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Abstract: Background: Histone deacetylase 6 (HDAC6) plays a crucial role in neurological, inflam-
matory, and other diseases; thus, it has emerged as an important target for therapeutic intervention.
To date, there are no FDA-approved HDAC6-targeting drugs, and most pipeline candidates suffer
from poor target engagement, inadequate brain penetration, and low tolerability. There are a few
HDAC6 clinical candidates for the treatment of mostly non-CNS cancers as their pharmacokinetic
liabilities exclude them from targeting HDAC6-implicated neurological diseases, urging develop-
ment to address these challenges. They also demonstrate off-target toxicity due to limited selectivity,
leading to adverse effects in patients. Selective inhibitors have thus been the focus of development
over the past decade, though no selective and potent HDAC6 inhibitor has yet been approved.
Methods: This study involved an integrated virtual screening against HDAC6 using the DrugBank
database to identify repurposed drugs capable of inhibiting HDAC6 activity. The primary assessment
involved the determination of the ability of molecules to bind with HDAC6. Subsequently, interaction
analyses and 500 ns molecular dynamics (MD) simulations followed by essential dynamics were
carried out to study the conformational flexibility and stability of HDAC6 in the presence of the
screened molecules, i.e., penfluridol and pimozide. Results: The virtual screening results pinpointed
penfluridol and pimozide as potential repurposed drugs against HDAC6 based on their binding
efficiency and appropriate drug profiles. The docking results indicate that penfluridol and pimozide
share the same binding site as the reference inhibitor with HDAC6. The MD simulation results
showed that stable protein–ligand complexes of penfluridol and pimozide with HDAC6 were formed.
Additionally, MMPBSA analysis revealed favorable binding free energies for all HDAC6–ligand
complexes, confirming the stability of their interactions. Conclusions: The study implies that both
penfluridol and pimozide have strong and favorable binding with HDAC6, which supports the idea
of repositioning these drugs for the management of neurodegenerative disorders. However, further
in-depth studies are needed to explore their efficacy and safety in biological systems.

Keywords: histone deacetylase 6; neurodegenerative diseases; drug repurposing; small-molecule
inhibitors; virtual screening

1. Introduction

Histone deacetylases (HDACs) are enzymes essential for transcriptional regulation
through the epigenetic modification of histones [1]. Beyond histone modification, some
HDAC family members regulate various cellular processes by deacetylating non-histone
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targets such as α-tubulin, ubiquitin, HSP90, cortactin, peroxiredoxins, and several tran-
scription factors [2]. The HDAC family consists of 18 members that are classified into
four classes according to homology with yeast proteins [3]. HDACs that are class I include
HDAC1, 2, 3, and 8 because of their similarity to the yeast Rpd3 protein [3]. These enzymes
are expressed in all tissues and are involved in the regulation of transcription [4]. Class II
HDACs are similar to yeast Hda1, can translocate between cytoplasm and nucleus, and are
tissue-specific [5]. HDACs of class II are divided into class IIa (HDAC4, 5, 7, and 9) and
class IIb (HDAC6 and 10) [6]. HDAC11 is the only member of class IV and is most similar
to the catalytic domains of the class I and II deacetylases [7]. Class I, II, and IV HDACs
are referred to as the conventional HDACs and all of them are dependent on Zn2+ as a
co-factor. Class III HDACs or sirtuins (SIRT1–7) require NAD+ and are related to yeast
Sir2. HDACs have been implicated in various cellular functions by using isoform-specific
knockdown and treatment with HDAC inhibitors [8]. Small-molecule isoform-specific
inhibitors are expected to be more effective and less toxic for the long-term treatment of
cancer and neurodegenerative diseases [9]. Therefore, much effort has been devoted to
elucidating the roles of individual HDAC isoforms, which has been followed by the design
of selective HDAC inhibitors.

In particular, HDAC6 has been the subject of much interest because of its distinct
features of structure [10]. It has two catalytic N-terminal deacetylating domains, a C-
terminal ZnF-UBP domain, and an SE14 tetradecapeptide repeat domain [11]. In addition
to these, two leucine-rich nuclear export sequences are present to maintain it in the cytosol.
HDAC6 targets non-histone proteins including α-tubulin, poly-ubiquitinated proteins, and
HSP90, involved in cell growth, migration, survival, protein degradation, and intracellular
transport [12]. These processes are important for postmitotic cells such as neurons because
the neurons depend on the proper degradation of proteins and transport of proteins to
the axons. Consequently, HDAC6 is being explored as a therapeutic target for cancers and
various neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) [13,14].

Drug repurposing is an effective approach to the development of new therapies,
which can help to overcome the problems associated with high costs and long periods
required for the development of new drugs [15]. This approach builds on the safety
and pharmacokinetic data of FDA-approved drugs and can offer effective treatments for
diseases other than those for which the drugs were initially developed [16]. As with
many neurodegenerative diseases, there are few therapeutic options and many of these are
not effective; drug repurposing is a promising approach to finding new treatments. The
currently available HDAC6-targeting drugs face certain issues, such as poor ability to cross
the blood–brain barrier and lack of high specificity [17]. Therefore, through the process of
drug repositioning, we hope to find molecules that will efficiently target HDAC6 but will
not be associated with the mentioned drawbacks, thus offering new treatment approaches
to neurodegenerative diseases.

