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Abstract: Background/Objectives: Adaptation can reduce or completely eliminate the effectiveness
of antibiotics and antiseptics at clinical concentrations. To our knowledge, no studies have examined
fungal adaptation to antiseptics. This study aimed to preliminarily investigate the potential for
Candida albicans adaptation to eight antiseptics. Methods: The minimal inhibitory concentration
(MIC), drug susceptibility, adaptation to antiseptics, and Karpinski Adaptation Index (KAI) of
C. albicans strains were assessed. Results: The antiseptics with the most effective MICs activity
against C. albicans were octenidine dihydrochloride (OCT), chlorhexidine digluconate (CHX), and
polyhexamethylene biguanide (polyhexanide, PHMB). Sodium hypochlorite (NaOCl) and ethacridine
lactate (ET) demonstrated moderate activity, while boric acid (BA), povidone–iodine (PVI), and
potassium permanganate (KMnO4) showed the weakest activity. The MIC values for NaOCl and
KMnO4 were close to or equal to the clinical concentrations used in commercial products. The
studied strains were susceptible to econazole, miconazole, and voriconazole. Resistance to other
drugs occurred in 10–30% of the strains. Antifungal resistance remained unchanged after antiseptic
adaptation testing. The lowest KAI values, indicating very low resistance risk, were observed
for CHX, OCT, and PHMB. PVI and BA presented a low risk, ET a moderate risk. KMnO4 and
NaOCl had the highest KAI values, indicating high and very high resistance risk in Candida yeasts.
Conclusions: C. albicans strains can adapt to antiseptics to varying extents. For most antiseptics,
adaptation does not significantly affect their clinical efficacy. However, due to adaptation, NaOCl
and KMnO4 may become ineffective against C. albicans strains even at clinical concentrations.

Keywords: antimicrobial resistance; AMR; fungi; priority pathogens; clinical concentration; clinical
dose; fold change

1. Introduction

In 2022, the World Health Organization presented a study on fungal priority pathogens [1].
The study identified fungal pathogens that can cause invasive systemic infections and
those exhibiting drug resistance. The highest priority group, labeled as ‘critical’, includes
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Cryptococcus neoformans, Aspergillus fumigatus, Candida auris, and C. albicans. Fungi of lower
priority include other Candida species, such as C. glabrata, C. tropicalis, C. parapsilosis, and
C. krusei.

C. albicans is part of the healthy human microbiome, colonizing the mouth, throat, gut,
vagina, and skin, without causing infections in immunocompetent individuals. The oral
colonization of C. albicans occurs in 23–49% of children [2,3] and approximately 35–63% of
adults [4,5]. This yeast can lead to diseases such as mucosal and cutaneous candidiasis [6].
In critically ill and immunocompromised patients, it can cause invasive infections with
high mortality rates [7]. Resistance to fluconazole and voriconazole has been observed in
some C. albicans strains [8,9]. Additionally, C. albicans is one of the most significant fungal
pathogens in wound infections, particularly in diabetic foot ulcers and burn wounds [9–11].
In chronic wounds, fungi from the Candida genus are present in 23–40% of cases, with
C. albicans being the predominant species [12].

C. albicans has numerous virulence factors that contribute to infection development and
immune evasion. It can exist in three forms: blastospores (yeast form), pseudohyphae, and
hyphae. This morphological plasticity is crucial to its pathogenicity [13]. The hyphal forms
are particularly invasive, capable of penetrating host tissues and producing candidalysin,
a cytolytic peptide toxin that damages host cells [14]. C. albicans also produces enzymes
such as proteases, phospholipases, lipases, and hemolysins, which enable host cell invasion
and help evade the host’s immune response [15]. Additionally, C. albicans strains can form
biofilms that protect them from external threats, including antifungal drugs, antiseptics,
and the host immune response [16]. Biofilms pose a significant clinical challenge, especially
in chronic wound infections [17].

We are on the threshold of an antibiotic crisis, with WHO data indicating a dramatic
increase in deaths due to infections from multi-resistant pathogens [18,19]. Simultaneously,
a growing number of fungal species are also becoming multi-resistant, reducing available
therapeutic options [1,20]. Many antiseptics are currently not recommended, mainly due
to their cytotoxic and allergenic effects or insufficient antimicrobial activity [21]. Increas-
ingly, bacterial strains are reported as resistant or less sensitive to antiseptics, including
chlorhexidine gluconate [22], benzalkonium chloride [22,23], cetylpyridinium chloride [24],
triclosan [25], hydrogen peroxide, and povidone–iodine [26,27]. This reduced suscepti-
bility and increased resistance to disinfectants and antiseptics may eventually lead to an
‘antiseptic crisis’ in the near future [28].

