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Abstract: Background: The worldwide misuse of antibiotics is one of the main factors in microbial
resistance that is a serious threat worldwide. Alternative strategies are needed to overcome this issue.
Objectives: In this study, a novel strategy was adopted to suppress the growth of resistant pathogens
through immobilization of silver nanoparticles (AgNPs) in gum of Moringa oleifera. Methods: The
AgNPs were prepared from the leaves of Moringa oleifera and subsequently characterized through
UV-spectrophotometry, FTIR, SEM, and XRD. The differential ratios of characterized AgNPs were
immobilized with gum of M. oleifera and investigated for antimicrobial potential against highly
resistant pathogens. Results: The immobilized AgNPs displayed promising activities against highly
resistant B. subtilis (23.6 mm; 50 µL:200 µL), E. coli (19.3 mm; 75 µL:200 µL), K. pneumoniae (22 mm;
200 µL:200 µL), P. mirabilis (16.3 mm; 100 µL:200 µL), P. aeruginosa (22 mm; 175 µL:200 µL), and S.
typhi (19.3; 25 µL:200 µL) than either AgNPs alone or gum. The immobilized AgNPs released positive
sliver ions that easily attached to negatively charged bacterial cells. After attachment and permeation
to bacterial cells, the immobilized NPs alter the cell membrane permeability, protein/enzymes
denaturation, oxidative stress (ROS), damage DNA, and change the gene expression level. It has
been mechanistically considered that the immobilized AgNPs can kill bacteria by damaging their
cell membranes, dephosphorylating tyrosine residues during their signal transduction pathways,
inducing cell apoptosis, rupturing organelles, and inhibiting cell division, which finally leads to cell
death. Conclusions: This study proposes a potential alternative drug for curing various infections.

Keywords: Moringa oleifera; organic synthesis of silver nanoparticles; defensive gum; immobilization
of AgNPs; antibiotic resistance; antibacterial activity; alternative antimicrobials
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1. Introduction

Moringa oleifera (M. oleifera), the “Miracle tree”, thrives globally in almost all tropical
and subtropical regions, but it is believed to be native to India, Bangladesh, Pakistan
and Afghanistan [1]. The Moringa genus, belonging to the Moringaceae family, is also
known as the drumstick tree, horseradish tree and benzoyl tree and can grow in a wide
range of environmental conditions [2–7]. Moreover, M. oleifera is a rich source of different
phytochemicals [8–11]. M. oleifera is a highly nutritional plant, and its various anatomical
structures have been used for centuries to treat a variety of health conditions and possess
widespread biological properties [12–17].

M. oleifera has been shown to have antimicrobial and antifungal activity. The plant
contains compounds that can inhibit the growth of bacteria such as Pseudomonas aeruginosa,
Salmonella typhi, Vibrio cholera, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and
Candida albicans [18,19], and fungi such as Rhizopus stolonifera, Neurospora crassa, Aspergillus
niger, and Microsporum gypseum [20], including pterygospermin and ethanolic extracts of
the leaves, and alkaloids, flavonoids, and steroids in the fruits [19], M. oleifera has been
shown to have antioxidant properties. The plant contains compounds that can scavenge
free radicals [21], such as kaempferol [22], myricetin, isoquercetin, astragalin, and crypto-
chlorogenic acid [23]. This antioxidant potential can help to protect cells from damage and
reduce the risk of chronic diseases.

M. oleifera bark extract has anti-inflammatory activity similar to diclofenac and is thought
to work by regulating the c-Jun N-terminal kinase and neutrophil pathways [24,25] due
to the presence of flavonoids, alkaloids, vanillin, moringin, phenols, tannins, carotenoids,
hydroxymellein, Beta-sitosterol, and ß-sitostenol [26]. M. oleifera has been shown to have
both fertility and anti-fertility properties. The aqueous extract of the plant has been found to
increase abortifacient and anti-fertility at doses of 200 and 400 mg/kg [15]. A recent study
suggested that the ingestion of M. oleifera before, after and during pregnancy may lead to
adverse fetal developmental outcomes [27].