In this study, we focused on the HDAC6 protein for structure-based drug repurposing.
Therefore, we used an integrated screening involving initially the molecular docking
technique to identify the most appropriate drug molecules for interaction with the HDAC6
protein. These studies are useful in drug discovery and in drug repositioning as this
approach is cheaper and faster than the conventional methods. A set of 3500 FDA-approved
drug molecules was obtained from the DrugBank database [18]. The best drug molecules
were selected based on the binding affinity and important interactions with HDAC6.
The screened molecules were further evaluated for their drug profile and their docked
complexes with HDAC6 were further analyzed at the atomic level employing molecular
dynamics (MD) simulations followed by essential dynamics approaches.
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2. Results and Discussion
2.1. Molecular Docking Screening

Molecular docking is a widely used computational technique used to predict the
preferred orientation and conformation of a ligand within the binding site of a protein
receptor [19]. Here, a set of 3500 FDA-approved molecules was obtained from the DrugBank
database for docking screening (Supplementary Table S1). The docking screening was
carried out using InstaDock to find out the high-affinity binders of HDAC6. The reliability
of the docking protocol was validated through redocking of the co-crystallized inhibitor
trichostatin A with HDAC6. A comparison of the docking poses with the original co-
crystallized pose demonstrated high similarity, confirming the accuracy of the docking
method. The alignment of the docked and crystallographic poses underscores the precision
of the protocol (Supplementary Figure S1). This validation reinforces the credibility of the
docking approach and its potential utility in future molecular docking studies. The docking
process entailed scoring all the molecules in the library, where the best 10 molecules were
selected based on their docking scores with HDAC6, as shown in Table 1. These scores,
which varied from −9.3 to −10.5 kcal/mol, show the strength of the interaction of each
ligand with HDAC6. It is observed that the lower the docking scores, the better the binding
affinities. All the selected molecules showed better binding affinity than the reference
co-crystallized inhibitor trichostatin A, with a docking score of −6.6 kcal/mol (PDB IDs:
5EDU, TSN). In our docking studies, the zinc ion was removed by default in the InstaDock
setup. As the zinc ion plays a critical role in the active site of HDAC6, particularly for
inhibitors like trichostatin A that chelate zinc via their hydroxamate group, its removal
may have contributed to the lower binding affinity observed in our docking calculations.

Table 1. List of screened hits against HDAC6 and their docking parameters.

S. No. Drug Binding Affinity
(kcal/mol) pKi Ligand Efficiency

(kcal/mol/non-H atom) Torsional Energy

1. Dutasteride −10.5 7.7 0.2838 1.2452

2. Bisdequalinium Chloride −10.2 7.48 0.2318 0

3. Conivaptan −10.0 7.33 0.2632 1.2452

4. Penfluridol −10.0 7.33 0.2778 2.8017

5. Pimozide −9.8 7.19 0.2882 2.1791

6. Rolapitant −9.7 7.11 0.2771 2.1791

7. Lumacaftor −9.4 6.89 0.2848 1.8678

8. Difenoxin −9.4 6.89 0.2938 2.4904

9. Phenindamine −9.3 6.82 0.465 0.3113

10. Acrivastine −9.3 6.82 0.3577 2.1791

11. Trichostatin A −6.6 4.84 0.3 2.1791

To further characterize the binding interactions, several additional parameters were
analyzed, i.e., pKi ligand efficiency and torsional energy. pKi relates to the binding efficiency
between the ligand and the target from the docking scores. A higher pKi value corresponds
to a stronger predicted binding affinity. This measure provides insight into the potential
effectiveness of the inhibitor. Ligand efficiency is the binding affinity divided by the
molecular size in the form of non-hydrogen atoms. It permits the determination of binding
affinity differences while at the same time keeping the size of the molecule in consideration
since the method distinguishes between potent and efficient ligands in terms of their
binding interactions. Torsional energy is the energy related to the rotation of a ligand
around its single bond. Lower torsional energy normally points to a lesser amount of
stress within the molecule and, hence, the ligand is more conformationally stable once
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bound to the target. This parameter can affect the binding specificity and stability of the
protein–ligand binary complex. All these parameters are, in a way, closer to giving a fuller
picture of the binding properties of each molecule. From the outcomes of the docking study,
it can be concluded that the screened molecules are quite adequate in terms of their binding
energies and properties, which should encourage further exploration and fine-tuning of
the identified compounds as potential inhibitors of HDAC6.

2.2. PASS Analysis and Drug Profiling

The PASS server was used to predict the biological activity of the molecules that were
found through the docking screening process [20]. In this study, PASS analysis was used
to assess the biological activity of the molecules, which were ranked at the top of the list.
Among the 10 molecules which were selected from the docking screening, two molecules,
namely penfluridol and pimozide, were found to be potential candidates in drug profiling
for the desired biological activities (Table 2). The PASS analysis was conducted to evaluate
the potential bioactivities of penfluridol, pimozide, and trichostatin A. Since these com-
pounds are well-known drugs with established pharmacological profiles, their predicted
bioactivities in the PASS analysis are expected and consistent with their known functions.
However, PASS also highlights additional potential activities for these compounds beyond
their well-established therapeutic roles, providing a broader perspective on their possible
pharmacological effects. The PASS analysis showed properties related to acute neurologic
disorder treatment, analgesic, antineurotic, antipsychotic, and antimigraine properties, and
highlighted that these molecules have a high ability to treat neurodegenerative diseases. It
is believed that when the probability of a molecule having the expected biological activity
is greater than the probability of being inactive (Pa > Pi), the chance of the molecule being
active is high. Among the studied drugs, penfluridol and pimozide had the highest Pa
values, which varied from 0.426 to 0.786, which shows that there is a high possibility of
treating neurological disorders. The PASS analysis results showed that penfluridol and
pimozide are the molecules with the most favorable biological activities in the context of
repurposing drugs against HDAC6.

