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Abstract: Background/Objectives: Hypertrophic cardiomyopathy (HCM) is a common heart disorder
characterized by the thickening of the heart muscle, particularly in the left ventricle, which increases
the risk of cardiac complications. This study aims to analyze the expression of apoptosis-regulating
genes (CASP8, CASP9, CASP3, BAX, and BCL2) in blood samples from HCM patients, to better
understand their potential as biomarkers for disease progression. Methods: Quantitative real-
time PCR (qPCR) was used to evaluate gene expression in blood samples from 93 HCM patients.
The correlation between apoptosis-regulating genes was conducted and clinical parameters were
integrated for feature importance and clustering analysis. Results: Most patients exhibited significant
downregulation of CASP8, CASP9, and CASP3. In contrast, BAX expression was elevated in 71 out
of 93 patients, while BCL2 was increased in 55 out of 93 patients. Correlation analysis revealed
weak negative correlations between the BAX/BCL2 ratio and CASP gene expression. Conclusions:
These findings suggest that reduced expression of apoptotic genes may indicate a protective cellular
mechanism, which could serve as a biomarker for disease progression. Further studies are needed to
investigate the potential for therapeutic modulation of these pathways to improve patient outcomes.

Keywords: hypertrophic cardiomyopathy; apoptosis; CASP3; BCL2; gene expression

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death, with significant vari-
ations in prevalence across different populations and geographic areas [1,2]. As a major
healthcare burden worldwide [3], CVDs encompass a group of conditions characterized by
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heart and blood vessel damage [4], including coronary artery disease, hypertension, heart
failure, heart valve disorders, and others [5]. Among these conditions is cardiomyopathy, a
subset of heart diseases described as disorders of the heart muscle [6], whereby the muscle
becomes weak and inelastic and can either widen or thicken, depending on the specific type
of disease. As a result, the heart’s ability to maintain efficient blood flow is reduced [7,8].
Following the European Society of Cardiology (ESC), cardiomyopathies are classified as
either dilated, hypertrophic, restrictive, or unclassified, each with distinct characteristics
and implications for cardiac function and patient health [9,10]. In the present study, our
focus is on hypertrophic cardiomyopathy (HCM).

HCM is defined by an abnormal thickening of the heart muscle (myocardium), which
particularly affects the left ventricle [11]. Due to this thickening, the heart pumps blood
more slowly, which can cause a complete blockage of blood flow to the heart, leading to
death [12]. Hypertrophy most often affects the wall between the left and right ventricles
(interventricular septum) [13]. The cause of its occurrence is still unknown, but it is consid-
ered congenital because it runs in the family and is inherited autosomal dominant [9,14].
Symptoms include shortness of breath (dyspnea), chest pain, fainting, and an increased
risk of cardiac arrhythmias [15,16]. It is the most common form of cardiomyopathy and
its variability in clinical manifestations, etiology, and disease progression makes it a suit-
able target for various research studies [17,18]. Cardiomyopathies occur in different age
groups, including children and adolescents [19]. In this regard, it is of great importance to
understand the molecular mechanisms that are essential to the onset and progression of
this disease [20]. Such knowledge can provide us with an insight into the pathophysiology
of the disease [21].

Programmed cell death, known as apoptosis, is a specific form of cell death that occurs
as a normal physiological process within the cell and is crucial for the maintenance of
homeostasis [22,23]. When DNA damage occurs, cell repair mechanisms either correct
the damage or initiate apoptosis to prevent the propagation of genetic mutations [24].
Dysregulation of these pathways can lead to various pathological conditions, including
cancer. Moreover, the immune system can trigger apoptosis in response to the presence of
some viruses, pathogens, and various stressors such as oxidative stress and radiation [25].
During apoptosis, cells undergo morphological and biochemical changes, including cell
shrinkage, membrane blebbing, chromatin condensation, and DNA fragmentation [23].
Apoptosis can be initiated through the intrinsic (mitochondrial) pathway and extrinsic
(death receptor) pathway [26]. The extrinsic pathway is activated by the binding of ligands
to death receptors from the TNF/Fas family on the cell surface. The binding of the Fas
ligand to the Fas receptor (CD95) leads to the formation of a complex called the DISC,
which consists of various proteins. Within this DISC complex, caspase-8 becomes an active
enzyme by switching from the inactive form of procaspase-8 [27]. Activated casp-8 can
directly activate caspase-3, leading to the degradation of cellular components and ultimately
cell death. This external pathway plays a key role in the elimination of harmful cells [26,28].
The intrinsic pathway, also known as the mitochondrial, is triggered by internal signals
such as DNA damage or oxidative stress, resulting in the release of cytochrome c from
the mitochondria into the cytoplasm, forming an apoptotic complex with APAF-1 and
the proenzyme of caspase-9 (procaspase-9). When cytochrome c binds to this protein,
it undergoes conformational changes and creates apoptosomes that activate caspase-9.
Caspase-9 also triggers a cascade of reactions that lead to the activation of effector Caspase-
3, which causes the breakdown of cell proteins and DNA [29,30].