The seed extract was able to reduce histamine release and suppress anaphylaxis
induced by anti-immunoglobulin G. The mechanism underlying this effect is thought to be
the membrane-stabilizing potential of the extract on mast cells [28]. The leaf extract can
prevent gastric ulcers by reducing free radicals, neutralizing stomach acid, and increasing
capillary resistance [29,30]. Some active constituents such as niazirmin A, niazirmin B, and
niazimicin play a key role in lowering cholesterol levels, and avenasterol, stigmasterol,
campesterol, and beta-sistosterol have diuretic activity [28,31,32]. The presence of quercetin,
kaempferol, flavonoids, and benzylglucosinolate can protect the liver from damage [33,34].
The leaves, seeds, and dried pulp have shown health-inducing properties [28,35,36]. It is a
nutrient-rich plant with a high protein content, as well as significant amounts of vitamins,
minerals, fat carbohydrates, and dietary fibers [37–39].

Plant exudates are a diverse group of compounds that can be released from all parts of
the plant [40]. Gums are complex carbohydrates that can absorb water and form gels [41].
Plant gums are bioavailable and have been used for centuries in a variety of applications, in-
cluding food, medicine, and industry [41,42]. In pharmaceutical formulations, plant-based
gums and mucilages are the key ingredients due to their bootability, widespread avail-
ability, non-toxicity, and affordability [43]. Scientists and pharmaceutical companies are
interested in using plant-based gums and mucilages as drug delivery systems, gene therapy
vectors, and biosynthetic materials. By modifying these natural substances, researchers
have developed a new class of innovative drug products with potential applications in a
variety of advanced fields [41]. Plant-based gums are non-toxic and biodegradable [41,44].
They have shown antimicrobial activity against a variety of microorganisms, including
bacteria, fungi, and viruses [45]. Potential mechanisms of action include the inhibition of
the bacterial cell membrane, chelation of essential metal ions, production of reactive oxygen
species, and modulation of the host immune response [46,47]. Plant-based gums could be
used to develop a variety of antimicrobial products, such as food additives, pharmaceutical
products, and agricultural products [47].
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Nanomaterials are at the forefront of nanotechnology, a rapidly developing field
with the potential to revolutionize many areas of human activity [48]. Nanoparticles are
particles with a maximum size of 100 nanometers (nm), which is about 1/100,000th the
width of a human hair [49]. Nanoparticles exhibit unique properties that make them
superior and indispensable in many applications, including combating microbes, drug
delivery, catalysis, water purification, the treatment of environmental waste, in the food
industry, in the textile industry, biolabeling, and cancer treatment [50]. Silver nanoparticles
(AgNPs) are a promising antimicrobial agent because they are effective against a wide
range of microorganisms, including bacteria, fungi, and viruses [51,52]. They are also stable
and reduce the likelihood of bacteria developing antibiotic resistance. AgNPs are being
investigated for use in a variety of applications, such as medicine, medical devices, and
food packaging [53,54].

Immobilization is a powerful technique that allows for reuse and recovery [55], im-
proved stability [56], controlled reactivity, and easier separation of molecules [57]. It is used
in a wide range of applications, including bio-catalysis [58], sensors [59], diagnostics [60],
and environmental remediation [61]. The immobilization of AgNPs is a versatile technique
that can be used to improve their stability, control their reactivity, and make them easier
to use in a variety of applications: AgNPs have strong antimicrobial properties and can
be used to create coatings that can kill bacteria and other microorganisms [62], AgNPs
can be used to create sensors that are sensitive to specific chemicals or biological signals,
AgNPs can be used as catalysts for a variety of chemical reactions, and AgNPs can be used
to degrade pollutants in water and soil [63].

AgNPs alone have proven antimicrobial potential, while the gum is released in re-
sponse to pathogen attacks in plants. Here, the dual and synergistic potential of AgNPs
along with the gum was investigated for the growth inhibition of infectious strains. Im-
mobilized AgNPs have potential to kill infectious strains by disrupting the membranes by
inducing pores and causing cytoplasmic leakage and bacterial cell death. It is possible that
immobilized AgNPs can stimulate the defense system of bacterial cells more rapidly than
either NPs alone or using gum alone. The immobilization strategy most probably releases
huge quantities of reactive oxygen species or other radicals that directly react and inhibit
major functions such as metabolism, replication, translation, and denaturation and cause
DNA damage.

The gum of this miracle plant possesses strong antimicrobial potential against various
pathogens. Similarly, silver nanoparticles are widely used in the medical sector due to
their high inhibiting efficacy against microorganisms. Therefore, the main objective of the
current study was to investigate the synergistic and high efficacy of immobilized silver
nanoparticles encapsulated in M. oleifera gum against highly resistant microbes and to
develop a possible antimicrobial mechanism for the immobilized AgNPs.