Table 2. PASS properties of the elucidated molecules with their predicted activity.

S. No. Drug Pa Pi Activity

1. Penfluridol

0.786 0.010 Acute neurologic disorder treatment

0.748 0.007 Analgesic

0.586 0.005 Antineurogenic pain

0.662 0.094 Phobic disorder treatment

0.576 0.080 Antineurotic

2. Pimozide

0.610 0.011 Antipsychotic

0.534 0.064 Acute neurologic disorder treatment

0.475 0.011 Antineurogenic pain

0.462 0.005 Antimigraine

0.426 0.056 Neurodegenerative disease treatment

3. Trichostatin A

0.765 0.002 Histone deacetylase inhibitor

0.738 0.002 Histone deacetylase 6 inhibitor

0.734 0.002 Histone deacetylase class IIb inhibitor

0.693 0.002 Histone deacetylase class II inhibitor

0.533 0.035 Apoptosis agonist
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2.3. Interaction Analysis

In the case of using drugs for new targets, it is crucial to examine the relationships
within protein–ligand complexes to achieve the desired effect and avoid unwanted bind-
ing [21]. In the present work, the binding modes and interactions of the repurposed drugs
penfluridol and pimozide were investigated along with a reference molecule trichostatin
A using PyMOL and Discovery Studio Visualizer (Figure 1). These docking simulations
produced 27 conformers of these drugs bound to HDAC6 and offered more information
about the interaction patterns of the drugs (Figure 1A). Penfluridol and pimozide had
several important interactions and the most favorable binding modes in the binding pocket
of HDAC6 as in the case of trichostatin A (Figure 1B). Both compounds, penfluridol and
pimozide, occupied the active site binding pocket of HDAC6, though the binding pose
of penfluridol differed significantly from that of the reference compound, trichostatin A
(Figure 1C). These results indicate that penfluridol and pimozide might have a high poten-
tial to be exploited as HDAC6 inhibitors with the possibility of further drug development.
However, further experimental validation is necessary to determine the specific inhibitory
effects and therapeutic potential of penfluridol and pimozide as HDAC6 inhibitors.
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Figure 1. Interaction pattern of selected molecules with HDAC6. (A) Binding pattern of HDAC6 with
Penfluridol (cyan), Pimozide (green), and Trichostatin A (yellow). (B) Magnified view of HDAC6
binding pocket residues interacting with Binding pattern of HDAC6 with Penfluridol, Pimozide, and
Trichostatin A. (C) Surface potential view of HDAC6 with the selected drug molecules.

Further, the Discovery Studio Visualizer tool was utilized for detailed interaction
analysis (Figure 2). Penfluridol formed several types of interactions with HDAC6 including
hydrogen bonds involving residues His611 and Arg673, halogen (fluorine) bonds involving
residues Gly619, Leu749, and Gly750, alkyl bonds involving residues Pro501, Phe679,
Phe680, and Pro708, pi–pi T-shaped and amide–pi stacked bonds formed by residues
Phe620, His651, and Phe680, and van der Waals interactions involving residues His500,
Ser568, Pro748, Gly751, and Tyr782 (Figure 2A). At the same time, pimozide had various
close interactions with HDAC6 such as hydrogen bonds involving residues His500 and
Ser568, halogen (fluorine) bonds involving residues Gly619 and Thr678, pi–anion bonds
with residue Met682, alkyl bonds by residue Phe620, pi–pi T-shaped and amide–pi stacked
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bonds involving residues Phe620, His651, and Phe680, and van der Waals interactions
formed by residues Asn494, Trp496, Asp497, Pro501, His560, Ser563, Ser564, Phe566, Ile569,
Tyr570, His611, Phe679, Leu749, and Tyr782 (Figure 2B). Similarly, the co-crystallized
reference inhibitor trichostatin A had interactions with HDAC6 such as hydrogen bonds
with residues His610, Asp649, and Tyr782, pi–sigma bonds created by residues Phe620,
and Phe680, alkyl bonds formed by residues His500, Pro501, Phe680, and Leu749, and van
der Waals interactions involving residues His499, Ser568, His611, Gly619, His651, Asp742,
Gly780, and Gly781 (Figure 2C). Among all interactions, penfluridol formed a hydrogen
bond at active site residue His611 while pimozide and trichostatin A formed van der
Waals interactions involving residue His611 which is crucial for HDAC6 protein function.
These findings recommended that these compounds are explored for further investigation
using MD simulations to understand their time-evolution binding mechanism and stability
with HDAC6.
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2.4. MD Simulations