In recent years, concern has grown over the threat of bacterial adaptation to antiseptics
following repeated exposure [29,30]. Such adaptation can result in a decreased or even
complete loss of effectiveness of antibiotics or antiseptics at clinical concentrations [31]. To
our knowledge, no studies have yet investigated the development of adaptation in fungi
in response to antiseptics. However, this issue is of great importance, especially given the
growing threat posed by fungal pathogens [1]. Therefore, this study aimed to explore the
possibility of adaptation and, indirectly, the risk of resistance development to antiseptics in
C. albicans yeast.

2. Results
2.1. Drug Susceptibility Testing

Studies revealed that all C. albicans strains were susceptible to econazole, miconazole,
and voriconazole. Resistance was observed in 10% of the strains to fluconazole, flucytosine,
and ketoconazole; in 20% of the strains to nystatin and itraconazole; and in 30% of the
strains to amphotericin and clotrimazole (Figure 1, Table 1). Importantly, no changes in
antifungal drug resistance were observed after adaptation testing with a specific antiseptic.
This suggests that antiseptics likely do not affect changes in the drug susceptibility of
C. albicans yeasts. Detailed raw data on the drug susceptibility of the C. albicans strains are
presented in the supplementary file as Table S1.



Pharmaceuticals 2024, 17, 1544 3 of 13

Pharmaceuticals 2024, 17, 1544 3 of 14 
 

 

specific antiseptic. This suggests that antiseptics likely do not affect changes in the drug 
susceptibility of C. albicans yeasts. Detailed raw data on the drug susceptibility of the C. 
albicans strains are presented in the supplementary file as Table S1. 

 
Figure 1. An exemplary photo of the Integral System Yeasts Plus identification test for yeast-like 
fungi and their drug susceptibility. In wells 1–12, a yellow-gray color indicates positive results, 
while purple indicates negative results. In well 13, a green color confirms the species Candida 
albicans. In wells 14–23, a red color indicates drug susceptibility (S), whereas yellow indicates drug 
resistance (R). A yellow color in well 24 confirms the growth of the fungus. Abbreviations: GLU 
Glucose, MAL Maltose, SAC Saccharose, LAC Lactose, GAL Galactose, MEL Melibiose, CEL 
Cellobiose, INO Inositol, XYL Xylose, RAF Raffinose, TRE Trehalose, DUL Dulcitol, CHR 
Chromogenic substrate, NY nystatin 1.25 µg/mL, AMB amphotericin 2 µg/mL, FCY flucytosine 16 
µg/mL, ECN econazole 2 µg/mL, KCA ketoconazole 0.5 µg/mL, CLO clotrimazole 1 µg/mL, MIC 
miconazole 2 µg/mL, ITR itraconazole 1 µg/mL, VOR voriconazole 2 µg/mL, FLU fluconazole 4 
µg/mL. 

Table 1. Drug susceptibility of the tested Candida albicans strains to antifungal drugs. 

Antifungal Drug Percentage of Sensitive (S)  
C. albicans Strains 

Percentage of Resistant (R)  
C. albicans Strains 

ECN 100% 0% 
MIC 100% 0% 
VOR 100% 0% 
AMB 90% 10% 
KCA 90% 10% 
FLU 90% 10% 
ITR 80% 20% 
NY 80% 20% 

CLO 70% 30% 
FCY 70% 30% 

Abbreviations: S—sensitivity; R—resistance; ECN—econazole 2 µg/mL; MIC—miconazole 2 
µg/mL; VOR—voriconazole 2 µg/mL; AMB—amphotericin 2 µg/mL; KCA—ketoconazole 0.5 
µg/mL; FLU—fluconazole 4 µg/mL; ITR—itraconazole 1 µg/mL; NY—nystatin 1.25 µg/mL; CLO—
clotrimazole 1 µg/mL; FCY—flucytosine 16 µg/mL. 

Figure 1. An exemplary photo of the Integral System Yeasts Plus identification test for yeast-like
fungi and their drug susceptibility. In wells 1–12, a yellow-gray color indicates positive results, while
purple indicates negative results. In well 13, a green color confirms the species Candida albicans. In
wells 14–23, a red color indicates drug susceptibility (S), whereas yellow indicates drug resistance
(R). A yellow color in well 24 confirms the growth of the fungus. Abbreviations: GLU Glucose,
MAL Maltose, SAC Saccharose, LAC Lactose, GAL Galactose, MEL Melibiose, CEL Cellobiose, INO
Inositol, XYL Xylose, RAF Raffinose, TRE Trehalose, DUL Dulcitol, CHR Chromogenic substrate,
NY nystatin 1.25 µg/mL, AMB amphotericin 2 µg/mL, FCY flucytosine 16 µg/mL, ECN econazole
2 µg/mL, KCA ketoconazole 0.5 µg/mL, CLO clotrimazole 1 µg/mL, MIC miconazole 2 µg/mL, ITR
itraconazole 1 µg/mL, VOR voriconazole 2 µg/mL, FLU fluconazole 4 µg/mL.

