Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment
Abstract
:1. Introduction
2. Results
2.1. Genetic Stability Test
2.2. Carbohydrate Metabolism Activity of E. faecalis EF-2001L
2.3. Biosynthetic Genes in E. faecalis EF-2001L Genome
2.4. Stress-Responsive Genes in E. faecalis EF-2001L
2.5. Phenotypic Safety Assessment
2.6. Survival in Simulated Human Intestinal Environment
2.7. Auto- and Co-Aggregation
2.8. Bile Salt Deconjugation
2.9. D-Lactate Formation
2.10. Carbohydrate Utilization of E. faecalis EF-2001L
2.11. Biogenic Amine Production
2.12. Hyaluronidase Activity
2.13. In Vitro Safety Assessment for E. faecalis EF-2001HK
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Gene Stability Test
4.3. Biosynthetic Gene Predictions
4.4. In Vitro Safety Assessment of E. faecalis EF-2001L
4.4.1. Antibiotic Susceptibility of E. faecalis EF-2001L
4.4.2. Hemolytic Activity
4.4.3. Biogenic Amine Production Assay
4.4.4. Bile Salt Deconjugation
4.4.5. Acid Tolerance Test
4.4.6. Simulated Gastrointestinal Condition Tolerance Test
4.4.7. Gelatin Hydrolysis Assay
4.4.8. Hyaluronidase Assay
4.4.9. D-lactate Production Test
4.4.10. Aggregation
4.4.11. Morphological Visualization by Scanning Electron Microscopy
4.4.12. Cytotoxicity
4.4.13. pH Stability Assay of E. faecalis EF-2001HK
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latif, A.; Shehzad, A.; Niazi, S.; Zahid, A.; Ashraf, W.; Iqbal, M.W.; Rehman, A.; Riaz, T.; Aadil, R.M.; Khan, I.M. Probiotics: Mechanism of action, health benefits and their application in food industries. Front. Microbiol. 2023, 14, 1216674. [Google Scholar] [CrossRef]
- Manzoor, S.; Wani, S.M.; Mir, S.A.; Rizwan, D. Role of probiotics and prebiotics in mitigation of different diseases. Nutrition 2022, 96, 111602. [Google Scholar] [CrossRef]
- Franz, C.M.; Stiles, M.E.; Schleifer, K.H.; Holzapfel, W.H. Enterococci in foods--a conundrum for food safety. Int. J. Food Microbiol. 2003, 88, 105–122. [Google Scholar] [CrossRef]
- Foulquie Moreno, M.R.; Sarantinopoulos, P.; Tsakalidou, E.; De Vuyst, L. The role and application of enterococci in food and health. Int. J. Food Microbiol. 2006, 106, 1–24. [Google Scholar] [CrossRef]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; Łaniewska-Trokenheim, Ł. Virulence factors of Enterococcus spp. presented in food. LWT 2017, 75, 670–676. [Google Scholar] [CrossRef]
- Singh, H.; Das, S.; Yadav, J.; Srivastava, V.K.; Jyoti, A.; Kaushik, S. In search of novel protein drug targets for treatment of Enterococcus faecalis infections. Chem. Biol. Drug Des. 2019, 94, 1721–1739. [Google Scholar] [CrossRef]
- Panthee, S.; Paudel, A.; Hamamoto, H.; Ogasawara, A.A.; Iwasa, T.; Blom, J.; Sekimizu, K. Complete genome sequence and comparative genomic analysis of Enterococcus faecalis EF-2001, a probiotic bacterium. Genomics 2021, 113, 1534–1542. [Google Scholar] [CrossRef]
- Xia, M.; Mu, S.; Fang, Y.; Zhang, X.; Yang, G.; Hou, X.; He, F.; Zhao, Y.; Huang, Y.; Zhang, W.; et al. Genetic and Probiotic Characteristics of Urolithin A Producing Enterococcus faecium FUA027. Foods 2023, 12, 1021. [Google Scholar] [CrossRef]
- Fugaban, J.I.I.; Holzapfel, W.H.; Todorov, S.D. Probiotic potential and safety assessment of bacteriocinogenic Enterococcus faecium strains with antibacterial activity against Listeria and vancomycin-resistant enterococci. Curr. Res. Microb. Sci. 2021, 2, 100070. [Google Scholar] [CrossRef]