MD simulation is a core and crucial methodology of molecular modeling and com-
putational design for the study of the dynamics and temporal evolution of molecular
systems [22]. Here, we investigated four molecular systems, including one free HDAC6
protein and three HDAC6–drug complexes. Before analyzing the deviation, fluctua-
tion, compactness, etc. of the systems, we calculated potential and kinetic energies
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to ascertain the stability of the systems. The mean potential energies of HDAC6 and
HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-Trichostatin A complexes were
−799,096 kJ/mol, −552,096 kJ/mol, −552,388 kJ/mol, and −551,954 kJ/mol, respectively.
The mean kinetic energies of HDAC6 and HDAC6-Penfluridol, HDAC6-Pimozide, and
HDAC6-Trichostatin A complexes were 155,797 kJ/mol, 111,168 kJ/mol, 111,173 kJ/mol,
and 111,089 kJ/mol, respectively. While the kinetic energy of the HDAC6–drug complexes
decreased compared to the free HDAC6 protein, the potential energy became more negative.
This increase in the magnitude of the negative potential energy values indicates a more
stable and favorable interaction between the protein and the ligands. A more negative po-
tential energy suggests a more stable system, as the drug-bound complexes exhibit stronger
interactions that lower the system’s overall energy. Therefore, the observed decrease in
kinetic energy, coupled with more negative potential energy, reflects the stabilization of the
HDAC6–drug complexes compared to the free HDAC6 protein.

2.5. Structural Deviation Analysis

Root mean square deviation (RMSD) is a useful statistical parameter to measure
structural deviation [23]. RMSD was employed to monitor the overall stability of the
protein–ligand complex during the 500 ns MD simulation. By calculating the RMSD over
the entire complex, we can assess whether significant conformational changes occurred
and whether the complex remained stable throughout the simulation. Average RMSD
values of the systems were calculated to measure how much structural deviation occurred
in HDAC6 after drug interactions. Table 3 represents mean RMSD values of HDAC6 and
HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-Trichostatin A complexes that were
0.24 nm, 0.24 nm, 0.27 nm, and 0.22 nm respectively. HDAC6 and the HDAC6-Penfluridol
complex had similar mean RMSDs, the HDAC6-Pimozide complex shows a small increase
in RMSD while the HDAC6-Trichostatin A complex indicates a lesser RMSD value. The
maximum RMSD value was also calculated to obtain the highest deviation point of the
systems (Figure 3A). HDAC6 and the HDAC6-Penfluridol complex show similar maximum
RMSDs of 0.33 nm. The HDAC6-Pimozide complex’s maximum RMSD was 0.36 nm which
is a bit higher while the HDAC6-Trichostatin A complex had a 0.31 nm maximum RMSD
throughout the simulation. As shown in the main RMSD plot and distribution plot, the
HDAC6-Pimozide complex indicated by green has a slightly higher RMSD throughout the
simulation (Figure 3A, upper panel). The RMSD distribution in the probability distribution
function plot (PDF) is mostly from 0.2–0.3 nm (Figure 3A, lower panel). However, the
overall deviation result indicates all three complex systems increase in stability throughout
the 500 ns long simulation.

Table 3. Average values calculated post 500 ns MD simulations of HDAC6 protein and HDAC6–drug
complexes.

S. No. Systems RMSD (nm) RMSF (nm) Rg (nm) SASA (nm2)
Intramolecular

H-Bonds

1. HDAC6 0.24 (±0.03) 0.09 (±0.08) 1.98 (±0.01) 153.3 (±3.42) 264 (±8)
2. HDAC6-Penfluridol 0.24 (±0.03) 0.08 (±0.08) 1.98 (±0.01) 150.5 (±2.98) 264 (±8)
3. HDAC6-Pimozide 0.27 (±0.03) 0.10 (±0.07) 2.00 (±0.01) 156.2 (±3.98) 267 (±9)
4. HDAC6-Trichostatin A 0.22 (±0.03) 0.09 (±0.05) 1.98 (±0.01) 150.8 (±3.26) 264 (±8)

Root mean square fluctuation (RMSF) is another useful parameter to calculate residual
fluctuation in simulated molecular systems. RMSF was employed to understand the
flexibility of specific residues in the protein. Higher RMSF values indicate regions of the
protein that exhibit greater fluctuations, often corresponding to loop regions or flexible
domains. These fluctuations can reveal areas that undergo conformational adjustments
during ligand binding, providing insights into the dynamic behavior of the protein. The
average RMSF value was calculated to ascertain overall residual fluctuations in the systems.
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The average values of HDAC6 and HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-
Trichostatin A complexes were 0.09 nm, 0.08 nm, 0.10 nm, and 0.09 nm, respectively
(Table 3). Regions of high RMSF indicate areas of greater flexibility, for example, residues
from 740–750 of the HDAC6-Penfluridol complex have the highest fluctuation, which
is 0.78 nm (Figure 3B). The maximum fluctuations of HDAC6, HDAC6-Pimozide, and
HDAC6-Trichostatin A were 0.57 nm, 0.48 nm, and 0.32 nm, respectively (Figure 3B, upper
panel). This flexibility suggests local conformational changes that could facilitate ligand
binding or stabilize the interaction. In contrast, residues in the HDAC6-Trichostatin A
complex showed lower RMSF values (~0.32 nm), indicating more rigidity, which correlates
with the stable binding observed in the complex. The overall result as an RMSF distribution
plot is presented in Figure 3B, and the lower panel shows minimal fluctuations with similar
patterns during the simulation suggesting structural stability.
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2.6. Compactness Analysis