2. Results
2.1. Biogenic Synthesis of Nanoparticles and Its Characterization

M. Oleifera leaves were mixed with different volumes of salt solution, keeping the
reactant volume constant. The change in color representing the formation of NPs was
observed in two different ways. Upon exposing the reactants to sunlight or incubation for
24 h, the observation showed that a 4 mg/mL:4 mM ratio displayed the darkest color and
characteristic peak between 300 and 600 nm. The other differential ratios were less effective
in the formation of NPs.

2.1.1. UV–Visible Spectrophotometry of Leaf-Derived AgNPs

The initial step in identifying the formation of silver nanoparticles from leaf extracts
involved using an Elite Double-beam UV spectrophotometer to measure the absorbance at
300–600 nm for 24 h. The reactants (4 mg/mL:4 mM) showed the greatest absorbance in the
400–450 nm range, with a peak at 430 nm. Furthermore, the solution’s color changed from
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light brown to dark brown, possibly indicating the formation of nanoparticles as shown
in Figure 1.
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Figure 1. UV–visible spectroscopy of Moringa leaf-derived silver nanoparticles.

2.1.2. Fourier Transform Infrared Spectroscopy (FTIR) ML-Derived AgNPs

FTIR was used to analyze the chemicals in the silver nanoparticles. The FTIR spectra
displayed different plant substances (phenolics functional group), like proteins and alco-
hols/carbonyl rings/groups, and aromatic amines and this all helped the nanoparticles.
X-rays showed that the nanoparticles were round-shaped and about 25 to 40 nanometers in
size (Figure 2). The broad peak was observed at 2000, corresponding to carboxylic acids
with an OH group with alcohol stretching. The peak at 3000 to 2900 represents the major
intramolecular bonds with OH groups. The C-H of Aldehydic amines was represented by
the spectra with a peak area of 2800 with C-H stretching, while after the sp3 hybridized
groups, the O=C=O displayed a peak area ranging from 2400 to 2100. Below the 1700 peak
area, double carbon bonding was observed, showing the presence of alkenes. N alone or O
alone or in various groups either in nitro compounds in FTIR spectra was observed at the
peak area below 1500, while the OH of the amine and phenolic compounds was observed
from 1300 to 1450. Peaks below 650 cm−1 were attributed to the AgNPs (Figure 2).
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2.1.3. X-Ray Diffraction Spectrum (XRD) Analysis of Biogenic AgNPs

X-ray diffraction (XRD) analysis of the biogenic silver nanoparticles synthesized from
M. oleifera leaf extract revealed a mostly round/cubic crystalline structure with three strong
Bragg reflections at 32.201, 37.27, and 45.6, corresponding to the (42), (40), and (120) planes,
respectively. The interplanar distances were calculated as 2.15 Å, 2.11 Å, and 1.38 Å,
respectively. The particle size, determined by the Debye–Scherrer formula, was 25 nm
(Figure 3). These findings confirm the characteristics of silver nanoparticles derived from
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Moringa oleifera. The XRD analysis was conducted using a diffractometer with Cu K-alpha
radiation at 40 kV and 30 mA. The scanning range was from 0 to 80 degrees 2θ with a scan
rate of 10 degrees/min. The XRD analysis was performed using a Goniometer PW3050/60
and analyzed with Xpert-PRO software (https://www.xpert-pro.com/home.php, (accessed
on 29 October 2024)).

 

 

 

Figure 3. XRD spectra of ML-derived silver nanoparticles.

2.1.4. Transmission Electron Microscopy of ML-Derived AgNPs

The ML-derived AgNPs were analyzed by Transmission Electron Microscopy (TEM)
to determine their size, shape, and morphology. The TEM images displayed that most
of the ML-derived AgNPs were spherical in shape, and they may be individual or in
aggregated morphologies (Figure 4). The presence of bioactive phytochemicals in the
leaves of medicinally important M. oleifera extract was the main characteristic responsible
for the formation of spherical-shape nanoparticles. The scale on the TEM images indicates
that the size varies from 25 nm to 40 nm to 120 nm, as shown in Figure 4.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 6 of 26 
 

 

Figure 4. TEM images of ML-derived silver nanoparticles: (a) 50 nm, (b) 120 nm, and (c) histogram. 

