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Abstract: Background/Objectives: Type 2 Diabetes Mellitus (T2DM) is characterized by hyper-
glycemia, increased risk of cardiovascular diseases, and oxidative imbalances. This study aimed to
investigate the impact of dietary supplementations with ‘Arinto’ grape pomace flour (GPF) (WGPF)
and ‘Touriga Nacional’ GPF (RGPF) in an animal model of T2DM. Methods: T2DM was induced
by a high-fat diet (HFD) for 28 days and a single dose of streptozotocin (STZ) (35 mg/kg) on the
21st day. Forty adult male Wistar rats were divided into five groups: Control (CT), T2DM, T2DM +
Metformin (250 mg/kg), T2DM + 10% ‘Arinto’ GPF (WGPF), and T2DM + 10% ‘Touriga Nacional’
GPF (RGPF). On the 21st day of the experimental protocol, animals were submitted to an oral glucose
tolerance test. An oral glucose tolerance test, oxidative stress parameters, biochemical analysis, and
pancreas histological analyses were performed. Results: T2DM impaired glucose tolerance, elevated
serum triglycerides and cholesterol, increased oxidative damage in the liver, and induced pancreatic
histological abnormalities. However, supplementation with WGPF and RGPF demonstrated positive
effects, mitigating glycemic and lipid disruptions, ameliorating oxidative stress, and protecting pan-
creatic Islets β-cells. Conclusions: Our findings highlight the protective effects of WGPF and RGPF
in the adverse impacts of T2DM. Additionally, our study emphasizes the innovative use of grape
pomace, a winemaking by-product, promoting sustainability by transforming waste into functional
foods with significant health benefits.
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1. Introduction

The global prevalence of Type 2 Diabetes Mellitus (T2DM), a multifactorial chronic
metabolic disease, has risen significantly. According to the International Diabetes Feder-
ation Diabetes Atlas [1], more than 540 million adults aged 20 to 79 are now affected by
T2DM. Key factors contributing to the disease include impaired insulin secretion due to
pancreatic β-cell dysfunction and insulin resistance (IR) caused by signaling failures [2,3].
T2DM is also marked by a notable decline in glucose tolerance, accompanied by a reduction
in pancreatic β-cell mass [4]. Additionally, its pathophysiology involves hyperglycemia,
dyslipidemia, oxidative stress, and inflammation [2,5].

Given the wide range of factors contributing to T2DM and its association with micro-
and macrovascular complications, it is critical to explore alternative treatments for its
prevention and management [3]. Recent reviews have highlighted the phytochemical
and pharmacological properties of natural products, particularly their antioxidant, anti-
obesity, anti-inflammatory, anti-aging, and anti-hyperlipidemic effects in the context of
T2DM [6–13].

Grapes (Vitis vinifera L., Vitaceae) are among the most widely cultivated and consumed
fruit crops globally. According to the International Organization of Vine and Wine (OIV),
global grape production reached approximately 85 million tons in 2019, with a significant
portion dedicated to winemaking [14]. The winemaking industry, as a major agro-industrial
sector, generates large quantities of waste and by-products, underscoring the need for
sustainable management to reduce its environmental impact [8]. Grape pomace, the
main solid organic waste produced by wineries, consists of stalks, skins, pulp, and seeds,
accounting for about 25% of the total grape mass [15,16]. Although a portion of grape
pomace is used as a raw material for the production of viable grape distillate (commonly
known as “grappa”), as a supplement in animal feed, or as a soil fertilizer, a significant
amount of this by-product is discarded annually. This disposal raises environmental
concerns and represents a substantial cost to the industry [8]. Grape pomace, rich in
phenolic compounds with antioxidant properties and dietary fiber, is a valuable resource
that has been investigated for recycling [17,18].

Interest in transforming grape pomace into a safe, practical form is growing in re-
sponse to environmental concerns and the increasing demand for natural health-promoting
compounds [8]. One cost-effective and practical approach is converting grape pomace into
grape pomace flour (GPF) through drying and milling processes [19–21]. Recent research
has concentrated on the chemical composition and biotechnological potential of GPF, high-
lighting its anti-hyperglycemic, antioxidant, anti-inflammatory, and anti-atherosclerotic
effects in human and animal models of metabolic syndrome [17,22–24], obesity [25], and
atherosclerosis [19].

Vitis vinifera ‘Touriga Nacional’ are red grapes and Vitis vinifera ‘Arinto’ are white
grapes widely cultivated across the European Union [26]. The GPF from these varieties
has received positive sensory evaluations when used in baked goods [20,21,27]. These two
varieties are abundant in phytochemicals, with Arinto having higher levels of extractable
polyphenols, while Touriga Nacional is distinguished by its anthocyanin content [28].
These bioactive compounds are reported to modulate key pathways affected by T2DM [29].
Additionally, the flours derived from grape pomace, especially from Touriga Nacional, have
significantly lower carbohydrate content, which may provide added benefits for glycemic
control compared to more traditional flours [28]. Therefore, this study aimed to investigate
whether GPF from the ‘Arinto’ and ‘Touriga Nacional’ grape varieties could mitigate the
metabolic, biochemical, histological, and oxidative changes observed in a high-fat diet
(HFD) and streptozotocin (STZ)-induced experimental model of T2DM in rats.
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2. Results
2.1. Oral Glucose Tolerance Test (OGTT)