The compactness of the protein–drug complexes was investigated by calculation of the
radius of gyration (Rg) [24]. This parameter is crucial to understanding whether the protein
undergoes significant unfolding or structural expansion during the simulation. A stable
Rg value, as observed in our simulations, indicates that the protein did not undergo major
unfolding, maintaining a stable structure when bound to the ligands. This is significant in
ensuring that the binding of the ligands does not disrupt the overall folding of the protein.
The result presented in Figure 4 indicates the time evolution and complex stability and
compactness. The HDAC6-Pimozide complex in green shows minimally increasing Rg
after 250 ns of simulation. The other two complexes, HDAC6-Penfluridol and HDAC6-
Trichostatin A, in red and blue, respectively, almost overlap with the free HDAC6 protein
(Figure 4A). Average Rg values of HDAC6 and HDAC6-Penfluridol, HDAC6-Pimozide,
and HDAC6-Trichostatin A complexes were 1.98 nm, 1.98 nm, 2.00 nm, and 1.98 nm,
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respectively (Table 3). The maximum Rg values of HDAC6 and HDAC6-Penfluridol,
HDAC6-Pimozide, and HDAC6-Trichostatin A complexes were 2.02 nm, 2.02 nm, 2.04 nm,
and 2.03 nm, respectively (Figure 4A, upper panel). These statistical findings along with
the main Rg and distribution plot suggested the complexes were stable throughout the
entire simulations (Figure 4A, lower panel).
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Figure 4. Structural compactness assessment plot of (A) Rg of HDAC6, HDAC6-Penfluridol, HDAC6-
Pimozide, and HDAC6-Trichostatin A. (B) Solvent-accessible surface area assessment plot of HDAC6,
HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-Trichostatin A. The lower panels show Rg and
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HDAC6-Pimozide, and HDAC6-Trichostatin A, respectively.

Solvent-accessible surface area (SASA) is a part of the protein’s surface area which
can interact with the surrounding solvent [25]. It is used to measure the folding and
unfolding pattern of biological systems. This is a useful parameter for monitoring folding
and unfolding events, as changes in SASA often correlate with changes in the protein’s
exposure to the solvent. Here we calculated the average SASA values of the HDAC6 and
HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-Trichostatin A complexes which
were 153.3 nm2, 150.5 nm2, 156.2 nm2, and 150.8 nm2, respectively (Table 3). The HDAC6-
Pimozide complex is the only system that shows a larger surface area accessible to a solvent
which may be due to the binding adjustment of the ligand. However, it does not show any
worse impact on the protein folding as presented by the SASA plot (Figure 4B). Maximum
SASA values of the HDAC6 and HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-
Trichostatin A complexes were found to be 164.9 nm2, 162.8 nm2, 168.8 nm2, and 163.1 nm2,
respectively (Figure 4B, upper panel). The calculated values, main SASA, and distribution
plot indicate that the HDAC6-Pimozide complex had a minimally increasing pattern after
200 ns of simulation, but no major drift changes occurred till the end of the simulation
(Figure 4B, lower panel). Overall, SASA findings correlate with Rg parameters, suggesting
complex stability and compactness.
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2.7. Hydrogen Bond Analysis

In biological macromolecules, hydrogen bonds play a vital role in maintaining three-
dimensional conformational shape and stability [26]. To examine the stability of HDAC6
before and after interactions with the elucidated molecules, we calculated intramolecular
hydrogen bonds. The average numbers of bonds formed within the protein were 264,
264, 267, and 264 for HDAC6 and HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-
Trichostatin A complexes, respectively (Table 3). The maximum numbers of intramolecular
bonds of HDAC6 and HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-Trichostatin A
complexes were 297, 300, 303, and 295, respectively (Figure 5). Overall, the calculated result
revealed the complexes made a higher number of bonds than proteins in free form. The plot
depicted in Figure 5A indicates hydrogen bond dynamics with 500 ns time evolution. The
distribution plot also indicates a higher number of bonds formed by the HDAC6-Pimozide
complex represented by green (Figure 5A).
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Additionally, the intermolecular bond formed between protein and drug molecules
was also assessed to elucidate complex stability [27]. To investigate the stability and dy-
namics of protein–ligand interactions, we analyzed the contacts between HDAC6 and
the ligands (penfluridol, pimozide, and trichostatin A) throughout the 500 ns molecular
dynamics simulation. The analysis focused on hydrogen bonds formed intermolecularly
within the protein–ligand complexes. Figure 6 represents the maximum hydrogen bonds
formed within HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-Trichostatin A com-
plexes which were two, four, and five, respectively. The analysis revealed that all three
complexes maintained stable interactions with key residues in the HDAC6 binding pocket.
The number of hydrogen bonds fluctuated slightly but remained consistent overall, with
penfluridol maintaining an average of 1–2 hydrogen bonds, pimozide showing 1–2 hydro-
gen bonds, and trichostatin A exhibiting 2–3 hydrogen bonds throughout the simulation. A
distribution plot of all three complexes showing bonding time throughout the simulation
was made. One hydrogen bond in all three complexes has a higher distribution than other
bonds which formed between the protein and drug for a shorter time span (Figure 6, lower
panels). This consistency in contacts over the simulation suggests that the ligands remained
stably bound to HDAC6, supporting their potential as repurposed inhibitors.
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2.8. Secondary Structure Alteration Analysis