2.2. Morphological Identification of Bacterial Isolates 
To identify bacterial species, morphological identification was carried out. E. coli on 

MAC agar has a bright, smooth, pink-colored elevated colony that is transparent; K. pneu-
moniae on MAC agar revealed the development of small to large-sized mucoid colonies 
with a creamy pink and yellow appearance, as shown in Figure 5b; P. aeruginosa on CLED 
agar showed green colonies with a typical matte surface and rough periphery—its scent 
was “sweet” and it was colored blue-green, as shown in Figure 5c. S. typhi on MAC agar 
appeared pale, colorless, smooth, and transparent, with raised colonies, as shown in Fig-
ure 5d. 

: TEM images of ML derived-silver nanoparticles(a) 50 nm and(b) .

a b 

c 

Figure 4. TEM images of ML-derived silver nanoparticles: (a) 50 nm, (b) 120 nm, and (c) histogram.

https://www.xpert-pro.com/home.php


Pharmaceuticals 2024, 17, 1546 6 of 24

2.2. Morphological Identification of Bacterial Isolates

To identify bacterial species, morphological identification was carried out. E. coli
on MAC agar has a bright, smooth, pink-colored elevated colony that is transparent; K.
pneumoniae on MAC agar revealed the development of small to large-sized mucoid colonies
with a creamy pink and yellow appearance, as shown in Figure 5b; P. aeruginosa on CLED
agar showed green colonies with a typical matte surface and rough periphery—its scent
was “sweet” and it was colored blue-green, as shown in Figure 5c. S. typhi on MAC
agar appeared pale, colorless, smooth, and transparent, with raised colonies, as shown in
Figure 5d.
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2.3. Identification Through Microscopy

Morphology and staining characteristics of E. coli, K. pneumoniae, P. aeruginosa, and S.
typhi were observed under microscope. E. coli was observed as Gram-negative, rod-shaped,
pink, and grouped in single or paired/short, as shown in Figure 6a. K. pneumoniae, was
bacilli in shape and Gram-negative, as shown in Figure 6b. P. aeruginosa was rod-shaped,
Gram-negative bacteria, typically 0.5–1.0 µm in width and 1–4 µm in length, as shown in
Figure 6c, and S. typhi was short, singly arranged, Gram-negative rod-shaped bacteria, as
shown in Figure 6d.

2.4. Antibiotic Susceptibility Pattern

The sensitivity patterns of B. subtilis, E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis, and
S. typhi isolates were investigated using the disk diffusion technique. Doxycycline (DO),
Ceftriaxone (CRO), Cefotaxime (CTX), Sulbactam/cefoperazone (SCF), Erythromycin (E),
Trimethoprim/sulfamethoxazole (SXT), Imipenem (IPM), and Azithromycin (AZM) were
applied on each bacterial strain for a susceptibility test, as shown in Table 1 and Figure 7.
B. subtilis was totally resistant to E, SXT, and AZM. E. coli displayed resistance to SCF, E,
and AZM. K. pneumoniae showed resistance to CRO, E, and SXT. P. aeruginosa exhibited
resistance to CRO, CTX, SCF, E, and SXT. P. mirabilis was resistant to CRO, SXT, and AZM.
S. typhi was resistant to CRO, SXT, and AZM.
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K. pneumoniae 10.5 ± 0.2 R 10.6 ± 0.6 17.3 ± 0.3 R R 15.4 ± 0.7 10.2 ± 0.4
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S. typhi 14.3 ± 0.1 R 10.2 ± 0.3 15.2 ± 0.5 --- R 12.3 ± 0.5 R

2.5. Antibacterial Potential of Immobilized AgNPs
Many microorganisms that cause human diseases are becoming resistant to antibiotics due
to the misuse of antibiotics. This means that there is a need to find novel antibacterial
substances derived from plants and other natural sources. To find traditionally utilized
therapeutic herbs that are very effective against both Gram-positive and Gram-negative
bacteria, different concentrations of M. oleifera gums (gums alone, gums + AgNPs, and
AgNPs alone) were applied to investigate antibacterial activities. The synergistic combi-
nation boosted the antibacterial efficacy against resistant bacteria. Furthermore, several
secondary metabolites, including alkaloids, flavonoids, glycosides, phenols, saponins, and
sterols, are some of the active phytochemicals that give medicinal plants their therapeutic
qualities. Various plant extracts, such as of the root, stem, bark, and seeds, have been shown
to contain these metabolites. Therefore, preliminary screening tests are useful for finding
bioactive compounds that could result in their finding to launch novel pharmaceuticals.
Additionally, these tests can help to quantify and qualitatively separate chemicals with
pharmacological action [64]. Both the AgNPs and gum of M. oleifera have high antimicro-
bial potential, and their immobilization further enhances the antibacterial capability by
inhibiting the growth of resistant bacterial strains. The immobilization of AgNPs and gum
is presented in the following Figure 8.
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Figure 8. Micrographs of immobilization of silver nanoparticles and gum of M. oleifera. The red circle
indicates the encapsulation of NPs in gum, while red arrows refers to strong binding of gum with
maximum AgNPs, and the black circle (indicated by red arrow) represent the accumulation of NPs
that appear in circular shape after zooming.