To assess glucose tolerance, all animals underwent an OGTT 72 h after the STZ
injection. As illustrated in Figure 1A, the combination of an HFD and intraperitoneal STZ
injections resulted in a significant increase in the baseline blood glucose levels in all diabetic
groups (p < 0.001) compared to the CT group (95% CI 91.38–133.6). In contrast, metformin
(Met) administration exhibited a protective effect by significantly reducing serum glucose
levels in the T2DM + Met group (95% CI 285.2–363.7) compared to the untreated T2DM
group (95% CI 429.4–570.7) (p < 0.01). At this point, following an oral glucose overload
(2 g/kg), a significant increase in blood glucose was observed at 30, 60, and 120 min in
the T2DM, T2DM + Met, white grape pomace flour (WGPF) (95% CI 371.3–528.7), and red
grape pomace flour (RGPF) (95% CI 376.8–510.8) groups compared to the control group
(CT) (p < 0.001). The interventions with GPF did not mitigate this effect. However, the
group treated with Met (T2DM + Met) showed a significant reduction in glucose levels at
the 30, 60, and 120 min marks compared to the untreated T2DM group (p < 0.001, p < 0.001,
and p < 0.01, respectively). To validate the significance of the observed changes, the area
under the curve (AUC) during the 120 min OGTT was calculated for all five experimental
groups. As depicted in Figure 1B, the OGTT-AUC was significantly elevated in the T2DM
groups compared to the CT group (p < 0.001, all). In contrast, treatments with Met or
RGPF significantly reduced the AUC, demonstrating protection against glucose intolerance
(p < 0.001 and p < 0.05, respectively).
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Figure 1. Oral glucose tolerance test demonstrating the variation in fasting blood glucose and after
30, 60, and 120 min of oral glucose overload (A) and the area under curve (AUC0–120 min) (B). The
results are expressed as mean ± S.E.M. (n = 6–10). *** represents p < 0.0001 when compared to the CT
group. ### represents p < 0.001, ## represents p < 0.01, and # represents p < 0.05 when compared to
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the T2DM group. Repeated-measures ANOVA followed by Bonferroni’s post hoc test. AUC, area
under the curve; CT, control; T2DM, Type 2 Diabetes Mellitus; WGPF, white grape pomace flour;
RGPF, red grape pomace flour; Met, metformin.

2.2. Metabolic and Serum Biochemical Parameters

Table 1 presents data on feed consumption, energy intake, water intake, and weight
gain over the four-week experimental period. During the pre-STZ or saline phase, the
average feed consumption (in grams) was significantly lower in the T2DM + Met (p < 0.001)
and T2DM + RGPF (p < 0.001) groups compared to the CT group, while the T2DM + WGPF
group exhibited higher feed consumption compared to the T2DM group (p < 0.05). On the
other hand, only the metformin-treated group showed a reduction in daily caloric intake
compared to the CT and T2DM groups (p < 0.01 and p < 0.05, respectively). After the STZ or
saline injection, a marked decrease in food consumption was observed in the T2DM + Met,
WGPF, and RGPF groups compared to the CT group (p < 0.01), while no significant changes
in caloric intake were observed between the experimental groups (p > 0.05). Regarding
water intake (in milliliters), the T2DM + Met (p < 0.001) and T2DM + RGPF (p < 0.05)
groups showed lower values versus the CT group. Conversely, after the STZ injection, there
was a significant increase in water consumption in the T2DM (p < 0.001), T2DM + WGPF
(p < 0.05), and T2DM + RGPF (p < 0.05) groups versus the control, whereas the T2DM + Met
group showed a significant reduction in water intake versus the T2DM group (p < 0.05).

Table 1. Effect of the administration of a high-fat diet and STZ, and treatment with Met and WGPF or
RGPF on food consumption, energy intake, water intake, total weight gain, relative pancreas weight,
and adipose tissue weight.

CT T2DM T2DM +
Met T2DM + WGPF T2DM + RGPF

Pre STZ or saline
Feed consumption (g/day) 25.76 ± 0.67 21.35 ± 1.46 18.48 ± 0.92 *** 23.93 ± 1.12 # 20.36 ± 1.09 **
Energy intake (kcal/day) 91.86 ± 1.46 88.05 ± 3.31 76.64 ± 2.06 **# 98.21 ± 3.24 83.18 ± 2.83
Water intake (mL/day) 46.53 ± 2.14 41.33 ± 2.87 32.25 ± 1.43 ** 39.90 ± 2.29 35.97 ± 2.51 *

Total weight gain (g) 31.44 ± 3.07 50.67 ± 6.06 * 34.80 ± 6.78 48.50 ± 4.95 * 44.44 ± 2.87
Post STZ or saline

Feed consumption (g/day) 25.06 ± 0.46 20.46 ± 2.72 15.67 ± 1.63 ** 16.69 ± 1.23 ** 17.58 ± 1.20 **
Energy intake (kcal/day) 89.85 ± 1.65 79.55 ± 9.72 66.84 ± 5.61 68.50 ± 5.66 70.24 ± 5.36
Water intake (mL/day) 48.80 ± 1.45 107.83 ± 15.38 *** 67.3 ± 9.51 # 80.66 ± 7.04 * 83.67 ± 5.96 *

Total weight gain (g) 28.56 ± 4.38 16.25 ± 3.46 19.33 ± 2.59 19.75 ± 4.19 13.95 ± 4.99
Pancreas relative weight 0.41 ± 0.03 0.37 ± 0.02 0.31 ± 0.02 0.37 ± 0.04 0.33 ± 0.03
Adipose visceral tissue

relative weight 11.05 ± 0.80 15.05 ± 1.17 15.20 ± 1.99 16.97 ± 1.91 * 13.43 ± 1.17

The data are presented as mean ± S.E.M. (n = 6–10). *** represents p < 0.001, ** represents p < 0.01, and * represents
p < 0.05 versus the CT group. # represents p < 0.05 versus the T2DM group. One-way ANOVA followed by
Tukey’s post hoc test. CT, control; T2DM, Type 2 Diabetes Mellitus; WGPF, white grape pomace flour; RGPF, red
grape pomace flour; Met, metformin.