Secondary structure analysis includes changes in the different elements of the protein’s
secondary structure before and after the interaction of drug molecules was examined [28].
The secondary structure analysis was performed to monitor changes in the protein’s
secondary structure elements, such as α-helices and β-sheets, during the simulation. This is
important because significant alterations in secondary structure can indicate destabilization
of the protein fold upon ligand binding. The DSSP algorithm was utilized to plot different
elements of the HDAC6 protein before and after the interaction of the drug molecules.
Figure 7 indicates elements of protein in different colors, such as black for structures
showing increased residues over time after the interaction of drugs. HDAC6-Penfluridol,
HDAC6-Pimozide, and HDAC6-Trichostatin A complexes show considerable increases in
the β-sheets. The HDAC6-Pimozide and HDAC6-Trichostatin A complexes also increased
in α-helixes while the HDAC6-Pimozide complex residues were similar to those of the
free protein (Table 4). Here, we observed no major changes in the secondary structure of
HDAC6, suggesting that ligand binding does not disrupt the structural integrity of the
protein. Minor reductions in participating residues of coils and β-bridges were observed
due to the binding adjustment of drugs. Overall, in secondary structure analysis, no
major alteration was predicted during the entire simulation period which shows that all
complexes were stable.
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Table 4. The average number of participating residues in secondary structure elements in HDAC6
during 500 ns MD simulations. Structure = α-Helix + β-sheet + β-Bridge + Turn.

Systems Structure Coil β-Sheet β-Bridge Bend Turn α-Helix Pi-Helix 310-Helix PPII-Helix

HDAC6 202 (±6) 86 (±6) 31 (±2) 6 (±2) 41 (±4) 37 (±5) 128 (±3) 5 (±0) 14 (±4) 7 (±3)

HDAC6-Penfluridol 206 (±5) 81 (±5) 37 (±1) 4 (±2) 37 (±4) 39 (±4) 126 (±4) 5 (±0) 15 (±4) 8 (±4)

HDAC6-Pimozide 208 (±6) 81 (±5) 37 (±2) 5 (±2) 41 (±4) 37 (±5) 129 (±4) 5 (±0) 14 (±4) 6 (±3)

HDAC6-Trichostatin A 215 (±6) 80 (±5) 37 (±2) 5 (±1) 35 (±4) 42 (±5) 131 (±4) 5 (±0) 13 (±4) 6 (±3)

2.9. Principal Component Analysis

The principal component analysis (PCA) was performed to identify the primary
modes of correlated motion within HDAC6 and its complexes with the selected drug
molecules. This approach provides insights into HDAC6′s conformational dynamics and
stability under different binding conditions, focusing on large-scale motions that are often
associated with functional behavior in proteins. PCA was performed using the 500 ns
trajectories of Cα atoms from the MD simulations of HDAC6 in complex with penfluridol,
pimozide, and the reference compound, trichostatin A (Figure 8). These trajectories were
analyzed to capture the essential dynamics and correlated motions of the protein–drug
complexes. The first two principal components (PC1 and PC2), which captured the largest
variance in the system’s atomic coordinates, were used to interpret the primary motions
induced by ligand binding. For HDAC6 in the free form, the eigenvector values spanned
from −2.28 nm to 3.28 nm for PC1 and −3.19 nm to 1.65 nm for PC2. Upon binding with
penfluridol, pimozide, and trichostatin A, the eigenvector values changed to −3.39 nm to
2.01 nm, −2.76 nm to 1.90 nm, and −2.18 nm to 2.37 nm on PC1 and from −2.25 nm to
2.93 nm, −2.11 nm to 1.89 nm, and −2.22 nm to 1.92 nm on PC2, respectively (Figure 8A).
These shifts reflect variations in the conformational flexibility and stability of HDAC6 in
each complex.
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The HDAC6-Penfluridol complex showed a slightly larger spread along PC2, suggest-
ing more motion of certain loop regions in accordance with the higher flexibility observed
in RMSF analysis. This flexibility may facilitate penfluridol to move within the binding
pocket and hence increase its inhibitory potency. The conformational regions that the
HDAC6-Trichostatin A complex occupied were smaller than the control, indicating that this
binding mode was stable and rigid, which may be related to its high binding constant. The
time-dependent eigenvector plot also reveals more dynamic changes in HDAC6 during
the simulation time and the relatively stable vector 2 in all the complexes after the initial
stabilization phase of 100 ns (Figure 8B). Altogether, the PCA and RMSF data suggest that
all three ligands stabilize the binding conformations in HDAC6, though penfluridol has
a little more flexibility around the loop regions of the protein. This added flexibility may
contribute to its favorable binding profile and potential as an HDAC6 inhibitor.