2.6. Immobilized AgNP-Induced Growth Inhibition of Highly Resistant B. subtilis

The zone of inhibition of the synergistic combination of M. oleifera gum and AgNPs
against highly resistant B. subtilis displayed variable activities: T1 (25 µL AgNPs:200 µL
gums) showed a 19.3 mm zone inhibition; T2 (50 µL AgNPs:200 µL gums), 23.6 mm;
T3 (75 µL AgNPs:200 µL gums), 20.6 mm; T4 (100 µL AgNPs:200 µL gums), 17 mm; T5
(125 µL AgNPs:200 µL gums), 15.6 mm; T6 (150 µL AgNPs:200 µL gums), 14.6 mm; T7
(175 µL AgNPs:200 µL gums), 16 mm; T8 (200 µL AgNPs:200 µL gums), 21.3 mm; T9
(225 µL AgNPs:200 µL gums), 19.3 mm; and T10 (250 µL AgNPs:200 µL gums), 11.6 mm.
This mean that these combinations of immobilized AgNPs were able to kill bacteria within
a radius of 11.6 to 23.6 mm. AgNPs alone as C1 (100 µL AgNPs) and gums alone as
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200 µL gums showed zones of inhibition of 16.3 mm and 19 mm, respectively. These
results suggest that the immobilized AgNPs were more effective at killing highly resistant
B. subtilis than either AgNPs or gums alone, as shown in Figure 9a. The zones of inhibition
of each treatment are shown in Figure 10.
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Figure 9. Antibacterial potential of different treatments of immobilized AgNPs (T1: 25 µL AgNPs +
200 µL gums; T2: 50 µL AgNPs + 200 µL gums; T3: 75 µL AgNPs + 200 µL gums; T4: 100 µL AgNPs +
200 µL gums; T5: 125 µL + 200 µL gums; T6: 150 µL AgNPs + 200 µL gums; T7: 175 µL AgNPs + 200
µL gums; T8: 200 µL AgNPs + 200 µL gums; T9: 225 µL AgNPs + 200 µL gums; T10: 250 µL AgNPs
+ 200 µL gums; AgNPs alone and gums alone against (a) B. subtilis, (b) E. coli, (c) K. pneumoniae,
(d) P. mirabilis, (e) P. aeruginosa, and (f) S. typhi). Bars with alphabets and standard errors represents
least significant differences among mean values from triplicates.
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(a) T1 (25 µL AgNPs + 200 µL gums), T2 (50 µL AgNPs + 200 µL gums), T3 (75 µL AgNPs + 200 µL
gums), and T4 (100 µL AgNPs + 200 µL gums); (b) T5 (125 µL + 200 µL gums), T6 (150 µL AgNPs +
200 µL gums), T7 (175 µL AgNPs + 200 µL gums), and T8 (200 µL AgNPs + 200 µL gums); and (c) T9
(225 µL AgNPs + 200 µL gums), T10 (250 µL AgNPs + 200 µL gums), C1 (100 µL AgNPs alone), and
C2 (200 µL gums alone).