In terms of weight gain during the pre-STZ or saline phase, the T2DM and T2DM +
WGPF groups gained significantly more weight versus the CT group (p < 0.05). However,
no significant differences were observed across the experimental groups after STZ injections
(p > 0.05). Figure 2 illustrates the weight gain curve, where the initial weight of the T2DM +
Met group (p < 0.01) was significantly higher than the CT group. Additionally, significantly
greater body weights were observed in the T2DM, T2DM + Met, and T2DM + WGPF
groups versus the CT group in the first (p < 0.05, p < 0.05, and p < 0.01, respectively), second
(p < 0.05, p < 0.01, and p < 0.001, respectively), and third (p < 0.05, p < 0.05, and p < 0.001,
respectively) weeks of the experiment. Weight loss was observed after the STZ injection
in all diabetic groups, though no significant differences in total weight gain were found
(p > 0.05). In terms of the relative pancreas weight, no significant differences were observed
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among the experimental groups (p > 0.05). However, a significant increase in visceral
adipose tissue was noted in the T2DM + WGPF group versus the CT group (p < 0.05).
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Figure 2. Absolute weekly body weight over three weeks of consumption of a normolipidemic diet,
HFD, HFD supplemented with white grape pomace flour (WGPF), or HFD supplemented with red
grape pomace flour (RGPF), and weight loss after STZ administration. Results are expressed as
mean ± S.E.M. (n = 6–10). *** represents p < 0.001, ** represents p < 0.01, and * represents p < 0.05
versus the CT group. Repeated-measures ANOVA followed by Bonferroni’s post hoc test. CT, control;
T2DM, Type 2 Diabetes Mellitus; WGPF, white grape pomace flour; RGPF, red grape pomace flour;
Met, metformin.

Figure 3A–D shows the serum biochemical profile, with significant changes observed
in the T2DM group versus the CT group for blood glucose (p < 0.001), triglycerides (TG)
(p < 0.001), and cholesterol (p < 0.01). In contrast, the groups treated with Met or WGPF
exhibited significantly lower blood glucose (p < 0.05 and p < 0.001, respectively) and TG
(p < 0.001) levels versus the T2DM group. Additionally, the T2DM + RGPF group had
significantly higher cholesterol levels versus the CT group (p < 0.01), as well as elevated
high-density lipoprotein (HDL) levels (p < 0.05).

The TyG index was significantly elevated in all diabetic groups (T2DM, p < 0.001;
T2DM + Met, p < 0.05; T2DM + WGPF, p < 0.001; T2DM + RGPF, p < 0.001) versus the CT
group. However, treatment with Met, WGPF, or RGPF significantly reduced this index
versus the T2DM group (p < 0.001, p < 0.05, and p < 0.05, respectively) (Figure 4).
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Figure 3. Effects of treatment with metformin and white or red grape pomace flour on serum levels of
glucose (A), triglycerides (B), total cholesterol (C), and HDL cholesterol (D) in Wistar rats subjected to
an experimental induction protocol of Type 2 Diabetes Mellitus. Data are presented as mean ± S.E.M.
(n = 4–7). *** represents p < 0.001, ** represents p < 0.01, and * represents p < 0.05 versus the CT group.
### represents p < 0.001, ## represents p < 0.01, and # represents p < 0.05 versus the T2DM group.
One-way ANOVA followed by Tukey’s post hoc test. CT, control; T2DM, Type 2 Diabetes Mellitus;
WGPF, white grape pomace flour; RGPF, red grape pomace flour; HDL, high-density lipoprotein;
Met, metformin.
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group. One-way ANOVA followed by Tukey’s post hoc test. CT, control; T2DM, Type 2 Diabetes
Mellitus; WGPF, white grape pomace flour; RGPF, red grape pomace flour; Met, metformin; TG,
triglycerides; TyG, triglyceride-glucose index.

Table 2 presents data on serum markers of liver and kidney damage. Uric acid levels
were significantly lower in the T2DM + Met (p < 0.01), T2DM + WGPF (p < 0.05), and
T2DM + RGPF (p < 0.01) groups versus the CT group. Aspartate aminotransferase (AST)
activity was significantly reduced in the T2DM + WGPF group versus the CT and T2DM
groups (p < 0.01), while alanine aminotransferase (ALT) activity was significantly elevated
in the T2DM group versus the CT group (p < 0.05). Treatments with WGPF (p < 0.001)
and RGPF (p < 0.01) significantly mitigated these changes. Additionally, creatinine levels
were significantly higher in the untreated T2DM group versus the CT group (p < 0.05). No
significant differences were observed in urea or protein levels across the groups (p > 0.05).



Pharmaceuticals 2024, 17, 1530 7 of 19

Table 2. Effect of the administration of a high-fat diet and STZ, and treatment with Met, WGPF, or
RGPF on serum parameters of renal and hepatic damage of animals subjected to an experimental
induction protocol of Type 2 Diabetes.