Caspases, a family of cysteine proteases, are proteins that function as enzymes that
play a key role in regulating and executing apoptosis [31,32]. They are located in the
cytoplasm as inactive precursor molecules (proenzymes) and are activated under certain
conditions, such as DNA damage or external stress, leading to the breakdown of proteins
and cell death. Caspases are divided into two groups: one is responsible for the initiation
of apoptosis (caspases-2, 8, 9, and 10), while the other includes effector caspases (caspases-
3, 6, and 7) that are involved in the final phase of apoptosis [33,34]. In the previously
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discussed processes of cell death, a whole range of regulatory proteins can modulate the
manifestation of this process, either through activation/suppression. Bcl-2-associated
X-protein (BAX) is a pro-apoptotic protein that belongs to the Bcl-2 family of proteins. It
promotes apoptosis by facilitating the permeability of the mitochondrial membrane, which
leads to the release of cytochrome c and the activation of the caspase cascade that initiates
cell death. B-cell lymphoma 2 (Bcl-2) is an anti-apoptotic protein that inhibits apoptosis by
binding and inactivating pro-apoptotic proteins such as BAX, preventing mitochondrial
membrane permeabilization and temporally inhibiting the process of apoptosis [35]. It
is thought that the balance between their activity levels, rather than the amount of each
protein individually, plays a crucial role in determining how likely the cell is to undergo
apoptosis [36]. In this paper, we will analyze the expression of CASPs 3, 8, and 9, and the
BAX/BCL2 ratio, which are all crucial for the cell death process.

Numerous studies have investigated the molecular mechanisms of HCM, mostly
focusing on structural proteins or metabolic dysfunctions in cardiomyocytes [37,38], but
the exact molecular mechanisms that eventually lead to the clinical presentation of HCM
remain unclear [39,40]. Fewer studies investigated role of apoptosis regulators, focusing on
the expression of CASP genes and the balance between pro-apoptotic and anti-apoptotic
factors such as the BAX/BCL2 ratio, in the pathophysiology of HCM [41,42].

This study analyzes the expression of key apoptosis-regulating genes, specifically
CASPs 3, 8, and 9, BAX, and BCL2, in blood samples of patients with HCM. By investigating
the association between the expression levels of these genes and the clinical manifestations
of HCM, the study claims to identify potential biomarkers for disease progression. In
addition, this study aims to apply various methods, including feature importance and
correlation analysis, to create visual representations that will help us better understand the
underlying mechanisms. This approach is intended to provide clearer insights into gene
expression profiles, thus facilitating the classification of patients, the personalization of
therapeutic strategies, and improving diagnostic accuracy.

2. Results

A total of 93 patients were included in the study. The baseline clinical characteristics
of the study population are presented in Supplementary Table S1. Genetic testing was
conducted on blood samples collected during the initial visit, and the results presented in
the corresponding figures were obtained using these samples. The second visit served as a
follow-up to monitor any changes in patients’ clinical characteristics over time. The mean
interventricular septum thickness was 18.5 ± 3.5 mm at Visit 1 and 18.9 ± 3.6 mm at Visit 2,
while posterior wall thickness averaged 12.7 ± 3.8 mm and 12.4 ± 3 mm, respectively. Left
atrium diameter remained stable between visits, with a mean of 42.2 ± 5.1 mm at Visit 1
and 42.6 ± 5.1 mm at Visit 2. Left ventricular ejection fraction (EF) was preserved in the
majority of patients, with a mean of 65 ± 7.6% at Visit 1 and 64.8 ± 6.8% at Visit 2.