Table 1. Drug susceptibility of the tested Candida albicans strains to antifungal drugs.

Antifungal Drug Percentage of Sensitive (S)
C. albicans Strains

Percentage of Resistant (R)
C. albicans Strains

ECN 100% 0%

MIC 100% 0%

VOR 100% 0%

AMB 90% 10%

KCA 90% 10%

FLU 90% 10%

ITR 80% 20%

NY 80% 20%

CLO 70% 30%

FCY 70% 30%
Abbreviations: S—sensitivity; R—resistance; ECN—econazole 2 µg/mL; MIC—miconazole 2 µg/mL;
VOR—voriconazole 2 µg/mL; AMB—amphotericin 2 µg/mL; KCA—ketoconazole 0.5 µg/mL; FLU—fluconazole
4 µg/mL; ITR—itraconazole 1 µg/mL; NY—nystatin 1.25 µg/mL; CLO—clotrimazole 1 µg/mL; FCY—flucytosine
16 µg/mL.
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2.2. Minimal Inhibitory Concentrations (MIC)

The studies showed that octenidine dihydrochloride (OCT), chlorhexidine digluconate
(CHX), and polyhexamethylene biguanide (PHMB) exhibit the strongest activity against
C. albicans, with minimum inhibitory concentrations (MIC) in control tests being in the
range of several µg/mL. Sodium hypochlorite (NaOCl) and ethacridine lactate (ET) demon-
strated weaker activity, with MICs of 100 µg/mL and 119 µg/mL, respectively. The weakest
antifungal activity was observed with boric acid (BA), povidone–iodine (PVI), and potas-
sium permanganate (KMnO4), showing MIC values of several mg/mL. Additionally, it was
found that the MIC values obtained for NaOCl and KMnO4 are close to or equal to the con-
centrations used in commercial products, namely, 100 µg/mL and 10 mg/mL, respectively.

The study presented no significant changes in most MIC levels for OCT, PHMB,
NaOCl, KMnO4, and PVI after adaptation with antiseptics. Adaptation with KMnO4
resulted in a significant increase in MIC values for PHMB, and adaptation with NaOCl
and KMnO4 led to increased MIC values for BA. However, these increases were only
about two-fold. The most MIC increases following adaptation were observed for CHX
and ET. This indicates that the use of different antiseptics may lead to an approximately
two-fold reduction in C. albicans sensitivity, particularly to CHX and ET (Table 2). Figure 2
shows the example results of the minimum inhibitory concentration (MIC) testing and
adaptation study. Detailed raw data on MIC values are presented in the supplementary file
as Tables S1–S9.

Table 2. Minimum inhibitory concentration (MIC) values for control samples before adaptation and
for samples after adaptation with a specific antiseptic against 10 Candida albicans strains.

Antiseptic
[Units]

Control MIC
Before Adaptation

MIC Values (Mean ± SD) After Adaptation with Below Antiseptic

OCT PHMB NaOCl KMnO4 CHX PVI BA ET

OCT
[µg/mL]

2.73 ±
0.98

3.32 ±
0.92

3.12 ±
0.98

3.32 ±
0.92

3.32 ±
0.92

3.02 ±
1.0

3.02 ±
1.0

3.22 ±
0.95

3.02 ±
1.0

PHMB
[µg/mL]

4.01 ±
1.78

4.29 ±
1.63

5.27 ±
1.91

4.58 ±
2.03

6.92 ±
4.88 **

5.07 ±
2.14

5.27 ±
3.96

4.58 ±
2.03

4.49 ±
2.11

NaOCl
[µg/mL]

100 ±
0.0

100 ±
0.0

110 ±
30.8

100 ±
0.0

100 ±
0.0

100 ±
0.0

100 ±
0.0

100 ±
0.0

100 ±
0.0

KMnO4
[mg/mL]

8.5 ±
2.35

9.0 ±
2.05

9.0 ±
2.05

10.0 ±
3.97

10.0 ±
3.97

10.0 ±
3.97

9.0 ±
2.05

9.0 ±
2.05

9.0 ±
2.05

CHX
[µg/mL]

3.61 ±
0.71

5.17 ±
2.31 *

5.75 ±
3.26 ***

5.75 ±
3.26 ***

4.78 ±
2.14

4.88 ±
2.05

4.78 ±
2.14

5.75 ±
3.26 ***

4.78 ±
2.14

PVI
[mg/mL]

8.44 ±
1.93

8.91 ±
1.44

8.91 ±
1.44

8.91 ±
1.44

8.91 ±
1.44

8.91 ±
1.44

8.91 ±
1.44

8.91 ±
1.44

8.91 ±
1.44

BA
[mg/mL]