2.7. Immobilized AgNP-Induced Growth Inhibition of Highly Resistant E. coli

The immobilized AgNPs also exhibited excellent inhibiting potential against highly
resistant E. coli and displayed a 17.3 mm zone using T1 (25 µL AgNPs:200 µL gums), while,
the other treatments, such as T2 (50 µL AgNPs:200 µL gums), showed a 17.6 mm zone;
T3 (75 µL AgNPs:200 µL gums), 19.3 mm; T4 (100 µL AgNPs:200 µL gums), 15 mm; T5
(125 µL AgNPs:200 µL gums), 18.3 mm; T6 (150 µL AgNPs:200 µL gums), 15.3 mm; T7
(175 µL AgNPs:200 µL gums), 17.6 mm; T8 (200 µL AgNPs:200 µL gums), 14.3 mm; T9
(225 µL AgNPs:200 µL gums), 17.3 mm; and T10 (250 µL AgNPs:200 µL gums), 17 mm. By
comparison, this was more than C1 and C2. This means that the immobilized AgNPs were
found to be dominant in killing resistant E. coli compared to other treatments (Figure 9b),
and the zones of inhibitions are given in Figure 11.
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Figure 11. Pictorial presentation of zones of inhibitions of immobilized AgNPs against E. coli as (a) T1
(25 µL AgNPs + 200 µL gums), T2 (50 µL AgNPs + 200 µL gums), T3 (75 µL AgNPs + 200 µL gums),
and T4 (100 µL AgNPs + 200 µL gums); (b) T5 (125 µL + 200 µL gums), T6 (150 µL AgNPs + 200 µL
gums), T7 (175 µL AgNPs + 200 µL gums), and T8 (200 µL AgNPs + 200 µL gums); and (c) T9 (225
µL AgNPs + 200 µL gums), T10 (250 µL AgNPs + 200 µL gums), C1 (100 µL AgNPs alone), and C2
(200 µL gums alone).



Pharmaceuticals 2024, 17, 1546 11 of 24

2.8. Immobilized AgNP-Induced Inhibition of Highly Resistant K. pneumoniae

In this study, the immobilized AgNPs presented potent activities against resistant K.
pneumoniae as T1 (25 µL AgNPs:200 µL gums), 16.6 mm; T2 (25 µL AgNPs:200 µL gums),
12.6 mm; T3 (75 µL AgNPs:200 µL gums), 18.3 mm; T4 (100 µL AgNPs:200 µL gums),
17.3 mm; T5 (125 µL AgNPs:200 µL gums), 13.6 mm; T6 (150 µL AgNPs:200 µL gums),
15.3 mm; T7 (175 µL AgNPs:200 µL gums), 19 mm; T8 (200 µL AgNPs:200 µL gums), 22 mm;
T9 (225 µL AgNPs:200 µL gums), 19 mm; and T10 (250 µL AgNPs:200 µL gums), 17.6 mm.
The C1 and C2 displayed lower activities than the immobilized AgNPs. The inhibiting efficacy
against highly resistant K. pneumoniae is shown in Figures 9c and 12.
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Figure 12. Pictorial presentation of zones of inhibitions of immobilized AgNPs against K. pneumoniae
as (a) T1 (25 µL AgNPs + 200 µL gums), T2 (50 µL AgNPs + 200 µL gums), and T3 (75 µL AgNPs +
200 µL gums); (b) T4 (100 µL AgNPs + 200 µL gums), T5 (125 µL + 200 µL gums), and T6 (150 µL
AgNPs + 200 µL gums); (c) T7 (175 µL AgNPs + 200 µL gums), T8 (200 µL AgNPs + 200 µL gums),
and T9 (225 µL AgNPs + 200 µL gums); and (d) T10 (250 µL AgNPs + 200 µL gums), C1 (100 µL
AgNPs alone), and C2 (200 µL gums alone).

2.9. Immobilized AgNP-Induced Growth Inhibition of Highly Resistant P. mirabilis and the Zones
of Inhibition of the Synergistic Combination of M. oleifera Gums

AgNPs (immobilized) against highly resistant P. mirabilis were recorded as follows:
T1 (25 µL AgNPs:200 µL gums) displayed 13.3 mm; T2 (50 µL AgNPs:200 µL gums), 16
mm; T3 (75 µL AgNPs:200 µL gums), 14.3 mm; T4 (100 µL AgNPs:200 µL gums), 16.3 mm;
T5 (125 µL AgNPs:200 µL gums), 14.3 mm; T6 (150 µL AgNPs:200 µL gums), 16 mm; T7
(175 µL AgNPs:200 µL gums), 11.6 mm; T8 (200 µL AgNPs:200 µL gums), 13.6 mm; T9 (225
µL AgNPs:200 µL gums), 16 mm; and T10 (250 µL AgNPs:200 µL gums) 15 mm. However,
the C1 (100 µL AgNPs) and gums alone as C2 (200 µL gums) have shown 16 mm and 13 mm
zones of inhibition, respectively. These results confirm that the immobilized nanoparticles
were superior in efficacy compared to the AgNPs or gum of medicinal plants used alone
against highly resistant P. mirabilis, as shown in Figures 9d and 13.



