Antihyperglycemic and Hypolipidemic Activities of Flavonoids Isolated from Smilax Dominguensis Mediated by Peroxisome Proliferator-Activated Receptors
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vivo Pharmacological Study: Oral Glucose Tolerance Test (OGTT)
2.2. In Vitro Pharmacologic Assays: Effect of Fractions and Compounds on Cell Functionality
2.2.1. In Vitro Pharmacologic Assays: mRNA Expression
2.2.2. In Vitro Pharmacologic Assays: F3, F6, and F7 Inhibit Lipid Storage in 3T3-L1 Adipocytes
2.2.3. In Vitro Pharmacologic Assays: F3 and F6 Treatments Promote GLUT-4 Translocation
2.3. Phytochemical Characterization
2.4. In Silico Assays
2.5. In Vitro Pharmacologic Assays: Luteolin and Kaempferol Promote Increases in the mRNA Expression Levels of PPARγ, FATP, and GLUT-4
In Vitro Pharmacologic Assays: Luteolin and Kaempferol Inhibit Lipid Storage in 3T3-L1 Adipocytes
3. Materials and Methods
3.1. Plant Material and Extract Preparation
3.2. Fractionation of the Extract of S. dominguensis
3.3. In Vivo Assay
Animals
3.4. In Vitro Pharmacologic Assays
3.4.1. C2C12 Myoblasts Culture
3.4.2. 3T3-LI Fibroblasts Culture
3.4.3. Cell Functionality
3.4.4. mRNA Expression Analysis of PPARγ, GLUT-4, PPARα, and FATP
3.4.5. GLUT-4 Translocation
3.4.6. Oil Red Staining
3.5. In Silico Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, M.; Kumari, N.; Mirgani, Z.; Saeed, A.; Ramadan, A.; Ahmed, M.H.; Almobarak, A.O. Metabolic syndrome; Definition, Pathogenesis, Elements, and the Effects of medicinal plants on it’s elements. J. Diabetes Metab. Disord. 2022, 21, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Knežević, S.; Filippi-Arriaga, F.; Belančić, A.; Božina, T.; Mršić-Pelčić, J.; Vitezić, D. Metabolic Syndrome Drug Therapy: The Potential Interplay of Pharmacogenetics and Pharmacokinetic Interactions in Clinical Practice: A Narrative Review. Diabetolology 2024, 5, 406–429. [Google Scholar] [CrossRef]
- Agarwal, S.; Yadav, A.; Chaturvedi, R.K. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem. Biophys. Res. Commun. 2017, 483, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Giacoman-Martínez, A.; Alarcón-Aguilar, F.J.; Zamilpa, A.; Hidalgo-Figueroa, S.; Navarrete-Vázquez, G.; García-Macedo, R.; Román-Ramos, R.; Almanza-Pérez, J.C. Triterpenoids from Hibiscus sabdariffa L. with PPARδ/γ Dual Agonist Action: In Vivo, In Vitro and In Silico Studies. Planta Medica 2019, 85, 412–423. [Google Scholar] [CrossRef]
- Han, L.; Shen, W.J.; Bittner, S.; Kraemer, F.B.; Azhar, S. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol. 2017, 13, 259–278. [Google Scholar] [CrossRef]
- Grygiel-Górniak, B. Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical implications—A review. Nutr. J. 2014, 13, 17. [Google Scholar] [CrossRef]
- Gross, B.; Pawlak, M.; Lefebvre, P.; Staels, B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 2017, 13, 36–49. [Google Scholar] [CrossRef]
- Loza-Rodríguez, H.; Estrada-Soto, S.; Alarcón-Aguilar, F.J.; Huang, F.; Aquino-Jarquín, G.; Fortis-Barrera, Á.; Giacoman-Martínez, A.; Almanza-Pérez, J.C. Oleanolic acid induces a dual agonist action on PPARγ/α and GLUT4 translocation: A pentacyclic triterpene for dyslipidemia and type 2 diabetes. Eur. J. Pharmacol. 2020, 883, 173252. [Google Scholar] [CrossRef]
- Ferrufino, A.L. Taxonomic revision of the genus Smilax (Smilacaceae) in Central America and the Caribbean Islands. Willdenowia 2010, 40, 227–280. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Xu, M.; Qiao, G.; Li, C.; Lin, L.; Zheng, G. Smilax china L. polyphenols alleviates obesity and inflammation by modulating gut microbiota in high fat/high sucrose diet-fed C57BL/6J mice. J. Funct. Foods 2021, 77, 104332. [Google Scholar] [CrossRef]