1.62 ±
0.88

1.99 ±
1.25

1.99 ±
1.25

2.93 ±
2.59 ***

2.93 ±
2.59 ***

2.02 ±
1.23

1.99 ±
1.25

2.02 ±
1.23

1.99 ±
1.25

ET
[µg/mL]

118.8 ±
63.8

243.8 ±
181.3 ***

243.8 ±
181.3 ***

243.8 ±
181.3 ***

243.8 ±
181.3 ***

243.8 ±
181.3 ***

243.8 ±
181.3 ***

243.8 ±
181.3 ***

246.9 ±
178.5 ***

Statistically significant differences compared to the control before adaptation: * p < 0.05, ** p < 0.01, *** p < 0.001.
Abbreviations: OCT—octenidine dihydrochloride; PHMB—polyhexamethylene biguanide; NaOCl—sodium
hypochlorite; KMnO4—potassium permanganate; CHX—chlorhexidine digluconate; PVI—povidone–iodine;
BA—boric acid; ET—ethacridine lactate.
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Figure 2. Exemplary images of plates for Candida albicans strain number 4. (A). Minimal inhibitory 
concentration (MIC) study; 100% concentration represents the commercial concentration of the 
compound, as shown in Section 2.1. (B). Adaptation study under the influence of increasing 
concentrations of antiseptics. The doses of antiseptics ranged from 10/200, i.e., 5% of the commercial 
concentration, to 110/200, i.e., 55% of the commercial concentration. The concentrations were 
increased by an additional 5% every 2 days. (C). Further adaptation study under the influence of 
NaOCl and KMnO4. The doses of antiseptics ranged from 120/200, i.e., 60% of the commercial 
concentration, to 200/200, i.e., 100% of the commercial concentration. (D). Additional adaptation 
study for OCT, PHMB, and CHX at low doses, from 1/200, i.e., 0.5%, to 7/200, i.e., 3.5%. TTC reagent 
was used on the plates, which turns red in the presence of microbial growth. Abbreviations: O—
octenidine dihydrochloride; P—polyhexamethylene biguanide; Cl—sodium hypochlorite; M—
potassium permanganate; X—chlorhexidine digluconate; PI—povidone–iodine; B—boric acid; R—
ethacridine lactate. 
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Figure 2. Exemplary images of plates for Candida albicans strain number 4. (A). Minimal inhibitory
concentration (MIC) study; 100% concentration represents the commercial concentration of the com-
pound, as shown in Section 2.1. (B). Adaptation study under the influence of increasing concentrations
of antiseptics. The doses of antiseptics ranged from 10/200, i.e., 5% of the commercial concentration,
to 110/200, i.e., 55% of the commercial concentration. The concentrations were increased by an
additional 5% every 2 days. (C). Further adaptation study under the influence of NaOCl and KMnO4.
The doses of antiseptics ranged from 120/200, i.e., 60% of the commercial concentration, to 200/200,
i.e., 100% of the commercial concentration. (D). Additional adaptation study for OCT, PHMB, and
CHX at low doses, from 1/200, i.e., 0.5%, to 7/200, i.e., 3.5%. TTC reagent was used on the plates,
which turns red in the presence of microbial growth. Abbreviations: O—octenidine dihydrochlo-
ride; P—polyhexamethylene biguanide; Cl—sodium hypochlorite; M—potassium permanganate;
X—chlorhexidine digluconate; PI—povidone–iodine; B—boric acid; R—ethacridine lactate.

2.3. Adaptation of Candida albicans Strains to Antiseptics

The studies demonstrated that C. albicans yeasts undergo adaptation when exposed to
increasing concentrations of antiseptics. The strains showed weak adaptation to OCT, CHX,
PVI, and ET, managing to grow at concentrations several times higher than their respective
MIC values. For NaOCl and KMnO4, adaptation levels were also low but were close to or
equal to the initial commercial concentration. This finding suggests that the development of
adaptation may lead to the ineffectiveness of commercial products containing NaOCl and
KMnO4 against C. albicans. The highest increase in adaptation relative to MIC was observed
for BA and PHMB; however, these values were still much lower than the commercial
concentrations.

Based on the Karpinski Adaptation Index, the lowest KAI values were observed for
CHX, OCT, and PHMB, indicating a very low risk of clinical resistance development in the
studied C. albicans strains. PVI and BA had a low risk, while ET posed a moderate risk for
clinical resistance development. The highest KAI values were observed for KMnO4 and
NaOCl, indicating a high and very high risk, respectively, of clinical resistance development
in Candida yeasts. The results of C. albicans adaptation to antiseptics are provided in Table 3.
Detailed raw data on the C. albicans adaptation are presented in the supplementary file as
Table S10.
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Table 3. Adaptation of Candida albicans strains to antiseptics. The highest concentrations of antiseptics
at which yeast growth was observed are presented.

