacy evidence between some approaches and supporting data for others is poor. Thus, current debridement methods should be based on competence, patient preferences, clinical context, and cost. | [203] | |
To examine the relative benefits of hydrogel dressings against traditional dressings in the management of diabetic foot ulcers. | The meta-analysis demonstrated that hydrogel dressings are superior to traditional dressings in the treatment of diabetic foot ulcers (DFUs). | [204] | |
Statistical analysis | To evaluate the efficacy of exosomes in the treatment of diabetic wounds. | In terms of wound-healing rate (SMD = 5.42; 95% CI = 4.40–6.44; p < 0.00001), neovascular density (SMD = 5.48; 95% CI = 4.31–6.64; p < 0.00001), re-epithelialization rate (SMD = 5.06; 95% CI = 3.75–6.37; p < 0.00001), collagen deposition (SMD = 4.78; 95% CI = 3.58–5.98; p < 0.00001) were all shown to be superior to control therapy in pooled analyses. Furthermore, the exosome therapy group showed a considerable downregulation of inflammatory factor expression. | [205] |
More methods for measuring wounds are now available to doctors because of 3D wound imaging. There is currently no information available to help physicians determine which 3D measures might provide the most accurate indicator of a wound’s ability to heal. | Each wound measurement showed a linear healing slope with a value larger than R 0.70 and a statistical significance of p = 0.0001, according to statistical analysis. This shows that each of the five wound parameters may be used as a helpful prognostic indicator while the wound heals. | [206] | |
To investigate how localized insulin injection affects individuals with diabetes’ wound healing and its safety. | The study’s primary outcome examined the rate of wound healing (mm2/day) and found that the insulin-treated group showed a statistically significant mean improvement (IV = 11.84; 95% CI: 0.64–23.04; p = 0.04; I2 = 97%) in comparison to the control group. The secondary outcomes showed that the healing time (days) of the wound does not differ statistically (IV = −5.40; 95% CI: −11.28 to 0.48; p = 0.07; I2 = 89%); the wound area significantly decreases in the insulin group; no side effects are observed when administering localized insulin; and quality of life significantly improves as the wound heals, regardless of insulin. | [207] | |
To pinpoint the causes of wound-healing problems in diabetic patients after transtibial amputation. | Age was a major factor influencing wound-healing issues after TTA in individuals with diabetes, according to statistical analysis (p = 0.007). Nevertheless, comorbidities other than diabetes (p = 0.209), gender (p = 0.677), preoperative anemia (p = 0.102), intraoperative blood transfusion (p = 0.633), the use of antithrombotic or anticoagulant medications (p = 0.556), and the execution of PTA or bypass surgery (p = 0.6) did not significantly alter the severity of wound problems. This research concluded that among diabetes patients undergoing TTA, age was a key determinant influencing wound-healing issues. | [208,209,210,211] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikary, K.; Sarkar, R.; Maity, S.; Sadhukhan, I.; Sarkar, R.; Ganguly, K.; Barman, S.; Maiti, R.; Chakraborty, S.; Chakraborty, T.R.; et al. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals 2024, 17, 1294. https://doi.org/10.3390/ph17101294
Adhikary K, Sarkar R, Maity S, Sadhukhan I, Sarkar R, Ganguly K, Barman S, Maiti R, Chakraborty S, Chakraborty TR, et al. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals. 2024; 17(10):1294. https://doi.org/10.3390/ph17101294
Chicago/Turabian StyleAdhikary, Krishnendu, Riya Sarkar, Sriparna Maity, Ishani Sadhukhan, Riya Sarkar, Krishnendu Ganguly, Saurav Barman, Rajkumar Maiti, Sanjoy Chakraborty, Tandra R. Chakraborty, and et al. 2024. "Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals" Pharmaceuticals 17, no. 10: 1294. https://doi.org/10.3390/ph17101294
APA StyleAdhikary, K., Sarkar, R., Maity, S., Sadhukhan, I., Sarkar, R., Ganguly, K., Barman, S., Maiti, R., Chakraborty, S., Chakraborty, T. R., Bagchi, D., & Banerjee, P. (2024). Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals, 17(10), 1294. https://doi.org/10.3390/ph17101294