CT T2DM T2DM + Met T2DM + WGPF T2DM + RGPF

Uric acid 1.25 ± 0.08 0.77 ± 0.21 0.50 ± 0.18 ** 0.68 ± 0.12 * 0.50 ± 0.13 **
Urea 41.67 ± 0.88 37.33 ± 4.33 39.00 ± 3.70 33.38 ± 2.28 40.88 ± 1.46

Creatinine 0.40 ± 0.04 0.23 ± 0.03 * 0.30 ± 0.03 0.31 ± 0.02 0.29 ± 0.02
Protein 5.06 ± 0.25 5.02 ± 0.19 4.23 ± 0.22 4.22 ± 0.37 4.67 ± 0.19

AST activity 140.8 ± 10.44 149.8 ± 19.35 129.8 ± 14.67 82.14 ± 4.48 **## 132.7 ± 11.19
ALT activity 69.00 ± 7.33 106.7 ± 10.87 * 72.67 ± 7.45 51.56 ± 5.02 ### 65.50 ± 4.35 ##

The data are presented as mean ± S.E.M. (n = 4–7) ** represents p < 0.01, and * represents p < 0.05 versus the CT
group. ### represents p < 0.001, and ## represents p < 0.01 versus the T2DM group. One-way ANOVA followed
by Tukey’s post hoc test. ALT, alanine aminotransferase; AST, aspartate aminotransferase; CT, control; T2DM,
Type 2 Diabetes Mellitus; WGPF, white grape pomace flour; RGPF, red grape pomace flour; Met, metformin. Uric
acid expressed as mg/dL. Urea expressed as mg/dL. Creatinine expressed as mg/dL. Protein expressed as g/dL.
AST activity expressed as U/L. ALT activity expressed as U/L.

2.3. Parameters of Oxidative Stress in the Liver

The liver oxidative stress parameters are summarized in Table 3. The coadministration
of an HFD and a moderate dose of STZ significantly increased total thiol content in the
T2DM, T2DM + Met, T2DM + WGPF, and T2DM + RGPF groups (p < 0.001) versus the CT
group. However, treatment with WGPF (p < 0.001) and RGPF (p < 0.01) significantly reduced
thiobarbituric acid-reactive substance (TBARS) levels, indicating lower lipid peroxidation
versus the T2DM group (p < 0.05). No significant differences were found in reactive oxygen
species (ROS) levels between the groups (p > 0.05). All diabetic groups showed elevated
nitrite levels, and none of the treatments successfully prevented this increase (p < 0.001).

Table 3. Effect of the administration of a high-fat diet and STZ, and treatment with Met, WGPF, or
RGPF on oxidative stress parameters in the livers of animals subjected to an experimental induction
protocol of Type 2 Diabetes.

CT T2DM T2DM + Met T2DM + WGPF T2DM + RGPF

Liver
Total thiol content 111.8 ± 3.08 137.6 ± 2.28 *** 139.0 ± 2.93 *** 139.2 ± 3.28 *** 143.9 ± 3.13 ***

TBARS levels 8.10 ± 0.66 12.13 ± 0.69 * 10.03 ± 0.81 7.02 ± 0.90 ### 7.16 ± 0.73 ##
ROS levels 35.03 ± 2.07 22.52 ± 1.31 27.02 ± 3.46 24.86 ± 1.52 28.60 ± 1.52

Nitrite levels 21.88 ± 2.88 41.50 ± 1.14 *** 37.60 ± 1.58 *** 43.26 ± 1.11 *** 37.49 ± 1.32 ***
CAT activity 43.28 ± 0.95 49.91 ± 6.18 42.45 ± 7.52 55.61 ± 3.24 41.42 ± 5.68
SOD activity 45.38 ± 1.72 27.85 ± 2.36 *** 29.16 ± 2.11 *** 22.07 ± 3.22 *** 32.88 ± 2.03 **

The data are presented as mean ± S.E.M. (n = 4–8). *** represents p < 0.001, ** represents p < 0.01, and * represents
p < 0.05 versus the CT group. ### represents p < 0.001, and ## represents p < 0.01 versus the T2DM group. One-way
ANOVA followed by Tukey’s post hoc test. Total thiol content denoted as nmol TNB/mg of protein, TBARS levels
denoted as nmol TBARS/mg of protein, ROS levels denoted as µmol DCF/mg of protein, nitrite levels denoted
as µM nitrites/mg of protein, CAT and SOD activity denoted as U/mg of protein. CAT, catalase; CT, control;
T2DM, Type 2 Diabetes Mellitus; ROS, reactive oxygen species; WGPF, white grape pomace flour; RGPF, red grape
pomace flour; Met, metformin; SOD, superoxide dismutase; TBARS, thiobarbituric acid-reactive substances.

Regarding antioxidant enzyme activity, there were no significant differences in catalase
(CAT) and superoxide dismutase (SOD) activities between the groups (p > 0.05). However,
a significant reduction in SOD activity was observed in the T2DM (p < 0.001), T2DM + Met
(p < 0.001), T2DM + WGPF (p < 0.001), and T2DM + RGPF (p < 0.01) groups versus the
CT group.