Antiseptic Mean Adaptation
± SD

Adaptation Fold
Change Relative to MIC

Karpinski Adaptation
Index (KAI)

OCT [µg/mL] 9.5 ± 1.05 ×1.9–5.1 0.019

PHMB [µg/mL] 71 ± 3.16 ×4.5–35.9 0.071

NaOCl [µg/mL] 100 ± 0.0 ×1.0 1.0

KMnO4 [mg/mL] 8.55 ± 0.16 ×0.4–1.7 0.855

CHX [µg/mL] 8.0 ± 2.58 ×0.6–2.6 0.008

PVI [mg/mL] 13.5 ± 1.94 ×1.2–2.4 0.18

BA [mg/mL] 4.5 ± 0.0 ×0.6–9.6 0.15

ET [µg/mL] 260 ± 31.6 ×0.5–4.0 0.26
Interpretation of the Karpinski Adaptation Index (KAI): KAI ≤ 0.1: very low risk of clinical resistance;
0.1 < KAI < 0.2: low risk of clinical resistance; 0.2 < KAI < 0.8: moderate risk of clinical resistance; 0.8 < KAI < 1.0:
high risk of clinical resistance; KAI ≥ 1.0: very high risk of clinical resistance [31]. Abbreviations: OCT—octenidine
dihydrochloride; PHMB—polyhexamethylene biguanide; NaOCl—sodium hypochlorite; KMnO4—potassium per-
manganate; CHX—chlorhexidine digluconate; PVI—povidone–iodine; BA—boric acid; ET—ethacridine lactate.

3. Discussion

In this study, we investigated the activity of antiseptics against C. albicans and their
potential for adaptation. Previous studies have shown similar activity for OCT [6,32,33]
and CHX [6,32–35] against C. albicans, generally in the range of approximately 0.5 µg/mL
to several µg/mL. MIC values for PHMB vary more widely, from a few µg/mL [32,33] to
as high as 47 µg/mL [6].

For PVI and ET, the MIC levels observed in this study were higher than those reported
in other research [32,33,35–37]. In contrast, NaOCl and BA have been reported with both
much lower [32,34,38] and much higher MIC levels [39–41], with some NaOCl values reach-
ing up to 30 times the levels found here. These findings suggest that NaOCl preparations
may not be active at clinical concentrations, which we have confirmed.

No studies regarding the MIC of KMnO4 against C. albicans were found. However,
for other microorganisms, KMnO4 has shown inhibitory concentrations ranging from
300–10,000 µg/mL for Staphylococcus aureus [42] to 40,000 µg/mL for Rhodotorula mucilagi-
nosa [43], which, similarly to NaOCl, indicates potential inactivity at clinical concentrations.
The presented data are summarized in Table 4.

Table 4. Comparison of the results of minimal inhibitory concentrations (MIC) of antiseptics against
Candida albicans obtained in this study and values presented in the literature.

Antiseptic Mean control MICs Obtained
in This Study (µg/mL)

Mean MICs in the Literature
(All Values Were Converted to µg/mL)

Octenidine dihydrochloride 2.73 0.5–0.9 [6], 0.5–1.0 [32], 1.0 [33]

Polyhexamethylene biguanide 4.01 1 [33], 3.9–7.8 [32],
11.7–46.9 [6]

Sodium hypochlorite 100 <10 [34], no activity up to 80 [32], 3000 [39], 3300 [40],

Potassium permanganate 8500 300–10,000 for Staphylococcus aureus [42], 40,000 for
Rhodotorula mucilaginosa [43]

Chlorhexidine digluconate 3.61 <0.63 [34], 1.1–2.4 [6], 2.45–4.9 [32], 4.0 [33], 0.5–16 [35]

Povidone–iodine 8440 70–250 [35], 256 [33], 1170–2348 [32], 4000 [36]

Boric acid 1620 0.82–52.5 [38], 940–1870 [44] 1563–6250 [41]

Ethacridine lactate 118.8 <1.0 [37], 31.3–62.5 [32]
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In the studies described, all C. albicans strains were found to be sensitive to econazole
and miconazole. These results are consistent with data from a meta-analysis from Iran,
which also reported no resistance to econazole and miconazole [45]. While no resistance
to voriconazole was observed in this study, other reports suggest that resistance remains
relatively uncommon, estimated at around 5–6% [45,46].