2.10. Free Energy Landscapes

The FELs were generated to understand the energy distribution of the protein-folding
pathway during molecular dynamics. Free energy contour maps of protein and complexes
were generated to measure energy distribution which help to elucidate stability and folding
mechanism. Different colors in contour maps, red, yellow, orange, and blue, were generated
to analyze the energy range from maximum to minimum. The energy ranges of HDAC6
and HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-Trichostatin A complexes were 0
to 18 kJ/mol, 0 to 18.8 kJ/mol, 0 to 16.5 kJ/mol, and 0 to 17.3 kJ/mol, respectively (Figure 9).
The dark blue basin in the contour maps indicates minimum energy or energy close to zero
which suggests a stable state of the protein. Figure 9A of the HDAC6 map shows four dark
blue energy basins which indicate different meta-states. The HDAC6-Penfluridol complex
has one large and two small blue basins, the HDAC6-Pimozide complex map has three large
dark blue basins with one small basin (Figure 9B,C). The HDAC6-Trichostatin A complex
has one combined large blue basin which has three small dark blue basins (Figure 9D).
The height of the HDAC6-Penfluridol contour map was lower than other maps. Overall,
FEL projections along with principal component plots revealed that complexes achieved
their global minima and thus showed considerable stability. Taken together, the study
indicates that penfluridol and pimozide have promising binding potential with stability
with HDAC6 and have appropriate drug profiles to be exploited as repurposed drugs in
neurodegenerative diseases.
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Figure 9. Three-dimensional Gibbs free energy maps of (A) HDAC6, (B) HDAC6-Penfluridol,
(C) HDAC6-Pimozide, and (D) HDAC6-Trichostatin A.

2.11. MMPBSA Analysis

MMPBSA analysis was conducted using the gmx_MMPBSA module in GROMACS to
estimate the binding free energy of the HDAC6–ligand complexes. This thermodynamic
parameter reflects the energy change associated with the formation of the protein–ligand
complex, providing insight into the strength of their interactions [29]. The analysis yielded
binding free energy components, including van der Waals forces and electrostatic con-
tributions (Table 5). The results demonstrate that all HDAC6–ligand complexes exhibit
favorable binding free energies, indicating stable interactions. Among the complexes,
HDAC6-Penfluridol displayed the highest binding affinity, suggesting it forms the most
stable complex.

Table 5. MMPBSA calculations of binding free energy for HDAC6–ligand complexes. All the values
are in kcal/mol.

Complex ∆EvdW ∆Eele ∆Ggas ∆Gpolar ∆Gnonpolar ∆Gsol ∆Gbind

HDAC6-Penfluridol −58.60 −5.86 −48.58 20.66 −6.02 12.08 −52.82

HDAC6-Pimozide −40.12 −6.52 −50.27 18.52 −4.52 12.82 −56.03

HDAC6-Trichostatin A −46.18 −5.90 −46.50 10.54 −4.08 6.76 −41.70

3. Material and Methods
3.1. Molecular Docking Screening Protocol

Primarily for the structure-guided virtual screening, a molecular docking-based strat-
egy was used to screen molecules with high binding affinity to HDAC6. The process
involved the use of MGL AutoDock tools [30], InstaDock 1.2 [31], PyMOL 3.1 [32], and
Discovery Studio Visualizer 2023 [33], along with various web-based applications. Three-
dimensional structural coordinates of HDAC6 were obtained from the Protein Data Bank
(accession number: 5EDU, chain B) and optimized for the docking studies with the help
of InstaDock v1.2 and AutoDock tools. The structural preprocessing includes rebuilding
missing residues, adding hydrogen to polar atoms, and assigning correct atom types. The
drug library was obtained from the DrugBank database and prepared for virtual screening
using InstaDock v1.2. The docking simulations were carried out in a blind search space
with a grid with dimensions of 65 Å, 77 Å, and 63 Å, with the respective coordinates at
the center of 15.135 Å, −33.815 Å, and 92.124 Å for the X, Y, and Z axes, respectively. The
spacing of the grid was set to 1 Å where all the heavy atoms of the protein structure were
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included in the search space. This search space was large enough to accommodate whole
protein where all the ligands were free to move and search for their favorable binding sites.
After the docking study, all the compounds were ranked based on their binding affinity,
and the best compounds were selected for further analysis.

3.2. Biological Capability and Interaction Study

The biological activity of the screened molecules was determined by using the PASS
web server, which compares the structure of a molecule to a training set of biological
activities [20]. PASS calculates the biological activities of the molecules based on the
structure–activity relationship and gives the results in the form of ‘probability to be active’
(Pa) and ‘probability to be inactive’ (Pi). A higher value of Pa indicates a higher possibility
of the molecule exhibiting the predicted biological property. After the PASS analysis, the
interactions and binding models of the screened molecules were studied. Interactions
between the selected molecules and HDAC6 were analyzed using the PyMOL 3.1 tool.
Furthermore, Discovery Studio Visualizer was used to perform a detailed analysis of the
interactions that might occur in the binding pocket of HDAC6. Molecules that showed
binding with the key residues, particularly the active site residues like His611, were
considered for further analysis.

3.3. MD Simulations Protocol

All-atom MD simulations were performed to study the time evolution of binding
dynamics of the HDAC6–drug complexes at the atomic level [34]. The simulations were
performed at pH 7.0 using the CHARMM36-jul2022 force field [35] with the TIP3P water
model [36] in the GROMACS package [37]. A total of 12,580 solvent molecules were
added to the system for solvation. Topology files for the screened molecules (penfluridol,
pimozide, trichostatin A) were prepared using the CGenFF web server [38]. The systems
were solvated in a cubic box with a minimum distance of 10 Å from the protein to the edge
of the box (with dimensions 8.41 × 8.41 × 8.41 nm for x, y, and z, respectively), and 8 Na+