2.4. Histopathological Analyses of the Pancreas

Figure 5 presents the histological analysis of the pancreas. In the CT group, the pan-
creatic tissue showed typical lobular organization, with intact acinar cells and well-defined
islets of Langerhans, which were readily identifiable and exhibited their characteristic
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structure (Figure 5A–C). In contrast, the T2DM group exhibited structural alterations in
the islets, characterized by increased intercellular spaces, the presence of vacuoles in some
acinar cells, and vascular congestion. The overall pancreatic structure was frequently diffi-
cult to visualize, displaying disorganization in lobes and lobules. The islets of Langerhans
were less discernible, both in quantity and structural integrity, with some islets showing
gaps between cells. These changes, including the presence of vacuoles in acinar cells
and congested vessels, are indicative of the damage caused by the experimental model
(Figure 5D–F).
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Figure 5. Pancreatic histological features of Wistar rats subjected to an experimental induction
protocol of Type 2 Diabetes Mellitus treated with metformin or white or red grape pomace flour.
(A–C) CT, control; (D–F) T2DM, Type 2 Diabetes Mellitus; (G–I) T2DM + Met, Type 2 Diabetes
Mellitus + Metformin, (J–L) T2DM + WGPF, white grape pomace flour, (M–O) T2DM + RGPF, red
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grape pomace flour. Thin arrows, acini with normal structure; I, Langerhans islets; V, vessels;
* vacuoles in acinar cells; thick arrows, spaces in islets indicating structural changes; (D,I,L,M)
congested vessels. Scale: represents 100 µm in photos with 20× magnification (A,C,D,F–J,L–O); and
represents 50 µm in photos with 40× magnification (B,E,K,N). Pancreas sections were stained with
hematoxylin and eosin.

The pancreas in the T2DM + Met group (Figure 5G–I) displayed no significant cellular
changes. This group displayed a pancreatic structure that was visually comparable to
the control group, characterized by well-defined lobes and lobules, intact acinar cells,
and islets that, when present, retained adequate structural characteristics. Nonetheless,
minor alterations were noted, including a few congested vessels and a reduced number
of identifiable islets compared to the CT group. Similarly, the T2DM + WGPF group
maintained an overall intact pancreatic structure comparable to the CT group, though
some swollen acinar cells with vacuoles and congested vessels were noted. While this
group exhibited fewer alterations than the T2DM + RGPF group, it did not reach the
level of integrity seen in the T2DM + Met and control groups. The pancreatic architecture
remained largely intact, featuring identifiable lobes and lobules, although some spacing
between lobules was evident. Most acinar cells and islets retained their characteristic
structures, though a few swollen acinar cells, vacuoles, and congested vessels were still
present (Figure 5J–L). Finally, the T2DM + RGPF group showed some congested vessels and
acinar cells with swollen vacuoles. The islets of Langerhans were intact and more numerous
versus the CT group, though some exhibited small spaces. The pancreatic structure was
more clearly defined than in the T2DM group, although some spacing between lobes and
lobules was observed. Most acini appeared intact, yet the presence of congested vessels and
acinar cells with vacuoles or swelling persisted. Overall, while the islets were more intact
and occurred in greater numbers, some still exhibited gaps between cells (Figure 5M–O).

3. Discussion

In the context of global public health, T2DM is a growing concern, with projections con-
tinually surpassing expectations in each new screening, resulting in a significant financial
burden each year [1]. Natural resources, rich in bioactive compounds, have been exten-
sively studied for their health benefits in recent years. Our research group has previously
demonstrated the effects of phenolic compounds, such as anthocyanins, flavonoids, and
catechins, found in these resources in animal models of T2DM [30], IR [31], and metabolic
syndrome [32–34]. In the present study, we observed that the consumption of WGPF and
RGPF significantly influenced markers of oxidative stress in the liver, lipid and glycemic
profiles, and pancreatic structure in T2DM Wistar rats.

In terms of anthropometric parameters, all T2DM groups experienced a significant
reduction in food intake after intraperitoneal STZ injections on day 21, resulting in notable
body weight loss, aligning with previous reports in the literature [35,36]. However, these
effects seemed to diminish in the days following the STZ injection. As observed by Giribabu
et al. [37], grape seed extracts helped counteract weight loss in STZ-induced diabetic rats
during a 28 day follow-up period.

Dysregulation of carbohydrate, lipid, and protein metabolism is central to the pathol-
ogy of T2DM, leading to severe consequences, including long-term dysfunctions in patients
suffering from chronic hyperglycemia [38]. Dietary polyphenols and fiber have been shown
to improve lipid and glycemic profiles [39–41]. Consistent with our study, Rodriguez
Lanzi et al. [24] reported that grape pomace administration reduced triglyceride concen-
trations in an animal model of metabolic syndrome induced by a high-fat, high-fructose
diet. Additionally, Ferri et al. [42] demonstrated that grape pomace lowered cholesterol
levels by increasing the transcriptional activity of cholesterol 7α-hydroxylase (cyp7a1), a
rate-limiting enzyme in bile acid formation, crucial for maintaining cholesterol homeostasis.
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The anti-hyperlipidemic effects of grape pomace may stem from a synergistic action
of its bioactive compounds and dietary fiber. Soluble fiber in grape pomace can prevent
lipid emulsification, affect triglyceride hydrolysis, and lower blood cholesterol, promoting
cardiovascular health [28]. Accordingly, a meta-analysis available in the literature indicates
that grape juice, high in simple sugars, may worsen blood glucose levels in healthy or
diabetic patients, while fiber-rich grape by-products, like GPF, have beneficial effects on
insulin resistance, underscoring their therapeutic potential in T2DM management [43].
Also, the antioxidant phenolic compounds in grape pomace may also reduce cholesterol
absorption by disrupting micelles, decreasing cholesterol solubility and availability [19,44].
Downing et al. [45] further demonstrated that grape seed procyanidin extract reduced
triacylglycerol levels while increasing the fecal excretion of cholesterol and bile acids, also
decreasing hepatic lipid deposition.