Resistance to the remaining antifungal agents was observed. Resistance to fluconazole,
flucytosine, and ketoconazole each occurred in one strain (10%). Previous studies have
reported varying resistance rates, with fluconazole resistance from 9% to 71%, flucytosine
resistance about 42% [45,47], and ketoconazole resistance ranging from 25% to 47% in
C. albicans [45–47]. Studies from Mexico indicate even higher resistance rates, with up to
95% of strains resistant to fluconazole and 97% to ketoconazole [48]. Resistance to nystatin
and itraconazole was observed in 20% of strains. Interestingly, other studies report a range
of resistance levels for these drugs, from 0% to 41% for nystatin and from 7% to 59% for
itraconazole [45–48]. The highest resistance in this study was found for amphotericin and
clotrimazole, with 30% of strains exhibiting resistance. Previous studies have reported
lower resistance to amphotericin, around 9% of isolates [45], and higher resistance for
clotrimazole, at levels of 45–62% [45,47]. The observed differences between these findings
and those in other publications may be due to factors such as the small sample size or
geographical variations in resistance prevalence.

There are several possible mechanisms leading to increased tolerance or resistance
in fungi. Antiseptics generally act by disrupting cell membranes, denaturing proteins,
inactivating enzymes, and causing metabolic disorders [49]. However, prolonged exposure
to low or gradually increasing doses might induce additional changes, similar to those seen
with antifungal drugs. For example, in fluconazole-resistant isolates, an increased thickness
of ergosterol and chitin layers has been observed, which impedes drug penetration into cells.
Additionally, an increase in mutations in specific genes has been noted [50]. Cross-resistance
to fluconazole and voriconazole was also observed in C. albicans and C. parapsilosis strains
exposed to methotrexate. In this case, changes occurred in the expression of genes in various
signaling pathways [51]. The development of cross-resistance to antibacterial drugs has
been demonstrated, for instance, for hypochlorites and CHX [52,53]. In this study, no cross-
resistance was found between antiseptics and antifungal drugs. It is possible that a different
mechanism of action of antiseptics than that of antifungal drugs is responsible for the lack
of this relationship in fungi. Other studies have shown that C. albicans can adapt under
stress conditions, involving mechanisms such as phosphatase calcineurin, the protein
kinase C cell wall integrity pathway, and the molecular chaperone heat shock protein
90 [54]. Another key factor in resistance development is biofilm formation. Components
like β-glucan and extracellular DNA within the biofilm matrix contribute to its resistance
against antifungals, potentially increasing antifungal resistance by up to 1000-fold [55].
Additionally, as biofilm matures, the expression of efflux pump genes rises, leading to the
active removal of drugs from fungal cells [56].

To our knowledge, this study is the first to examine antiseptic adaptation in C. albicans.
While there is research on the adaptation of various antiseptic compounds against bacteria,
studies on fungi, especially yeasts, are lacking. Thus, our findings can only be compared
with bacterial adaptation data.

For instance, research on Escherichia coli found no adaptation to CHX, OCT, or NaOCl.
Following adaptation procedures, the MIC values remained at 1–2 µg/mL for CHX,
2 µg/mL for OCT, and 256–512 µg/mL for NaOCl. Notably, only NaOCl showed a twofold
increase in MIC95 values [57]. Interestingly, the MIC level for NaOCl is higher than the
typical commercial concentration (100 µg/mL) used in wound treatment.

Shepherd et al. demonstrated that seven Pseudomonas aeruginosa strains could develop
adaptive growth in response to OCT and CHX [58]. The initial concentration of OCT was
2 µg/mL. All strains developed octenidine tolerance; however, four of them were able
to grow at a final concentration of 64 µg/mL. Compared to parental strains, tolerance
increased 8- to 32-fold after several days of exposure to OCT. However, this adaptation
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level is still well below the commercial OCT concentration of 500–1000 µg/mL. P. aeruginosa
also exhibited adaptation to CHX, with growth at final concentrations of 128–512 µg/mL,
reflecting a 2- to 16-fold increase relative to the parental strains [58]. Furthermore, another
study indicated that Pseudomonas aeruginosa adaptation to OCT is associated with mutations
in efflux pump genes smvAR and phosphatidylserine synthase pssA, and occasionally in
phosphatidylglycerophosphate synthase pgsA genes [59].

Increased tolerance to antiseptics was also demonstrated in another Gram-negative
bacterium, Proteus mirabilis [60]. In studies involving only three clinical isolates, tolerance
levels were found to reach 512 µg/mL for CHX and 128 µg/mL for OCT, with initial
concentrations at 8 µg/mL for CHX and 2 µg/mL for OCT. This indicates a significant
tolerance development, up to 64 times higher than the initial values. The authors noted
that mutations resulting in the inactivation of the smvR repressor and increased expression
of the smvA efflux pump also occurred in P. mirabilis.

When comparing these findings, it is evident that C. albicans yeasts exhibit weaker
adaptation to increasing antiseptic concentrations than bacteria. In the case of NaOCl and
KMnO4, the level of adaptation was similar to or equal to the clinical concentrations of
commercial products, suggesting that the development of adaptation may result in reduced
effectiveness of these compounds against C. albicans.