Notably, N-terminal pro B-type Natriuretic Peptide (NT-proBNP) levels were lower
at Visit 2, with a mean of 1702 ± 1329 pg/mL compared to 2240 ± 1398 pg/mL at
Visit 1. Troponin concentrations also decreased slightly from 33.5 ± 90.8 ng/L at Visit 1 to
30 ± 66.8 ng/L at Visit 2. The incidence of atrial fibrillation increased slightly between
visits, from 10 patients at Visit 1 to 12 patients at Visit 2. Syncope was present in 8 patients
at Visit 1 and 2 patients at Visit 2.

New York Heart Association (NYHA) classification showed a similar distribution
across visits, with most patients classified as NYHA class I or II. The left ventricular
outflow tract maximum pressure gradient (LVOT maxPG) showed a slight increase from
15.6 ± 23.3 mmHg to 16.6 ± 22.6 mmHg between visits.

2.1. Gene Expression Analysis

The expression analysis of all previously described samples for CASP8, CASP9, CASP3,
BAX, and BCL2 genes is shown in the following heatmap (Figure 1).
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Figure 1. Heatmap showing expression of selected genes across patient samples. The color intensity
represents the level of gene expression: bright red indicates high expression; white indicates average
expression; light-blue indicates low expression. Rows correspond to individual patients and columns
represent specific genes (CASP8, CASP9, CASP3, BAX, and BCL2).

Based on the heatmap and qPCR results, it appears that the majority of the CASP8 gene
samples are predominantly colored blue, indicating lower expression levels compared to
reference conditions. Specifically, 79/93 patients showed reduced CASP8 expression. Simi-
larly, 72/93 patients showed decreased CASP9 expression and 74/93 patients demonstrated
lower CASP3 expression, highlighting a consistent downregulation of these apoptotic genes
across the patient cohort.

BAX showed increased expression in the majority of patients (71/93), while BCL2
showed increased expression in almost half of the patients (55/93), as shown in the
graphic. These results will be further analyzed in the Section 3. In 10/93 patients, the
BAX/BCL2 ratio was relatively low, which may indicate a dominant anti-apoptotic activity
(i.e., more BCL2 than BAX), while in 27/93 patients, BAX/BCL2 ratio is high (i.e., more
BAX than BCL2).

2.2. Correlation between the BAX/BCL2 Ratio and CASP Genes

The correlation between the BAX/BCL2 ratio and expression of CASP8, CASP9, and
CASP3 genes is shown in Figure 2.

Correlation analysis between the BAX/BCL2 ratio and CASP8, CASP9, and CASP3
gene expression showed very weak and negative correlations. More precisely, the correla-
tion between the BAX/BCL2 ratio and CASP8 is −0.041, while the correlation with CASP9
is −0.057, and with CASP3 is −0.049. There is no strong linear relationship between these
genes in a sample of patients with HCM.
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Figure 2. Correlation between the BAX/BCL2 ratio and CASP genes.

2.3. The Feature Importance of Analyzed Apoptotic Genes

Feature importance analysis was performed using methods from the scikit-learn
library applied to Random Forest and Extreme Gradient Boosted Trees models, enabling
the identification of the most influential genes contributing to the observed differences.
Genes typically demonstrate significant importance when analyzed alongside clinical
data. The highest importance compared to other genes exhibited BCL2 (12.0). Importance
analyses of the genes CASP8 and CASP3 showed equal results (7.0), while CASP9 displayed
slightly lower importance (6.0). The lowest feature value was observed for the BAX gene
(5.0). This distribution of gene importance suggests their relative prevalence in apoptosis in
the blood samples of HCM patients. This could be interesting for the further examination
of potential predictive biomarkers.