- Roig, J.T. Plantas Medicinales, Aromáticas O Venenosas De Cuba; Editorial Científico Técnica: La Habana, Cuba, 2014; pp. 618–619. [Google Scholar]
- Avula, B.; Bae, J.Y.; Ahn, J.; Katragunta, K.; Wang, Y.H.; Wang, M.; Kwon, Y.; Khan, I.A.; Chittiboyina, A.G. 6-Oxofurostane and (iso)Spirostane Types of Saponins in Smilax sieboldii: UHPLC-QToF-MS/MS and GNPS-Molecular Networking Approach for the Rapid Dereplication and Biodistribution of Specialized Metabolites. Int. J. Mol. Sci. 2023, 24, 11487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, J.; Dou, P.; Wu, Z.; Zheng, Z.; Pan, X.; Zhou, T.; Wang, K. Oral absorption characteristics and mechanisms of a pectin-type polysaccharide from Smilax china L. across the intestinal epithelium. Carbohydr. Polym. 2021, 270, 118383. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Ruan, Y.T.; Yin, Z.P.; Zhang, Q.F. A Comparison of Solubility, Stability, and Bioavailability between Astilbin and Neoastilbin Isolated from Smilax glabra Rhizoma. Molecules 2020, 25, 4728. [Google Scholar] [CrossRef] [PubMed]
- Yaque, J.; Monan, M.; Cuéllar, A.; de Armas, T.; Gómez, E.; Dopico, E. Pharmacognostic and Phytochemical Studies of Smilax domingensis Willd. in Cuba. Am. Cienc. Plantas 2017, 8, 1462–1470. [Google Scholar]
- Soledispa, P.A.; González, J.; Cuéllar, A.; Pérez, J.; Monan, M. Characterization of Catechins from Smilax dominguensis Willd. In Cuba. World News Nat. Sci. 2019, 23, 297–305. [Google Scholar]
- Boeing, T.; Speca, S.; Souza, P.; Mena, A.M.; Bertin, B.; Desreumax, P.; Mota da Silva, L.; Faloni de Andrade, S.; Dubuqoy, L. The PPARγ-dependent effect of flavonoid luteolin against damage induced by the chemotherapeutic irinotecan in human intestinal cells. Chem. Biol. Interact. 2022, 351, 109712. [Google Scholar] [CrossRef]
- Sharma, P.; Hajam, Y.A.; Kumar, R.; Rai, S. Complementary and alternative medicine for the treatment of diabetes and associated complications: A review on therapeutic role of polyphenols. Phytomedicine Plus. 2022, 2, 100188. [Google Scholar] [CrossRef]
- Lee, K.P.; Chen, J.S.; Wang, C.Y. Association between diabetes mellitus and post-stroke cognitive impairment. J. Diabetes Investig. 2023, 14, 6–11. [Google Scholar] [CrossRef]
- Goli, A.S.; Sato, V.H.; Sato, H.; Chewchinda, S.; Leanpolchareanchai, J.; Nontakham, J.; Yahuafai, J.; Thavaree, T.; Messawatsom, P.; Maitree, M. Anti-hyperglycemic effects of Lysiphyllum strychnifolium leaf extract in vitro and in vivo. Pharm. Biol. 2023, 61, 189–200. [Google Scholar] [CrossRef]
- Kang, Y.H.; Lee, Y.S.; Kim, K.K.; Kim, D.J.; Kim, T.W.; Choe, M. Study on antioxidative, anti-diabetic and anti-obesity activity of solvent fractions of Smilax china L. leaf extract. J. Nutr. Health 2013, 46, 401–409. [Google Scholar] [CrossRef]
- Mandal, S.K.; Kumar, B.K.; Sharma, P.K.; Murugesan, S.; Deepa, P.R. In silico and in vitro analysis of PPAR—α/γ dual agonists: Comparative evaluation of potential phytochemicals with anti-obesity drug orlistat. Comput. Biol. Med. 2022, 147, 105796. [Google Scholar] [CrossRef]
- Chukwuma, C.I.; Matsabisa, M.G.; Ibrahim, M.A.; Erukainure, O.L.; Chabalala, M.H.; Islam, M.S. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. J. Ethnopharmacol. 2019, 235, 329–360. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, E.; Amodeo, P.; Vitale, R.M. Marine Natural and Nature-Inspired Compounds Targeting Peroxisome Proliferator Act. Recept. Mar. Drugs 2023, 21, 89. [Google Scholar] [CrossRef]