This study is the first to utilize the Karpinski Adaptation Index, revealing that CHX,
OCT, and PHMB are antiseptics associated with a very low risk of developing clinical resis-
tance in C. albicans. Conversely, a high and very high risk of clinical resistance development
in Candida yeasts was noted for KMnO4 and NaOCl.

4. Materials and Methods
4.1. Antiseptics

Eight antiseptics were examined in the study: octenidine dihydrochloride (OCT;
Schülke & Mayr GmbH, Norderstedt, Germany), polyhexamethylene biguanide (PHMB,
Cosmocil PG; Arxada AG, Basel, Switzerland), sodium hypochlorite (NaOCl; Cerkamed,
Stalowa Wola, Poland), potassium permanganate (KMnO4; Hasco-Lek S.A., Wrocław,
Poland), chlorhexidine digluconate (CHX; Sigma-Aldrich, Poznań, Poland), povidone–
iodine (PVI, poly(vinylpyrrolidone)–iodine complex; Sigma-Aldrich, Poznań, Poland),
boric acid (BA, Borasol; Herbapol, Poznań, Poland), and ethacridine lactate (ET, Rivanol;
Herbapol, Poznań, Poland). The initial concentrations of active substances matched the
clinical concentrations found in commercial products used for wound and oral antiseptics:
0.05% (500 µg/mL) OCT, 0.1% (1000 µg/mL) PHMB, 0.01% (100 µg/mL) NaOCl, 1%
(10 mg/mL) KMnO4, 0.1% (1000 µg/mL) CHX, 7.5% (75 mg/mL) PVI, 3% (30 mg/mL) BA,
and 0.1% (1000 µg/mL) ET.

4.2. Candida albicans Strains

In the study, ten C. albicans strains were used, each isolated from routine diagnostic
samples taken from patients with skin or oral fungal infections. Strains 1–5 were obtained
from wounds, and strains 6–10 were isolated from cases of oral candidiasis. Specimens
were collected from infected sites, such as skin lesions or oral mucosa, using sterile swabs
to prevent contamination. The samples were inoculated onto CHROMagar Candida (Graso
Biotech, Starogard Gdański, Poland) within 10 min of collection. The plates were incubated
at 37 ◦C for 48 h to allow yeast growth. Following incubation, green colonies suggesting
C. albicans were selected for further analysis. The yeasts were identified and confirmed
using the Integral System Yeasts Plus (Liofilchem Diagnostici, Roseto, Italy). In further
studies, C. albicans strains were cultured on Sabouraud agar or in Sabouraud broth (Graso
Biotech, Starogard Gdański, Poland).

4.3. Drug Susceptibility Testing

Drug susceptibility testing for antifungal agents was performed using the Integral
System Yeasts Plus (Liofilchem Diagnostici, Roseto, Italy). The kit contains the following
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concentrations: nystatin at 1.25 µg/mL, amphotericin at 2 µg/mL, flucytosine at 16 µg/mL,
econazole at 2 µg/mL, ketoconazole at 0.5 µg/mL, clotrimazole at 1 µg/mL, miconazole at
2 µg/mL, itraconazole at 1 µg/mL, voriconazole at 2 µg/mL, and fluconazole at 4 µg/mL.

4.4. Minimal Inhibitory Concentrations (MIC)

The minimal inhibitory concentrations (MIC) of antiseptics were determined using
the micro-dilution method with 96-well plates (Nest Scientific Biotechnology, Wuxi, China)
with Sabouraud broth (Graso Biotech, Starogard Gdański, Poland). This method is detailed
in our previous publications [6,61,62]. Each well contained a final volume of 200 µL. Serial
dilutions of each antiseptic started at the concentrations specified in Section 2.1. The
plates were incubated at 36 ◦C for 24 h. After incubation, MIC values were determined
visually. In some samples, a colorimetric reaction was further enhanced by adding 10 µL
of a 1% aqueous solution of 2,3,5-triphenyl-tetrazolium chloride (TTC; Sigma Aldrich,
Poznań, Poland).