2.4. Risk Profile in HCM Patients through Clustering Analysis

Further, an unsupervised analysis was performed using a k-means clustering model
created to examine the effect of gene expression on outcomes, without conditioning the
results on any prior external knowledge (Figures 3 and 4).
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The comparison between the ground truth risk classes and the results of unsupervised
clustering, using apoptotic genes, shows a fair degree of similarity when comparing the
expected and the achieved high-risk classes. In the context of the available dataset, the
k-means clustering model was able to correctly identify 63.1% of high-risk patients as
belonging to a single group using only apoptotic genes for model training. When the same
analysis was conducted using other genes involved in oxidative stress and pathogenesis of
the disease, the final clusters were too heterogeneous with regards to risk class association
to be useful for risk prediction. Even though the overall prediction accuracy of such
clustering models based solely on genetic data was much lower than classification models
trained using clinical data, their performance using a very low number of predictors serves
as a good basis for future research of early sign recognition and early diagnosis of HCM.

3. Discussion

Apoptosis in cardiomyocytes is triggered by various stress factors commonly associ-
ated with CVD, such as increased cytokine production, oxidative stress, and DNA damage.
This tightly regulated cell death process can be protective for the heart because inhibition
of apoptosis has been shown to have cardioprotective effects under certain conditions.
The crucial significance of apoptosis inhibition and blocking the initiation of cell death in
cardiomyocytes is of vital importance because cardiomyocytes are irreversibly postmitotic
terminally differentiated cells [43,44].

Stressed cardiomyocytes secrete inflammatory cytokines, chemokines, cell adhesion
proteins, and danger-associated molecular patterns (DAMPs) [43], as well as modulate the
expression of pro-apoptotic and anti-apoptotic proteins like BAX and BCL2 [45]. These
molecules stimulate immune responses, monocytes, and lymphocytes, further amplifying
the inflammatory microenvironment in the heart. These substances enter the bloodstream
through various mechanisms, released from stressed or damaged cardiomyocytes. The
appearance of these molecules in the bloodstream could be significant for monitoring
disease progression and could potentially serve as diagnostic biomarkers in heart conditions
such as HCM.

Our study included samples from 93 patients with HCM, in which whole blood sam-
ples were analyzed for the expression of CASP8, CASP9, and CASP3 genes, as well as
their relationship to BAX/BCL2. Using qPCR, we measured gene expression levels and
analyze the potential correlation between these genes and the clinical progression of HCM.
The heatmap and qPCR results revealed a consistent downregulation of the apoptotic
initiators CASP8 and CASP9, and the executioner CASP3 in the majority of patients. Specif-
ically, 79/93 patients showed reduced CASP8 expression. Similarly, 72/93 patients showed
decreased CASP9 expression and 74/93 patients demonstrated lower CASP3 expression,
highlighting a consistent downregulation of these apoptotic genes across the patient cohort.
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The lower CASP8, CASP9, and CASP3 expression in most patients in our study indi-
cates that these genes have reduced activity, which may indicate inhibition of apoptosis in
the given samples. These results may suggest that both intrinsic and extrinsic activation
pathways are inactive, possibly due to an activation mechanism to avoid excessive cell
death. If this downregulation of CASP8, CASP9, and CASP3 genes has a protective role,
modulation of this pathway should be carefully considered as a potential therapeutic option.

Furthermore, the pro-apoptotic gene BAX showed increased expression in the major-
ity of patients (71/93), while BCL2, an anti-apoptotic gene, showed increased expression
in almost half of the patients (55/93). This could indicate the activation of mechanisms
to remove damaged or dysfunctional cells, since BAX is a pro-apoptotic gene and pro-
motes apoptosis.

Correlation analysis between the BAX/BCL2 ratio and CASP8, CASP9, and CASP3
gene expression showed very weak and negative correlations, suggesting that there is no
strong linear or proportional association between these factors in our patient sample. More
precisely, the correlation between the BAX/BCL2 ratio and CASP8 is −0.041, while the
correlation with CASP9 is −0.057, and with CASP3 is −0.049. All these correlations are
negative but statistically negligible. These findings indicate that the apoptotic markers are
largely independent of one another in the context of HCM, underscoring the complexity of
apoptotic regulation in this disease.

By applying K-means clustering, we classified our patients based on their apoptotic
gene expression profiles. We demonstrated a 63.1% success rate in identifying high-risk
patients based on apoptotic gene expression. This result highlights the potential of apoptotic
markers as predictive tools for risk stratification in HCM. Importantly, clustering models
incorporating additional genes related to oxidative stress and inflammation did not achieve
the same degree of accuracy, suggesting that apoptotic gene expression alone carries
significant predictive weight.