- Fu, X.; Lyu, L.; Wang, Y.; Zhang, Y.; Guo, X.; Chen, Q.; Liu, C. Safety assessment and probiotic characteristics of Enterococcus lactis JDM1. Microb. Pathog. 2022, 163, 105380. [Google Scholar] [CrossRef]
- Merenstein, D.; Pot, B.; Leyer, G.; Ouwehand, A.C.; Preidis, G.A.; Elkins, C.A.; Hill, C.; Lewis, Z.T.; Shane, A.L.; Zmora, N. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 2023, 15, 2185034. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Cruz, A.G.; Pereira, E.; da Costa, W.K.A.; da Silva Rocha, R.; de Souza Pedrosa, G.T.; dos Santos Rocha, C.; Alves, J.M.; Alvarenga, V.O.; Sant’Ana, A.S. Postbiotics: An overview of concepts, inactivation technologies, health effects, and driver trends. Trends Food Sci. Technol. 2023, 138, 199–214. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Thorakkattu, P.; Khanashyam, A.C.; Shah, K.; Babu, K.S.; Mundanat, A.S.; Deliephan, A.; Deokar, G.S.; Santivarangkna, C.; Nirmal, N.P. Postbiotics: Current trends in food and pharmaceutical industry. Foods 2022, 11, 3094. [Google Scholar] [CrossRef]
- Cuevas-González, P.; Liceaga, A.; Aguilar-Toalá, J. Postbiotics and paraprobiotics: From concepts to applications. Int. Food Res. 2020, 136, 109502. [Google Scholar] [CrossRef]
- Lee, J.-H.; Woo, K.-J.; Hong, J.; Han, K.-I.; Kim, H.S.; Kim, T.-J. Heat-Killed Enterococcus faecalis Inhibit FL83B Hepatic Lipid Accumulation and High Fat Diet-Induced Fatty Liver Damage in Rats by Activating Lipolysis through the Regulation the AMPK Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 4486. [Google Scholar] [CrossRef]
- Baek, Y.-H.; Lee, J.-H.; Chang, S.-J.; Chae, Y.; Lee, M.-H.; Kim, S.-H.; Han, K.-I.; Kim, T.-J. Heat-killed Enterococcus faecalis EF-2001 induces human dermal papilla cell proliferation and hair regrowth in C57bl/6 mice. Int. J. Mol. Sci. 2022, 23, 5413. [Google Scholar] [CrossRef]
- Choi, E.-J.; Iwasa, M.; Han, K.-I.; Kim, W.-J.; Tang, Y.; Hwang, Y.J.; Chae, J.R.; Han, W.C.; Shin, Y.-S.; Kim, E.-K. Heat-killed Enterococcus faecalis EF-2001 ameliorates atopic dermatitis in a murine model. Nutrients 2016, 8, 146. [Google Scholar] [CrossRef]
- Fan, M.; Choi, Y.-J.; Wedamulla, N.E.; Tang, Y.; Han, K.I.; Hwang, J.-Y.; Kim, E.-K. Heat-Killed Enterococcus faecalis EF-2001 attenuate lipid accumulation in diet-induced obese (DIO) mice by activating AMPK signaling in liver. Foods 2022, 11, 575. [Google Scholar] [CrossRef]
- Kang, H.-J.; Kim, T.-W.; Jhoo, J.-W.; Kim, G.-Y. Anti-inflammatory effects of fermented milk supplemented with heat-killed Enterococcus faecalis EF-2001 probiotics. Int. J. Dairy Sci. 2020, 38, 112–120. [Google Scholar]
- Choi, Y.-J.; Fan, M.; Tang, Y.; Iwasa, M.; Han, K.-I.; Lee, H.; Hwang, J.-Y.; Lee, B.; Kim, E.-K. Heat-Killed and Live Enterococcus faecalis Attenuates Enlarged Prostate in an Animal Model of Benign Prostatic Hyperplasia. J. Microbiol. Biotechnol. 2021, 31, 1134. [Google Scholar] [CrossRef]
- Cha, J.; Kim, Y.B.; Park, S.-E.; Lee, S.H.; Roh, S.W.; Son, H.-S.; Whon, T.W. Does kimchi deserve the status of a probiotic food? Crit. Rev. Food Sci. Nutr. 2024, 64, 6512–6525. [Google Scholar] [CrossRef]