4.5. Adaptation of Candida albicans Strains to Antiseptics

C. albicans strains were cultured at an initial concentration of 5% of the starting con-
centration, which corresponded to 25 µg/mL for OCT, 50 µg/mL for PHMB, 5 µg/mL for
NaOCl, 500 µg/mL for KMnO4, 50 µg/mL for CHX, 3.75 mg/mL for PVI, 1.5 mg/mL for
BA, and 50 µg/mL for ET. Additionally, for OCT, PHMB, and CHX, testing was conducted
at concentrations ranging from 0.5% to 4.5% of the starting concentration, specifically,
2.5 to 22.5 µg/mL for OCT, 5 to 45 µg/mL for PHMB, and 5 to 45 µg/mL for CHX. The
tests were performed in 96-well plates containing 200 µL of Sabouraud broth. Every two
days, 2 µL of each culture were transferred to a fresh well with Sabouraud broth and a
higher concentration of antiseptic. The study was continued until the clinical/commercial
starting concentration was achieved (Figure 3). Finally, the yeasts were passaged twice
without the presence of the antiseptic. On these passaged colonies, further tests were
performed, including re-testing of MIC and re-testing of drug resistance.
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Figure 3. The initial stages of the study on the adaptation of Candida albicans strains to antiseptics
were conducted on a 96-well plate. The control test was carried out in 200 µL of Sabouraud broth
(SB). Every two days, 2 µL of the culture was transferred to the next well with a higher concentration
of antiseptic.

The fold change in antiseptic adaptation relative to MIC, presented in Table 3, was
calculated as the ratio of the adaptation level for a given strain to its MIC value after
adaptation for the specific antiseptic. Calculations were performed on raw data, which are
presented in the supplementary file.
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4.6. Karpinski Adaptation Index (KAI)

To analyze the adaptation results and determine the potential for developing resis-
tance to antiseptics, the Karpinski Adaptation Index (KAI) [31] was applied, according to
the formula:

Adaptation Index (KAI) =
Adaptation

Clinical concentration
where ‘Adaptation’ refers to the maximum concentration of a drug at which a microorgan-
ism can continue to grow, whereas ‘Clinical concentration’ denotes the standard commercial
concentration of the drug, the clinical dosage used in treatment of a specific disease, or the
recommended dose for a natural-origin compound. The Karpinski Adaptation Index (KAI)
provides insights into the level of adaptation compared to the clinical concentration of com-
mercial products, allowing for an assessment of the risk of developing clinical resistance.
The results were interpreted as follows:

• KAI ≤ 0.1: Very low risk of clinical resistance. The level of adaptation is significantly
lower than the clinical concentration, making the risk of resistance development
very unlikely.

• 0.1 < KAI < 0.2: Low risk of clinical resistance.
• 0.2 < KAI < 0.8: Moderate risk of clinical resistance.
• 0.8 < KAI < 1.0: High risk of clinical resistance.
• KAI ≥ 1.0: Very high risk of clinical resistance. The level of adaptation is equal to

or higher than the clinical concentration, potentially leading to the development of
clinical resistance or indicating that resistance may have already occurred.

4.7. Statistics

The one-way ANOVA with Tukey post hoc tests was applied to determine the statis-
tical significance of differences in the MIC values. Results were considered significant at
the level of p < 0.05. Data analysis was tested using InStat3 software (GraphPad Software,
Boston, MA, USA).

5. Conclusions

Candida albicans strains can adapt to antiseptics to varying extents. However, for most
antiseptics, this adaptation does not significantly compromise their clinical efficacy. In the
cases of NaOCl and KMnO4, adaptation levels were comparable to the clinical concentra-
tions of the commercial formulations used in wound care and oral infections. Consequently,
this suggests that NaOCl and KMnO4 may be ineffective against C. albicans strains even at
clinically relevant concentrations. The application of the Karpinski Adaptation Index (KAI)
is significant in evaluating the risk of resistance development to clinical concentrations
of medicines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17111544/s1. Table S1. Drug susceptibility of the tested
Candida albicans strains to antifungal drugs. Table S2. Minimum inhibitory concentration (MIC)
values for control samples before adaptation and for samples after adaptation with OCT against 10
C. albicans strains. Table S3. Minimum inhibitory concentration (MIC) values for control samples
before adaptation and for samples after adaptation with PHMB against 10 C. albicans strains. Table S4.
Minimum inhibitory concentration (MIC) values for control samples before adaptation and for
samples after adaptation with NaOCl against 10 C. albicans strains. Table S5. Minimum inhibitory
concentration (MIC) values for control samples before adaptation and for samples after adaptation
with KMnO4 against 10 C. albicans strains. Table S6. Minimum inhibitory concentration (MIC)
values for control samples before adaptation and for samples after adaptation with CHX against 10
C. albicans strains. Table S7. Minimum inhibitory concentration (MIC) values for control samples
before adaptation and for samples after adaptation with PVI against 10 C. albicans strains. Table S8.
Minimum inhibitory concentration (MIC) values for control samples before adaptation and for
samples after adaptation with BA against 10 C. albicans strains. Table S9. Minimum inhibitory
concentration (MIC) values for control samples before adaptation and for samples after adaptation

https://www.mdpi.com/article/10.3390/ph17111544/s1
https://www.mdpi.com/article/10.3390/ph17111544/s1
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with ET against 10 C. albicans strains. Table S10. Adaptation of C. albicans strains to antiseptics. The
highest concentrations of antiseptics at which yeast growth was observed are shown.
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