In our study, the hypoglycemic effects of WGPF were evident in serum glucose levels,
while RGPF showed significant effects in the OGTT test. The OGTT is recommended
for assessing abnormalities in glucose homeostasis and is widely recognized as the gold
standard for diagnosing diabetes. In diabetic rats, an increase in glycemia was observed,
and the ability of metformin (Met) to reduce glycemia during the OGTT confirms the
validity of this experimental model. Previous studies from our group have shown that
dietary interventions, including the incorporation of extracts rich in bioactive compounds,
can effectively reduce glucose levels and improve overall metabolic health [31,32]. Also, the
literature suggests that the postprandial hypoglycemic effects of grape by-products depend
on the dose, diet, and the duration of the experimental period [23,46]. Certain synthetic
antidiabetic drugs work by inhibiting digestive enzymes like α-amylase and α-glucosidase
to control postprandial hyperglycemia [47], and studies have shown that grape pomace
may target similar mechanisms. Specific α-glucosidase inhibitors, such as 6-O-D-glycosides,
were isolated from ‘Tinta Cão’ grape pomace [48], while phenolic compounds like catechin
and anthocyanins were identified as potential α-amylase inhibitors in Merlot grape pomace
via an in silico molecular docking analysis [49].

Additionally, a higher phenolic content has been associated with stronger enzymatic
inhibition, and procyanidins isolated from grape seeds can lower hyperglycemia more
effectively than low-dose insulin, exhibiting an insulin-mimetic effect. Campos et al. [50]
investigated the effect of glycosylated anthocyanins and flavonols on glucose uptake in
an in vitro cell culture model, demonstrating a reduction in glucose uptake, possibly due
to the inhibition of glucose transporters SGLT1 and GLUT2. These findings highlight the
potential of grape pomace in diabetes prevention and control [48–50].

The TyG index is a well-established marker for assessing IR, demonstrating a strong
correlation with the hyperinsulinemic–euglycemic clamp technique, which is considered
the gold standard for IR diagnosis [51,52]. This index not only reflects glycemic status
but also serves as an indicator of cardiovascular health [52]. In patients with T2DM,
elevated TyG index levels have been associated with an increased risk of cardiovascular
complications [53]. In our study, Met, WGPF, and RGPF exhibited protective effects against
elevated markers of the risk for cardiovascular diseases, which is consistent with the
findings of De Morais et al. [54], who observed a reduction in TyG index values in rats fed
a sucrose solution and treated with pterostilbene. Additionally, uric acid levels, another
important marker of cardiovascular health, remained stable across the T2DM groups
examined in this study.

Given the liver’s pivotal role in regulating glucose and lipid metabolism, liver dysfunc-
tion can significantly exacerbate IR and T2DM [55]. Previous studies have highlighted the
hepatoprotective effects of grape-derived compounds in preventing liver damage induced
by a high-fat diet [56]. Our findings align with this evidence, demonstrating that WGPF
and RGPF offer protection against liver dysfunction.
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In this sense, hepatic dysfunction can intensify oxidative stress, a major factor in the
development of IR and T2DM-related complications [57]. In T2DM, elevated oxidative
stress disrupts liver function, leading to increased triglyceride synthesis and cholesterol
dysregulation. Our study demonstrated that treatment with WGPF and RGPF not only mit-
igated oxidative stress but also improved hepatic lipid metabolism by lowering triglyceride
levels, modulating cholesterol balance, stabilizing membrane lipids, and reducing oxidative
stress. These findings underscore the liver’s pivotal role in mediating the oxidative stress
response and its potential as a target for therapies aimed at managing IR and T2DM.

Additionally, hyperglycemia triggers oxidative stress through various pathways [58].
Lipid peroxidation, a key marker of oxidative stress, is characterized by the interaction
with ROS with polyunsaturated fatty acids. This leads to cell membrane damage, which
disrupts the function of membrane-bound enzymes and receptors, contributing to diabetes
progression [59]. Our study found a marked increase in lipid peroxidation, as indicated by
TBARS levels, in the liver of diabetic rats, which was associated with elevated ROS levels
and reduced activity of antioxidant enzymes such SOD and CAT [58]. These enzymes
play a vital role in ROS defense, with SOD converting superoxide anions to hydrogen
peroxide, which is then broken down by CAT [57]. Based on our findings, we propose
that bioactive compounds in GPF may function as free radical scavengers and potentially
activate endogenous genes encoding antioxidant enzymes such as SOD, thereby offering
protection against oxidative damage in the liver of diabetic rats.

Pancreatic β-cell dysfunction plays a crucial role in the development of diabetes, with
histological analyses frequently showing considerable damage to these cells in T2DM
models [60]. In our study, STZ, a known β-cell cytotoxin, induced marked pancreatic
alterations, including vacuole formation and structural damage, consistent with the patho-
logical changes typically observed in T2DM [61,62]. However, treatment with Met, WGPF,
and RGPF demonstrated a protective effect on pancreatic tissue. Histological evaluation
confirmed reduced vacuole formation and preserved β-cell integrity, suggesting that the
iron-chelating and antioxidant properties of grape pomace compounds mitigated β-cell
damage. This protective mechanism aids in pancreatic function and contributes to better
glucose regulation, highlighting the potential of these treatments as an adjunct in diabetes
management [63].

In conclusion, our findings suggest that grape pomace flour holds significant potential
in the prevention and management of T2DM by modulating oxidative stress, improving
glycemic control, regulating lipid metabolism, and protecting pancreatic function.

The findings of our study demonstrate the potential protective effects of Arinto and
Touriga Nacional GPF against T2DM. These effects include improvements in IR, the reg-
ulation of lipid metabolism, a reduction in oxidative damage, and the preservation of
the pancreatic structure—outcomes that have not been previously documented. Our re-
sults suggest that these specific GPFs, which have not been extensively studied before,
may provide protective benefits in the management of T2DM that go beyond those re-
ported for other grape varieties. Furthermore, our study underscores the innovative use of
grape pomace, a by-product of the winemaking process, contributing to sustainability by
repurposing waste materials into functional foods with substantial health benefits.