- Seminotti, B.; Grings, M.; Glänzel, N.M.; Vockley, J.; Leipnitz, G. Peroxisome proliferator-activated receptor (PPAR) agonists as a potential therapy for inherited metabolic disorders. Biochem. Pharmacol. 2023, 209, 115433. [Google Scholar] [CrossRef]
- Liu, T.T.; Liu, X.T.; Chen, Q.X.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. Biomed Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef]
- Ferreira, A.V.M.; Parreira, G.G.; Green, A.; Botion, L.M. Effects of fenofibrate on lipid metabolism in adipose tissue of rats. Metabolism 2006, 55, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Soto, S.; Ornelas-Mendoza, K.; Navarrete-Vázquez, G.; Chávez-Silva, F.; Almanza-Pérez, J.C.; Villalobos-Molina, R.; Ortiz-Barragán, E.; Loza-Rodríguez, H.; Rivera-Leyva, J.C.; Flores-Flores, A.; et al. Insulin Sensitization by PPARγ and GLUT-4 Overexpression/Translocation Mediates the Anti-diabetic Effect of Plantago australis. Pharmaceuticals 2023, 16, 535. [Google Scholar] [CrossRef] [PubMed]
- Qasim, Q.A.; Al-Salman, H.N.K. The isolation characterization and assessment of bioactive flavonoid with special reference to anti-arthritic activity. Mater. Today Proc. 2023, 80, 2567–2572. [Google Scholar] [CrossRef]
- Fajriah, S.; Megawati, M.; Darmawan, A. Apigenin, an anticancer isolated from Macaranga gigantifolia leaves. J. Trop. Life Sci. 2016, 96, 7–9. [Google Scholar]
- Ren, G.; Hou, J.; Fang, Q.; Sun, H.; Liu, X.; Zhang, L.; Wang, P.G. Synthesis of flavonol 3-O-glycoside by UGT78D1. Glycoconj. J. 2012, 29, 425–432. [Google Scholar] [CrossRef]
- Niture, N.T.; Ansari, A.A.; Naik, S.R. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: An effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J. Exp. Biol. 2014, 52, 720–727. [Google Scholar] [PubMed]
- Livingston-Raja, N.R.; Ravindran-Nair, A.; Senthilpandian, S.; Ravi, V. Hypolipidemic action of rutin on Triton WR-1339 induced hyperlipidemia in rats. J. Pre-Clin. Clin. Res. 2021, 15, 51–55. [Google Scholar]
- Annapurna, H.V.; Apoorva, B.; Ravichandran, N.; Arun, K.P.; Brindha, P.; Swaminathan, S.; Nagarajan, A. Isolation and in silico evaluation of anti-diabetic molecules of Cynodon dactylon (L.). J. Mol. Graph. Model. 2013, 39, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.Y.; Shi, S.R.; Ma, C.N.; Lin, Y.P.; Song, W.G.; Guo, S.D. Natural products in atherosclerosis therapy by targeting PPARs: A review focusing on lipid metabolism and inflammation. Front. Cardiovasc. Med. 2024, 11, 1372055. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Gong, Y.; Ye, H.; Yuan, C.; Li, T.; Zhang, J.; Ren, L. Dietary regulation of peroxisome proliferator-activated receptors in metabolic syndrome. Phytomedicine Int. J. Phytother. Phytopharm. 2023, 116, 154904. [Google Scholar] [CrossRef]
- Cave, E.; Crowther, N.J. The use of 3T3-L1 murine preadipocytes as a model of adipogenesis. Sex. Brain 2018, 1916, 263–272. [Google Scholar]
- Clavijo, M.A.; Gómez, D.; Gómez, C.J. In vitro adipogenesis of 3T3-L1 cells. Rev. Med. 2007, 15, 170–176. [Google Scholar]
- Gregoire, F.M.; Smas, C.M.; Sul, H.S. Understanding adipocyte differentiation. Physiol. Rev. Jul. 1998, 78, 783–809. [Google Scholar] [CrossRef]
- Contreras-Nuñez, E.; Blancas-Flores, G.; Cruz, M.; Almanza-Perez, J.C.; Gomez-Zamudio, J.H.; Ventura-Gallegosc, J.L.; Zentella-Dehesa, A.; Roberto-Lazzarini; Roman-Ramos, R.; Alarcon-Aguilar, F.J. Participation of the IKK-α/β complex in the inhibition of the TNF-α/NF-κB pathway by glycine: Possible involvement of a membrane receptor specific to adipocytes. Biomed. Pharmacother. Biomed. Pharmacother. 2018, 102, 120–131. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA, and proteins from cell and tissue samples. BioTechniques 1993, 15, 532–537. [Google Scholar] [PubMed]