- Ferro, L.E.; Crowley, L.N.; Bittinger, K.; Friedman, E.S.; Decker, J.E.; Russel, K.; Katz, S.; Kim, J.K.; Trabulsi, J.C. Effects of prebiotics, probiotics, and synbiotics on the infant gut microbiota and other health outcomes: A systematic review. Crit. Rev. Food Sci. Nutr. 2023, 63, 5620–5642. [Google Scholar] [CrossRef]
- Nalla, K.; Manda, N.K.; Dhillon, H.S.; Kanade, S.R.; Rokana, N.; Hess, M.; Puniya, A.K. Impact of probiotics on dairy production efficiency. Front. Microbiol. 2022, 13, 805963. [Google Scholar] [CrossRef]
- Liang, H.; Ze, X.; Wang, S.; Wang, Y.; Peng, C.; Cheng, R.; Jiang, F.; Wu, S.; He, R.; He, F. Potential Health-Promoting Effects of Two Candidate Probiotics Isolated from Infant Feces Using an Immune-Based Screening Strategy. Nutrients 2022, 14, 3651. [Google Scholar] [CrossRef]
- Christoffersen, T.E.; Jensen, H.; Kleiveland, C.R.; Dorum, G.; Jacobsen, M.; Lea, T. In vitro comparison of commensal, probiotic and pathogenic strains of Enterococcus faecalis. Br. J. Nutr. 2012, 108, 2043–2053. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, S.I.; Jeong, Y.; Kang, C.H. Evaluation of Safety and Probiotic Potential of Enterococcus faecalis MG5206 and Enterococcus faecium MG5232 Isolated from Kimchi, a Korean Fermented Cabbage. Microorganisms 2022, 10, 2070. [Google Scholar] [CrossRef]
- Yan, J.; Liang, Q.A.; Chai, Z.; Duan, N.; Li, X.; Liu, Y.; Yang, N.; Li, M.; Jin, Y.; Bai, F. Glutathione synthesis regulated by CtrA protects Ehrlichia chaffeensis from host cell oxidative stress. Front. Microbiol. 2022, 13, 846488. [Google Scholar] [CrossRef]
- Salze, M.; Giard, J.-C.; Riboulet-Bisson, E.; Hain, T.; Rincé, A.; Muller, C. Identification of the general stress stimulon related to colonization in Enterococcus faecalis. Arch. Microbiol. 2020, 202, 233–246. [Google Scholar] [CrossRef]
- D’Rose, V.; Bhat, S.G. Whole genome sequence analysis enabled affirmation of the probiotic potential of marine sporulater Bacillus amyloliquefaciens BTSS3 isolated from Centroscyllium fabricii. Gene 2023, 864, 147305. [Google Scholar] [CrossRef]
- Patil, S.; Chaudhari, B. A simple, rapid and sensitive plate assay for detection of microbial hyaluronidase activity. J. Basic. Microbiol. 2017, 57, 358–361. [Google Scholar] [CrossRef]
- Golinska, E.; Tomusiak, A.; Gosiewski, T.; Wiecek, G.; Machul, A.; Mikolajczyk, D.; Bulanda, M.; Heczko, P.B.; Strus, M. Virulence factors of Enterococcus strains isolated from patients with inflammatory bowel disease. World J. Gastroenterol. 2013, 19, 3562–3572. [Google Scholar] [CrossRef]
- Maftei, N.-M.; Raileanu, C.R.; Balta, A.A.; Ambrose, L.; Boev, M.; Marin, D.B.; Lisa, E.L. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024, 12, 234. [Google Scholar] [CrossRef]
- Krawczyk, B.; Wityk, P.; Gałęcka, M.; Michalik, M. The Many Faces of Enterococcus spp.—Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021, 9, 1900. [Google Scholar] [CrossRef]
- Al-Balawi, M.; Morsy, F.M. Enterococcus faecalis is a better competitor than other lactic acid bacteria in the initial colonization of colon of healthy newborn babies at first week of their life. Front. Microbiol. 2020, 11, 2017. [Google Scholar] [CrossRef]
- Belloso Daza, M.V.; Almeida-Santos, A.C.; Novais, C.; Read, A.; Alves, V.; Cocconcelli, P.S.; Freitas, A.R.; Peixe, L. Distinction between Enterococcus faecium and Enterococcus lactis by a gluP PCR-based assay for accurate identification and diagnostics. Microbiol. Spectr. 2022, 10, e03268-22. [Google Scholar] [CrossRef]