Feature importance analysis performed using the scikit-learn library applied to Ran-
dom Forest and Extreme Gradient Boosted Trees models revealed the most influential genes
contributing to the observed differences. The highest importance compared to other genes
exhibited BCL2.

Previous research has shown that BCL2 is a key anti-apoptotic protein whose increased
expression can increase cell resistance to apoptosis, with the BCL2/BAX ratio acting as a
regulator that balances cell death. These studies have shown that inhibition of apoptosis
through increasing the BCL2/BAX ratio contributes to the survival of cardiomyocytes in the
peri-infarct area after myocardial infarction and reperfusion (MI/RI), reducing the degree
of cardiac damage and preventing the opening of the mitochondrial permeability pore due
to hypoxia [46].

On the other hand, Latif et al. demonstrated a notable increase in the pro-apoptotic
protein BAX in patients with heart failure, which is in agreement with the results of
our studies. According to the same data, elevated BAX levels facilitate the release of
cytochrome c from mitochondria and accelerate the opening of voltage-dependent anion
channels, thereby promoting apoptosis in cardiomyocytes [47]. Oxidative stress enhances
the transcriptional activity and accumulation of the P53 protein, which induces apoptosis
in cardiomyocytes by stimulating BAX expression or inhibiting BCL2 expression [48].

All the examined signaling pathways in our study, especially the genes that regulate
them, are interconnected and have a common effect on the potential death of cardiomy-
ocytes. Numerous studies aimed at discovering new drugs and improving therapeutic
procedures are based on the modulation of these signaling pathways to achieve apoptosis
regulation and promote cardiomyocyte survival [49]. Available literature and data show, for
example, that melatonin activates the JAK2-STAT3 prosurvival signaling pathway. This re-
duces cardiomyocyte apoptosis and protects against myocardial ischemia by upregulating
BCL2 expression while downregulating BAX and CASP3 [50] or, for example, trimetazi-
dine (TMZ), which was found to reduce the BAX/BCL2 ratio and CASP3 expression and
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inhibit cardiomyocyte apoptosis induced by reperfusion injury (I/R) by activating the Akt
signaling pathway [51].

The results of our study showed that BAX was elevated in most patients, while
BCL2 was elevated in half of the analyzed patients, which suggests that in 55 of the
93 patients analyzed in our study, elevated BCL2 prevented the release of cytochromes
with the subsequent activation of CASP3, which led to the inhibition of apoptosis. This
may indicate that the cells are “trying” to survive despite the sarcomeric gene mutation in
cardiomyocytes shown in numerous studies [52–55].

Apoptosis of cardiomyocytes with triple protein gene mutations in sarcomeres would
be life-threatening, but, on the other hand, their survival via the inhibition of apoptosis leads
to left ventricular hypertrophy, increased myocardial contractility, diastolic dysfunction,
myofibrillar disarray, and fibrosis [56–58].

4. Materials and Methods
4.1. Materials

The experiment was performed with different reagents obtained from different man-
ufacturers. For RNA isolation, Trizol (TRI Reagent) was purchased from Sigma-Aldrich,
Steinheim, Germany. Phosphate-buffered saline (PBS) was obtained from Capricorn Scien-
tific, Germany. PCR-grade isopropanol and ethanol were obtained from Thermo Fisher,
Waltham, MA, USA. Chloroform was from Alfa Aesar, USA (Thermo Fisher Scientific).
Primers for the PCR reaction was purchased from Thermo Fisher, Waltham, MA, USA. The
reverse transcription kit was the EurX NG dART RT kit (eurX Genetics EUROPE, Gdańsk,
Poland). A PCR kit from Promega GoTak™ kPCR Master Mix (Promega, Madison, WI,
USA) was used to determine relative gene expression. The genomic DNA isolation kit
was from the PurelinkTM Genomic DNA Kit (Thermo Fisher Scientific, Waltham, MA,
USA). The kit for polymorphism determination was from TakMan SNPs Genotyping Assay
(Applied Biosystems, Waltham, MA, USA).