4. Materials and Methods
4.1. Chemicals

Streptozotocin (STZ), dichloro-dihydro-fluorescein diacetate (DCFH-DA), epinephrine,
5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) were obtained from Sigma-Aldrich Co. (St. Louis,
MO, USA). The commercial kit for biochemical parameters was obtained from Bioclin (Bio-
clin MG—Brazil). All other reagents used in the experiments were of analytical grade and
highest purity.



Pharmaceuticals 2024, 17, 1530 12 of 19

4.2. Grape Pomace Flours (GPF)

Grape pomace, a by-product of wine production, was sourced from a single production
batch of red grapes (‘Touriga Nacional’) and white grapes (‘Arinto’) from Adega Coopera-
tiva Carmim, located in the Reguengos de Monsaraz region of Alentejo, Portugal. After
collection, the samples were dried using an air circulation system (J.P. Selecta, Barcelona,
Spain) for 24 h at 60 ◦C. They were then ground using a domestic blade crusher (Moulinex,
Alençon, France) to produce GPF with a particle size of ≤400 µm. The GPF was packaged
in polypropylene bags, properly sealed, and stored at 4 ◦C ± 2 ◦C in a dark environment
until use [20].

The phytochemical composition of both GPFs was previously characterized [28]. ‘Ar-
into’ GPF contains 2.9 mg of proanthocyanidins, denoted as catechin equivalents per
gram of dry weight (DW), and notably lacks anthocyanins. In contrast, ‘Touriga Na-
cional’ GPF is rich in anthocyanins, including delphinidin-3-O-glucoside, petunidin-3-O-
glucoside, and malvidin-3-O-glucoside. Analysis by high-performance liquid chromatog-
raphy coupled with diode-array detection and electrospray ionization mass spectrometry
(HPLC−DAD/ESI-MS) revealed that both GPFs are abundant in bioactive compounds,
such as (+)-catechin, (-)-epicatechin, digalloylated procyanidin dimers and trimers, and a
gallic acid derivative [28].

4.3. Diets

The HFD was prepared according to the method outlined by Oliveira et al. [61], with
some modifications, and was offered ad libitum to the animals throughout the experimental
duration. Diets supplemented with WGPF and RGPF included a 10% addition of these
flours, as suggested by Kim et al. [64]. The flours were incorporated into the diet mixture,
which was then homogenized in a food processor until a uniform blend was achieved. This
mixture was molded into pellets and dried in an oven at 60 ◦C for 24 h. The normolipidemic
control diet was the Socil® brand Autoclavable Rat and Mouse Feed, which was supplied
by the Central Animal Facility of the Federal University of Pelotas.

4.4. Animals

This study utilized forty mature male Wistar rats, aged 90 days with a mean weight
of 403 g (±34 g), sourced from the Federal University of Pelotas’ Central Animal House
(Pelotas, RS, Brazil). To ensure optimal welfare, the animals were (i) Housed in a controlled
environment maintained at 22 ◦C (±1 ◦C); (ii) Subjected to a standardized 12 h light/dark
cycle; (iii) Provided with unlimited access to water; (iv) Grouped in suitable cages with a
maximum occupancy of four rats per cage. All experimental procedures involving animals
adhered strictly to the National Institutes of Health’s guidelines (NIH Publications No. 8023,
revised 1978). Additionally, this research received formal approval from the Institutional
Ethics Committee on the Use of Animals (Approval Reference: CEUA 033578/2022-14).

4.5. Experimental Design

The experimental design is illustrated in Figure 6. Rats were randomly divided into
five groups: control diet/vehicle (CT), high-fat diet/vehicle (T2DM), HFD/metformin
(250 mg/kg) (T2DM + Met), HFD supplemented with 10% of WGPF (T2DM + WGPF),
or a high-fat diet supplemented with 10% RGPF (T2DM + RGPF) for 4 weeks. At day
21, T2DM groups received a single intraperitoneal (i.p.) injection of STZ (Sigma-Aldrich,
St. Louis, MO, USA ) (35 mg/kg) dissolved in 0.01 M sodium citrate solution [65,66].
During the trial, the animals were given a vehicle (distilled water) or Met (250 mg/kg) [67]
intragastrically once a day. Body weight was recorded weekly, and food and water intake
were recorded daily.
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Figure 6. Experimental design of treatment with metformin, Arinto or Touriga Nacional grape
pomace flour in an animal model of Type 2 Diabetes Mellitus. High-fat diet (HFD), metformin (Met),
oral glucose tolerance test (OGTT), red grape pomace flour (RGPF), streptozotocin (STZ), white grape
pomace flour (WGPF).

4.6. Sample Collection

After the 28 day experimental period and after 6 h of fasting, the animals were
euthanized by deepening anesthesia with Isoflurane, followed by exsanguination through
cardiac puncture and decapitation. To reduce stress, the procedure was performed in a
separate room, away from the other animals. The blood was collected and centrifuged at
800× g for 15 min, and the resulting serum was stored at −80 ◦C for further biochemical
assays [30]. Livers were dissected and stored for further determination of oxidative stress
parameters. The visceral adipose tissue and pancreas were dissected and weighted, and
the pancreas was stored for further histopathological assay.