- Tarek, N.; Azmy, A.F.; Khairalla, A.S.; Abdel-Fattah, M.; Jefri, O.A.; Shaban, M.; El-Sayed, A.A.; El-Gendy, A.O. Genome sequencing of Enterococcus faecium NT04, an oral microbiota revealed the production of enterocin A/B active against oral pathogens. Heliyon 2023, 9, e16253. [Google Scholar] [CrossRef]
- Önal, A. A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem. 2007, 103, 1475–1486. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef]
- Mikalsen, T.; Pedersen, T.; Willems, R.; Coque, T.M.; Werner, G.; Sadowy, E.; van Schaik, W.; Jensen, L.B.; Sundsfjord, A.; Hegstad, K. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genom. 2015, 16, 282. [Google Scholar]
- Maddamsetti, R.; Yao, Y.; Wang, T.; Gao, J.; Huang, V.T.; Hamrick, G.S.; Son, H.-I.; You, L. Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria. Nat. Commun. 2024, 15, 1449. [Google Scholar] [CrossRef]
- Reid, G.; Friendship, R. Alternatives to antibiotic use: Probiotics for the gut. Anim. Biotechnol. 2002, 13, 97–112. [Google Scholar] [CrossRef]
- Yamazaki, T.; Ushikoshi-Nakayama, R.; Shirone, K.; Suzuki, M.; Abe, S.; Matsumoto, N.; Inoue, H.; Saito, I. Evaluation of the effect of a heat-killed lactic acid bacterium, Enterococcus faecalis 2001, on oral candidiasis. Benef. Microbes 2019, 10, 661–669. [Google Scholar] [CrossRef]
- Alli, S.R.; Gorbovskaya, I.; Liu, J.C.; Kolla, N.J.; Brown, L.; Müller, D.J. The gut microbiome in depression and potential benefit of prebiotics, probiotics and synbiotics: A systematic review of clinical trials and observational studies. Int. J. Mol. Sci. 2022, 23, 4494. [Google Scholar] [CrossRef]
- Koch, H.; Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. USA 2011, 108, 19288–19292. [Google Scholar] [CrossRef]
- Nakai, H.; Murosaki, S.; Yamamoto, Y.; Furutani, M.; Matsuoka, R.; Hirose, Y. Safety and efficacy of using heat-killed Lactobacillus plantarum L-137: High-dose and long-term use effects on immune-related safety and intestinal bacterial flora. J. Immunotoxicol. 2021, 18, 127–135. [Google Scholar] [CrossRef]
- Song, M.W.; Chung, Y.; Kim, K.-T.; Hong, W.S.; Chang, H.J.; Paik, H.-D. Probiotic characteristics of Lactobacillus brevis B13–2 isolated from kimchi and investigation of antioxidant and immune-modulating abilities of its heat-killed cells. LWT 2020, 128, 109452. [Google Scholar] [CrossRef]
- Lee, J.H.; Woo, K.J.; Kim, M.A.; Hong, J.; Kim, J.; Kim, S.H.; Han, K.I.; Iwasa, M.; Kim, T.J. Heat-Killed Enterococcus faecalis Prevents Adipogenesis and High Fat Diet-Induced Obesity by Inhibition of Lipid Accumulation through Inhibiting C/EBP-alpha and PPAR-gamma in the Insulin Signaling Pathway. Nutrients 2022, 14, 1308. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Factories 2020, 19, 168. [Google Scholar] [CrossRef]
- Isaac-Bamgboye, F.J.; Mgbechidinma, C.L.; Onyeaka, H.; Isaac-Bamgboye, I.T.; Chukwugozie, D.C. Exploring the Potential of Postbiotics for Food Safety and Human Health Improvement. J. Nutr. Metab. 2024, 2024, 1868161. [Google Scholar] [CrossRef]
- Lim, K.; Koh, J. Fermented foods and probiotic beverages in Korea. In Probiotic Beverages; Elsevier: Amsterdam, The Netherlands, 2021; pp. 61–80. [Google Scholar]