- Garcia-Macedo, R.; Sanchez-Muñoz, F.; Almanza-Perez, J.C.; Duran-Reyes, G.; Alarcon-Aguilar, F.; Cruz, M. Glycine increases mRNA adiponectin and diminishes pro-inflammatory adipokines expression in 3T3-L1 cells. Eur. J. Pharmacol. 2008, 587, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, P.; Zhang, F.; Ke, Z.; Chen, Q.; Liu, C. Protective effect of hypoglycemic granule against diabetes-induced liver injury by alleviating glycolipid metabolic disorder and oxidative stress. J. Cell Biochem. 2020, 121, 3221–3234. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Figueroa, S.; Navarrete-Vázquez, G.; Estrada-Soto, S.; Giles-Rivas, D.; Alarcón-Aguilar, F.J.; León-Rivera, I.; Giacoman-Martínez, A.; Miranda Pérez, E.; Almanza-Pérez, J.C. Discovery of new dual PPARγ-GPR40 agonists with robust antidiabetic activity: Design, synthesis and in combo drug evaluation. Biomed. Pharmacother. Biomed. Pharmacother 2017, 90, 53–61. [Google Scholar] [CrossRef]
Gene | Primer | Gene Bank |
---|---|---|
PPARγ | Forward 5′-CCAGAGTCTGCTGATCTGCG-3′ | NM_011146.1 |
Reverse 5′-GCCACCTCTTTGCTCTGCTC-3′ | ||
GLUT-4 | Forward 5′-GATTCTGCTGCCCTTCTGTC-3′ | NM_009204.2 |
Reverse 5′-ATTGGACGCTCTCTCTCCAA-3′ | ||
PPARα | Forward 5′-TGGAGCTCGATGACAGTGAC-3′ | NM011145 |
Reverse 5′-GTACTGGCTGTCAGGGTGGT-3′ | ||
FATP-1 | Forward 5′-ACCAGTGTCCAGGGGTACAG-3′ | NM011977.3 |
Reverse 5′-TGTCTCCCAGCTGACATGAG-3′ | ||
36B4 | Forward 5′-AAGCGCGTCCTGGCATTGTCT-3′ | NM_007475.2 |
Reverse 5′-CCGCAGGGGCAGCAGTGGT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Barragán, E.; Estrada-Soto, S.; Giacoman-Martínez, A.; Alarcón-Aguilar, F.J.; Fortis-Barrera, Á.; Marquina-Rodríguez, H.; Gaona-Tovar, E.; Lazzarini-Lechuga, R.; Suárez-Alonso, A.; Almanza-Pérez, J.C. Antihyperglycemic and Hypolipidemic Activities of Flavonoids Isolated from Smilax Dominguensis Mediated by Peroxisome Proliferator-Activated Receptors. Pharmaceuticals 2024, 17, 1451. https://doi.org/10.3390/ph17111451
Ortiz-Barragán E, Estrada-Soto S, Giacoman-Martínez A, Alarcón-Aguilar FJ, Fortis-Barrera Á, Marquina-Rodríguez H, Gaona-Tovar E, Lazzarini-Lechuga R, Suárez-Alonso A, Almanza-Pérez JC. Antihyperglycemic and Hypolipidemic Activities of Flavonoids Isolated from Smilax Dominguensis Mediated by Peroxisome Proliferator-Activated Receptors. Pharmaceuticals. 2024; 17(11):1451. https://doi.org/10.3390/ph17111451
Chicago/Turabian StyleOrtiz-Barragán, Erandi, Samuel Estrada-Soto, Abraham Giacoman-Martínez, Francisco J. Alarcón-Aguilar, Ángeles Fortis-Barrera, Hugo Marquina-Rodríguez, Emmanuel Gaona-Tovar, Roberto Lazzarini-Lechuga, Alfredo Suárez-Alonso, and Julio César Almanza-Pérez. 2024. "Antihyperglycemic and Hypolipidemic Activities of Flavonoids Isolated from Smilax Dominguensis Mediated by Peroxisome Proliferator-Activated Receptors" Pharmaceuticals 17, no. 11: 1451. https://doi.org/10.3390/ph17111451
APA StyleOrtiz-Barragán, E., Estrada-Soto, S., Giacoman-Martínez, A., Alarcón-Aguilar, F. J., Fortis-Barrera, Á., Marquina-Rodríguez, H., Gaona-Tovar, E., Lazzarini-Lechuga, R., Suárez-Alonso, A., & Almanza-Pérez, J. C. (2024). Antihyperglycemic and Hypolipidemic Activities of Flavonoids Isolated from Smilax Dominguensis Mediated by Peroxisome Proliferator-Activated Receptors. Pharmaceuticals, 17(11), 1451. https://doi.org/10.3390/ph17111451