4.2. Blood Sampling

Whole blood samples were collected from 93 patients (57 men (m) and 36 women (f))
diagnosed with HCM (Table 1). The controls were slightly younger and without any medi-
cal record. A 2 mL whole blood sample was collected over time using a blood Vacutainer.
In our study, the first visit represents the original consultation where blood samples were
collected. This initial sampling allowed us to analyze the expression of key genes based
on the primary clinical evaluation. The second visit served completely as a follow-up,
intended for medical practitioners to monitor any changes in the patient’s condition for
therapeutic purposes. Blood samples were also collected from healthy individuals, serving
as controls, alongside the two patient groups from the two clinical centers. Medical records
containing information such as age, sex, NYHA classification, symptoms, family history,
and more information on patients’ conditions were collected from the hospital database.
Samples were collected from the University Clinical Centre of Serbia and the Institute of
Cardiovascular Diseases, Sremska Kamenica. This study was approved by the local ethics
committee of the Institute of Cardiovascular Diseases, Sremska Kamenica (Decision No.:
1813-1/4), and the University Clinical Centre of Serbia, Clinic for Cardiology (Decision No.:
2551-01/11). An aliquot of whole blood was stored at −20 ◦C. After pooling all samples,
total RNA was isolated.

Table 1. Patient characteristics.

Location Patients Sex (F/M) Age NYHA Class (I/II/III)

Group 1 43 13/30 60.4 ± 10.3 19/20/4
Group 2 50 22/28 53.5 ± 13.1 30/18/2
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4.3. Analysis of Gene Expression by Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

RNA isolation is a crucial step in preparing samples for gene expression analysis
by qRT-PCR.

4.3.1. Isolation of RNA

Total RNA was isolated manually using Trizol reagent according to the instructions of
Chomczynski and Sacchi (1987) [59]. Aliquots of frozen blood samples were left in a water
bath for 20 min to thaw. After the samples were thawed, 1 mL of blood and 2 mL of PBS
were added to the tube and everything was centrifuged (MPW-150R, Warsaw, Poland) at
10,000× g (RCF) for 5 min. The supernatant was discarded, 500 µL of Trizol was added,
and the pellet was well resuspended. After incubation at room temperature, the samples
were centrifuged at 1000× g (RCF) for 5 min. After, 100 µL of chloroform was added to
the supernatant and the microtubes were well vortexed for 15 s. After holding at room
temperature for 2–3 min, the samples were centrifuged at 15,000× g (RCF) for 15 min at
4 ◦C. Centrifugation separates 3 phases: RNA is found in the higher clear phase. The upper
aqueous phase was transferred to a new microtube and the RNA was precipitated using
250 µL of isopropanol followed by incubation for 10 min at room temperature. Precipitated
RNA was centrifuged at 12,000× g (RCF) for 10 min at 4 ◦C. The supernatant was discarded
and the pellet was washed with 80% ethanol twice by centrifugation at 7500× g (RCF) for
5 min at 4 ◦C. The supernatant was removed and the RNA pellet was allowed to dry in
a dry bath (DLAB HB120-S Dry Bath, Beijing, China and then resuspended in 30 µL of
RNase-free water. Total RNA was measured on Thermo Scientific™ µDrop™ and µDrop
Duo Plates (Thermo Fisher, Waltham, USA) and kept at −80 ◦C until the next step.

4.3.2. Reverse Transcription (RT-PCR)

Total RNA was converted into complementary DNA (Complementary DNA—cDNA)
using the NG dart Reverse Transcription Kit in a volume of 20 µL per reaction according
to the manufacturer’s instructions. The reaction mixture contained NG dART RT Mix,
5× NG cDNA buffer, Oligo(dT) and Randomm hexamers using the following thermal
cycling temperatures: 30–60 min at 50 ◦C, 25 ◦C for 10 min, and then 85 ◦C for 5 min. After
this reaction, the concentration was measured for each sample and aliquots of cDNA were
stored at −80 ◦C until a quantitative polymerase chain reaction was performed.

4.3.3. Quantification of Relative Gene Expression (qPCR)

We performed qPCR analysis using the Mic qPCR Cycler according to the MIQE
guidelines. A volume of 20 µL in a reaction mixture containing GoTaq® qPCR Master Mix
(2×), Forward Primer, Reverse Primer (200 nM–1 µM), and nuclease-free water was used to
perform qPCR. The reaction mixture contained the components shown in Supplementary
Table S2. NTC (No Template Control) with all components except the sample was used
as a negative control. Amplification conditions were as follows: an initial step of double-
stranded DNA denaturation at a temperature of 95 ◦C for 2 min, followed by binding of
specific oligonucleotides—primers (annealing), and primer extension at a temperature of
60 ◦C for 60 s (English extension). These three steps were repeated up to 40 times, resulting
in a large number of DNA copies. After 40 cycles, the melting curve of the PCR reaction
product was analyzed.