- Pregnon, G.; Minton, N.P.; Soucaille, P. Genome Sequence of Eubacterium limosum B2 and Evolution for Growth on a Mineral Medium with Methanol and CO2 as Sole Carbon Sources. Microorganisms 2022, 10, 1790. [Google Scholar] [CrossRef]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucl. Acids Res. 2017, 45, e18. [Google Scholar]
- Chin, C.S.; Alexander, D.H.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E.; et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563–569. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.; Sunagawa, S.; Kuhn, M.; et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, D286–D293. [Google Scholar] [CrossRef]
- Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 2020, 76, 101–109. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon Fraser University Research Computing, G.; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S.L. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef]
- Drula, E.; Garron, M.-L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzysme database: Functions and literature. Nucleic Acids Res. 2021, 50, D571–D577. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar]
- Rastogi, S.; Mittal, V.; Singh, A. In Vitro Evaluation of Probiotic Potential and Safety Assessment of Lactobacillus mucosae Strains Isolated from Donkey’s Lactation. Probiotics Antimicrob. Proteins 2020, 12, 1045–1056. [Google Scholar] [CrossRef]
- Dashkevicz, M.P.; Feighner, S.D. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl. Env. Microbiol. 1989, 55, 11–16. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, K.; Nie, K.; Deng, M.; Luo, W.; Wu, X.; Huang, Y.; Wang, X. Assessment of the safety and probiotic properties of Roseburia intestinalis: A potential “Next Generation Probiotic”. Front. Microbiol. 2022, 13, 973046. [Google Scholar] [CrossRef]
- Charteris, W.P.; Kelly, P.M.; Morelli, L.; Collins, J.K. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol. 1998, 84, 759–768. [Google Scholar] [CrossRef]
- Pickett, M.J.; Greenwood, J.R.; Harvey, S.M. Tests for detecting degradation of gelatin: Comparison of five methods. J. Clin. Microbiol. 1991, 29, 2322–2325. [Google Scholar] [CrossRef]
- Hynes, W.L.; Ferretti, J.J. Assays for hyaluronidase activity. Methods Enzym. 1994, 235, 606–616. [Google Scholar]
- Hu, J.; Kang, H.; Liu, C.; Hu, P.; Yang, M.; Zhou, F. Regulatory T Cells Could Improve Intestinal Barrier Dysfunction in Heatstroke. Inflammation 2019, 42, 1228–1238. [Google Scholar] [CrossRef]
- Solieri, L.; Bianchi, A.; Mottolese, G.; Lemmetti, F.; Giudici, P. Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis. Food Microbiol. 2014, 38, 240–249. [Google Scholar] [CrossRef]
- Manoharan, R.K.; Mahalingam, S.; Gangadaran, P.; Ahn, Y.H. Antibacterial and photocatalytic activities of 5-nitroindole capped bimetal nanoparticles against multidrug resistant bacteria. Colloids Surf. B Biointerfaces 2020, 188, 110825. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Hsieh, Y.M.; Huang, C.C.; Tsai, C.C. Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29. Molecules 2017, 22, 107. [Google Scholar] [CrossRef]
Taxon Name | Enterococcus faecalis EF-2001 | |
Strain ID | 1st Generation | 25th Generation |
Status | Complete | Complete |
Genome Size (bp) | 2,806,628 | 2,806,355 |
GC content (%) | 37.7 | 37.6 |
No. of contigs | 1 | 1 |
No. of CDSs | 2544 | 2528 |
No. of RNA genes | 76 | 76 |
Homology of EF-2001 1st and 25th generation by OrthoANI analysis | 99.97% |