4.7. Serum Biochemical Parameters

In order to investigate the metabolic disturbances related to T2DM, we measured
serum glucose (mg/dL), cholesterol (mg/dL), TG (mg/dL), HDL (mg/dL), and protein
(mg/dL) urea (mg/dL), uric acid (mg/dL), and creatinine (mg/dL) were measured to evalu-
ate renal function, and ALT (U/L) and AST (U/L) activities were determined to investigate
hepatic function. All biochemical parameters were tested using commercially available
diagnostic kits supplied by Labtest ® (Labtest, MG, Brazil). The fasting Triacylglycerol-
glucose (TyG) index was calculated using the formula [Triacylglycerol (mg/dL) × Glucose
(mg/dL)/2], according to Zhao et al. [68].

4.8. Oxidative Stress

Liver samples were homogenized in a sodium phosphate buffer, pH 7.4, containing
KCl. Subsequently, the homogenates were centrifuged at 800× g for 10 min at 4 ◦C, and
the resulting supernatant was utilized for the assessment of oxidative stress [69]. Protein
concentration was determined by the methodologies established by Lowry et al. [70] or
Bradford [71].

Reactive oxygen species (ROS)

Quantification of ROS production was determined by assessing the oxidation of 2′,7′-
dichlorofluorescein diacetate (DCFH-DA) into fluorescent 2′,7′-dichlorofluorescein (DCF),
as described by Ali et al. [72]. This parameter is reported as µmol of DCF per mg of protein.

Thiobarbituric acid-reactive species (TBARS)

TBARS, indicative of lipid peroxidation, were determined following the protocol
delineated by Ohkawa et al. [73] and reported as nmol TBARS/mg of protein.

Total sulfhydryl content (SH) assay
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The SH content assay was conducted through the reduction in 5,5′-dithiobis-(2-
nitrobenzoate) (DTNB) by thiols, leading to the formation of oxidized disulfides (disulfide
production), generating a yellow derivative (TNB), in accordance with the method outlined
by Aksenov and Markesbery [74]. Results are reported as nmol of TNB per mg of protein.

Nitrite assay

The nitrite level was determined employing 1% sulfanilamide and 0.3% N-1-naphthyle
thylenediamine dihydrochloride as reagents within the Griess reaction, following the
protocol detailed by Stuehr and Nathan [75]. Results are denoted as µM of nitrite per mg
of protein.

Superoxide Dismutase (SOD) activity

This quantification of SOD activity was based on the inhibition of superoxide-dependent
adrenaline auto-oxidation, as described by Misra and Fridovich [76]. The specific activity
of SOD is reported as units per mg of protein.

Catalase (CAT) activity

CAT activity was measured by monitoring the depletion of H2O2 over a 90 s interval,
according to the method of Aebi [77]. The results are reported as units per mg of protein.

4.9. Oral Glucose Tolerance Test (OGTT)

After 72 h of STZ administration and a 6 h fasting period, the OGTT was performed
on all animals. During the fasting period, they were provided with water only and were
kept in a controlled environment to which they were accustomed. The OGTT involved
monitoring blood glucose levels using a glucometer (AccuChek Guide, Roche Diagnostics®,
Indianapolis, IN, USA) at baseline (0 min) and at 30, 60, and 120 min after intragastric
administration of a 50% D-glucose solution (2 mg/g). Venous blood samples were obtained
at the designated time points through a small tail puncture in the animals to ensure
minimally invasive handling throughout the procedure [67]. The area under the curve
(AUC) for blood glucose concentrations over the time interval from 0 to 120 min was
calculated using the linear trapezoidal rule method [78,79] as follows:

[C0 + C30]·[t30 − t0]

2
+

[C30 + C60]·[t60 − t30]

2
+

[C120 + C60]·[t120 − t60]

2

where C0, C30, C60, and C120 represent blood glucose concentrations (mg/dL) measured
at 0, 30, 60, and 120 min post-glucose administration, respectively, and t0, t30, t60, and t120
denote the corresponding time points (in minutes) following glucose administration.

4.10. Histopathology

Pancreas samples were collected, weighted fixed in 10% (pH 7.4) formaldehyde,
processed by successive dehydration with ethanol baths, and embedded into paraffin
blocks. Five-micrometer-thick sections (in duplicate) were cut, stained with haematoxylin-
eosin (HE), and examined under a light microscope.

4.11. Statistical Analyses

All statistical analyses were conducted utilizing GraphPad Prism 8.0 software (Graph-
Pad Software, San Diego, CA, USA). To assess glucose tolerance, we employed a repeated-
measures ANOVA, followed by Bonferroni’s post hoc test for multiple comparisons. For
normally distributed data, one-way ANOVA was applied, supplemented by Tukey’s post
hoc test. Data are expressed as mean values accompanied by standard error of the mean
(S.E.M.). A p-value of less than 0.05 (p < 0.05) was deemed indicative of statistically
significant differences throughout the analysis.
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5. Conclusions

The findings of our study demonstrate the potential protective effects of Arinto and
Touriga Nacional GPF against T2DM (Figure 7). These effects include improvements in
insulin resistance, the regulation of lipid metabolism, a reduction in oxidative damage,
and the preservation of the pancreatic structure—outcomes that have not been previously
documented. Our results suggest that these specific GPFs, which have not been extensively
studied before, may provide protective benefits in the management of T2DM that go
beyond those reported for other grape varieties. Furthermore, our study underscores the
innovative use of grape pomace, a by-product of the winemaking process, contributing
to sustainability by repurposing waste materials into functional foods with substantial
health benefits. However, further studies are needed to better understand the specific
effects of GPF on the mechanisms involved in the development and progression of T2DM,
including glucose transporters and the insulin signaling pathway, including IRS-1, PI3K,
AKT, and GSK-3β.
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