were added as counterions to balance the charges on the system. Energy minimization was
performed by the steepest descent method for 5000 steps and with a cut-off of 10.0 kJ/mol
to minimize steric hindrance. Two equilibration phases were conducted: NVT and NPT
ensembles for 1000 ps each, where the parameters that are kept constant are the number of
particles, volume, and temperature and number of particles, pressure, and temperature,
respectively. The temperature was maintained at 300 K using the Berendsen thermostat
with a coupling constant of 0.1 ps during the NVT phase, while pressure coupling during
the NPT phase was performed using the Parrinello–Rahman barostat with a pressure of
1 bar and a coupling constant of 2.0 ps. For the long-range electrostatics, the particle mesh
Ewald (PME) method was employed, with the Coulomb interactions being calculated
within a cut-off radius of 12 Å. A van der Waals cut-off of 1.0 nm was applied. The leapfrog
integration algorithm was used with a time step of 2 fs, and all bonds involving hydrogen
atoms were constrained using the LINCS algorithm. Temperature coupling was done
using the Berendsen algorithm, while the pressure coupling during the NPT equilibration
used the Parrinello–Rahman method. The last production run was for 500 ns, and the log
files and energy data were collected every 10 ps. The obtained trajectories were further
processed and analyzed using GROMACS built-in tools. For the secondary structure
analysis, the DSSP algorithm was used [28].

3.4. Principal Component Analysis Protocol

Principal component analysis (PCA) was performed to capture the essential dynamics
of HDAC6 and its complexes, providing insights into the primary modes of motion that
influence protein stability and flexibility upon ligand binding. This technique reduces
the dimensionality of the data, focusing on significantly correlated motions relevant to
functional conformational changes [39]. The covariance matrix was constructed from
a concatenated set of atomic trajectories representing all simulated states of HDAC6,
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including the APO form and ligand-bound complexes. This approach enables a holistic
capture of the protein’s structural behavior across varying states, facilitating a robust
analysis of dynamic responses induced by each ligand. The covariance matrix captures the
variance and covariance between pairs of atomic coordinates and is defined as:

Cij = 〈(xi − 〈xi〉) (xj − 〈xj〉)〉

where xi and xj are the coordinates of the ith and jth atoms of the systems and 〈xi〉 and 〈xj〉
represent the average coordinates of the ith and jth atoms over the ensemble. Then, the
principal components (PCs) are calculated by diagonalization of the covariance matrix.

The analysis concentrated on the first two principal components (PCs), which account
for the largest proportion of variance in atomic movements. These components allowed
us to identify key structural changes induced by ligand binding, particularly in flexible
regions such as loop segments near the binding site.

3.5. Free Energy Landscape Generation

The free energy landscape (FEL) provides insights into the stability and conformational
changes of biomolecules, typically proteins and protein–ligand systems [40]. FEL analysis
helps identify stable states and understand the transitions between them. The FEL can be
determined using the following approach:

∆G (X) = − kBT lnP(X)

where ∆G (X) denotes free energy, kB, T, and P(X) are the Boltzmann constant, absolute
temperature, and the probability distribution of the conformation ensemble along the PCs.

3.6. MMPBSA Calculation

Molecular mechanics/Poisson–Boltzmann surface area (MMPBSA) is a commonly
employed method for estimating the binding free energy of protein–ligand complexes [41].
For this analysis, a short 10 ns segment (from 250 to 260 ns) was extracted from the
stable regions of the HDAC6-Penfluridol, HDAC6-Pimozide, and HDAC6-Trichostatin
A (control) simulations. Using the gmx_MMPBSA package, binding energy components
were calculated. The total binding energy of the complex was determined by the following
equation:

∆GBinding = GComplex − (GProtein + GLigand)

where, GComplex represents the total free energy of the binding complex, and GProtein and
GLigand refer to the total free energies of HDAC6 and the compounds penfluridol, pimozide,
and trichostatin A, respectively.

4. Conclusions

The identification of potent and effective HDAC6 inhibitors is significant for the
development of novel therapeutic approaches in neurodegenerative diseases. Here, we
employed an integrated in silico strategy to screen a panel of 3500 FDA-approved drugs
for their ability to modulate HDAC6. Out of all the compounds screened, penfluridol and
pimozide stand out as the most promising drugs for repurposing because of their high
binding potential, drug profiles, and stable interactions with HDAC6. Further 500 ns MD
simulations supported the stability of protein–ligand complexes through structural devia-
tion, residue fluctuation, compactness, hydrogen bond analysis, PCA, and FEL analysis.
The results imply that both penfluridol and pimozide have strong and favorable binding
with HDAC6, which supports the idea of repositioning these drugs for the management of
neurodegenerative disorders. Additionally, MMPBSA analysis revealed favorable binding
free energies for all HDAC6–ligand complexes, confirming the stability of their interactions.
However, since this is an in silico analysis, further experimental validation is necessary
to determine the biological effectiveness and toxicity of these compounds in vivo. Fur-
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thermore, the simulations helped determine the stability of the complexes; however, they
cannot capture all the biological factors and side effects. In conclusion, the present study
offers a solid foundation for subsequent experimental and clinical research and opens new
treatment prospects by using these repurposed drugs to target HDAC6.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph17111536/s1, Figure S1: The docked conformation of Trichostatin
A with HDAC6 superimposed with its co-crystallized position. The figure was generated using
PyMOL, based on the Protein Data Bank coordinates (PDB ID: 5EDU); Table S1: FDA-approved
Molecules from DrugBank Database for Docking Screening.
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