CAZy Families | Number of Genes | Sub-Category |
---|---|---|
Auxiliary activities (AAs) | 2 | AA10(2) |
Carbohydrate-binding modules (CBMs) | 5 | CBM34(2), CBM50(3) |
Carbohydrate esterase (CEs) | 5 | CE1(1), CE4(1), CE7(1), CE9(2) |
Glycoside hydrolases (GHs) | 49 | GH1(8), GH109(1), GH125(1), GH126(1), GH13(3), GH154(2), GH170(3), GH177(2), GH179(2), GH18(2), GH2(1), GH20(1), GH24(1), GH25(1), GH3(1), GH32(1), GH35(1), GH38(1), GH4(1), GH130(2), GH63(1), GH65(2), GH73(5), GH88(2), GH92(1), GH94(1), GH136(1) |
Glycosyltransferases (GTs) | 19 | GT2(12), GT26(1), GT27(1), GT28(1), GT4(1), GT51(3) |
Polysaccharide lyases (PLs) | ND | ND |
Category | Sub-Category | Protein | GO |
---|---|---|---|
Essential Amino acids | Tryptophan | Tryptophan synthase alpha chain TrpEa, Tryptophan synthase beta chain TrpEb | GO:0004834 |
Methionine | Methionine transporter MetT, MetN, MetP; Methionine ABC transporter ATP-binding protein | GO:0006814, GO:0006885, GO:0015385, GO:0016021 GO:0005215, GO:0006810, GO:0016020 GO:0005524, GO:0016887 | |
Arginine | Arginine decarboxylase, SpeA | GO:0008792, GO:0008792 | |
Threonine | Threonine synthase, ThrC | GO:0004795 | |
Vitamins | Thiamine | Thiamin ABC transporter, ATPase component Homocysteine S-methyltransferase | GO:0005215, GO:0006810 GO:0016020 GO:0005524, GO:0016887 GO:0008898 GO:0006814, GO:0006885, GO:0015385, GO:0016021 |
Biotin | Biotin synthase, BioB | GO:0004076 | |
Folate | Dihydrofolate synthase FolCDHFS, Dihydrofolate reductase Dhfr0 | GO:0008841 GO:0004146 |
Category | Protein | GO |
---|---|---|
Oxidative stress response | Glutathione peroxidase GPX Glutathione reductase GR Glutathione synthetase gshB | GO:0004602 GO:0004362 GO:0004363 |
Heat stress response | Heat shock protein GrpE Chaperone protein DnaJ | GO:0000774, GO:0006457, GO:0042803, GO:0051087 GO:0006457, GO:0031072, GO:0051082 |
Osmotic stress | Aquaporin Z | GO:0005215, GO:0006810, GO:0016020 |
Antibiotic | MIC (µg/mL) | Cut-off Value (µg/mL) | Assessment |
---|---|---|---|
Ampicillin | 0.25 | 2 | S |
Vancomycin | 1 | 2 | S |
Gentamycin | 24 | 32 | S |
Kanamycin | 1024 | 1024 | R |
Streptomycin | 1024 | 128 | R |
Erythromycin | 1.5 | 4 | S |
Clindamycin | 1 | 4 | S |
Tylosin | 4 | 4 | S |
Tetracycline | 0.1 | 4 | S |
Chloramphenicol | 4 | 16 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, K.I.; Shin, H.-D.; Lee, Y.; Baek, S.; Moon, E.; Park, Y.B.; Cho, J.; Lee, J.-H.; Kim, T.-J.; Manoharan, R.K. Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment. Pharmaceuticals 2024, 17, 1383. https://doi.org/10.3390/ph17101383
Han KI, Shin H-D, Lee Y, Baek S, Moon E, Park YB, Cho J, Lee J-H, Kim T-J, Manoharan RK. Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment. Pharmaceuticals. 2024; 17(10):1383. https://doi.org/10.3390/ph17101383
Chicago/Turabian StyleHan, Kwon Il, Hyun-Dong Shin, Yura Lee, Sunhwa Baek, Eunjung Moon, Youn Bum Park, Junhui Cho, Jin-Ho Lee, Tack-Joong Kim, and Ranjith Kumar Manoharan. 2024. "Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment" Pharmaceuticals 17, no. 10: 1383. https://doi.org/10.3390/ph17101383
APA StyleHan, K. I., Shin, H. -D., Lee, Y., Baek, S., Moon, E., Park, Y. B., Cho, J., Lee, J. -H., Kim, T. -J., & Manoharan, R. K. (2024). Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment. Pharmaceuticals, 17(10), 1383. https://doi.org/10.3390/ph17101383