The following apoptosis primers were used for the reaction: CASP8, CASP9, CASP3,
BAX, and BCL2.

The obtained results were analyzed with the Mic qPCR software and cycle threshold
values (∆CT) were read and calculated using the formula 2−∆∆CT used to express the
differences between the observed genes and the gene expression of Beta-actin (ACTB,
“housekeeping” gene) described in the available literature [60,61]. Results are presented
as the mean of duplicates of each sample, and relative mRNA expression levels for each
sample are presented as the ratio of expression of the gene of interest to the housekeeping
gene, which was used for normalization.
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The following formula was used to calculate relative gene expression from blood samples:

2−∆∆CT = ∆CT1 − ∆CT2

where ∆CT1 = CT value of the gene of interest in the sample, ∆CT2 = CT value of ACTB in
the sample.

4.3.4. Statistical Analysis

Gene expression analysis was performed in duplicate and data are expressed as
mean ± standard error. To obtain statistical significance, ANOVA was used for multiple
comparisons and Dunnett’s test was used to compare individual groups with control. Gene
expression results were processed in the SPSS (Chicago, IL, USA) statistical analysis pro-
gram (SPSS for Windows, ver. 17, 2008). In addition, correlation analysis was conducted to
examine the relationships between gene expression levels using Python 3.8 libraries Pandas
(version 2.2) and NumPy (version 1.21) for linear and non-linear correlation calculation, re-
spectively. Feature importance analysis was performed using methods from the scikit-learn
library applied to Random Forest and Extreme Gradient Boosted Trees models, enabling
the identification of the most influential genes contributing to the observed differences.
In addition, a k-means clustering model was created in order to conduct unsupervised
analysis, allowing for the grouping of samples based on gene expression profiles. Prior
to clustering, outlier removal and data scaling were applied to ensure that all genes were
on the same scale and that those scales were not swayed by a minority of extreme cases.
Additionally, Principal Component Analysis (PCA) was performed for dimensionality
reduction, to ensure that the results could be presented in a two-dimensional space and
plotted in a format conductive to human analysis.

The Python script generates a clustered heatmap using hierarchical clustering and
visualization libraries such as matplotlib and seaborn. Gene expression data are loaded
from a CSV file into a panda’s data frame, where rows correspond to genes and columns to
samples. The resulting heatmap visualizes the hierarchical structure of the genes alongside
the expression values, which are represented by color intensity within a specified range
(vmin = 0, vmax = 3).

5. Conclusions

In this study, we analyzed the expression of key apoptosis-regulating genes—CASP8,
CASP9, CASP3, BAX, and BCL2—in the blood samples of patients with HCM. We aimed to
investigate the association between gene expression levels and the clinical manifestations
of HCM, applying methods such as feature importance and correlation analysis to uncover
potential biomarkers for disease progression. Through these analyses, we tried to enhance
understanding of the molecular mechanisms involved in HCM, by providing clearer
insights that could facilitate patient classification, personalize therapeutic strategies, and
improve diagnostic accuracy. Our findings suggest that patients with significantly reduced
expression of CASP3 and CASP8 may exhibit a less active apoptotic response, potentially
correlating with worse prognosis. These patients might benefit from therapies aimed at
increasing apoptotic activity in heart tissue or blood, particularly to target the removal of
damaged cells. Conversely, the increased expression of the anti-apoptotic gene BCL2 in
some patients indicates that inhibition of this gene could be a viable therapeutic strategy
to prevent the accumulation of damaged cells, which may contribute to the decline of
cardiac function.

Overall, changes in the expression of CASP8, CASP9, CASP3, BAX, and BCL2 in
the blood could serve as valuable biomarkers for identifying and monitoring patients
with HCM. If further validated in larger cohorts, these biomarkers could potentially aid
in the early detection and ongoing monitoring of HCM, providing a foundation for the
development of targeted therapies and improving patient outcomes.
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