Pharmaceuticals 2024, 17, 1546 12 of 24Pharmaceuticals 2024, 17, x FOR PEER REVIEW 13 of 26 
 

 

 
Figure 13. Pictorial presentation of zones of inhibitions of immobilized AgNPs against P. mirabilis 
as (a) T1 (25 µL AgNPs + 200 µL gums) and T2 (50 µL AgNPs + 200 µL gums); (b) T3 (75 µL AgNPs 
+ 200 µL gums) and T4 (100 µL AgNPs + 200 µL gums); (c) T5 (125 µL + 200 µL gums) and T6 (150 
µL AgNPs + 200 µL gums); (d) T7 (175 µL AgNPs + 200 µL gums) and T8 (200 µL AgNPs + 200 µL 
gums; and (e) T9 (225 µL AgNPs + 200 µL gums), T10 (250 µL AgNPs + 200 µL gums), C1 (100 µL 
AgNPs alone), and C2 (200 µL gums alone). 

2.10. Immobilized AgNP-Induced Inhibition of Highly Resistant P. aeruginosa 
The immobilized AgNPs exhibited optimal activities against the highly resistant P. 

aeruginosa. The coating of NPs with gum enhanced the antibacterial effectiveness, as 
shown in Figures 9e and 14. The differential treatments of immobilized AgNPs exhibited 
differential activities against P. aeruginosa and the activities in terms of inhibition zones 
were T1 (25 µL AgNPs:200 µL gums), 18 mm; T2 (50 µL AgNPs:200 µL gums), 20.6 mm; 
T3 (75 µL AgNPs:200 µL gums), 16.3 mm; T4 (100 µL AgNPs:200 µL gums), 19 mm; T5 
(125 µL AgNPs:200 µL gums), 21 mm; T6 (150 µL AgNPs:200 µL gums), 22 mm; T7 (175 
µL AgNPs:200 µL gums), 20 mm; T8 (200 µL AgNPs:200 µL gums), 22 mm; T9 (225 µL 
AgNPs:200 µL gums), 17.6 mm; and T10 (250 µL AgNPs:200 µL gums), 14 mm. The 
AgNPs alone, C1 (100 µL AgNPs), and gums alone, C2 (200 µL gums), exhibited 17 mm 
and 16 mm zones of inhibition, which are comparatively less than immobilized AgNPs 
and more effective in killing the highly resistant P. aeruginosa, as shown in Figures 9e and 
14. 

Figure 13. Pictorial presentation of zones of inhibitions of immobilized AgNPs against P. mirabilis as
(a) T1 (25 µL AgNPs + 200 µL gums) and T2 (50 µL AgNPs + 200 µL gums); (b) T3 (75 µL AgNPs
+ 200 µL gums) and T4 (100 µL AgNPs + 200 µL gums); (c) T5 (125 µL + 200 µL gums) and T6
(150 µL AgNPs + 200 µL gums); (d) T7 (175 µL AgNPs + 200 µL gums) and T8 (200 µL AgNPs + 200
µL gums; and (e) T9 (225 µL AgNPs + 200 µL gums), T10 (250 µL AgNPs + 200 µL gums), C1 (100 µL
AgNPs alone), and C2 (200 µL gums alone).

2.10. Immobilized AgNP-Induced Inhibition of Highly Resistant P. aeruginosa

The immobilized AgNPs exhibited optimal activities against the highly resistant P. aerug-
inosa. The coating of NPs with gum enhanced the antibacterial effectiveness, as shown in
Figures 9e and 14. The differential treatments of immobilized AgNPs exhibited differential
activities against P. aeruginosa and the activities in terms of inhibition zones were T1 (25 µL
AgNPs:200 µL gums), 18 mm; T2 (50 µL AgNPs:200 µL gums), 20.6 mm; T3 (75 µL AgNPs:200
µL gums), 16.3 mm; T4 (100 µL AgNPs:200 µL gums), 19 mm; T5 (125 µL AgNPs:200 µL
gums), 21 mm; T6 (150 µL AgNPs:200 µL gums), 22 mm; T7 (175 µL AgNPs:200 µL gums), 20
mm; T8 (200 µL AgNPs:200 µL gums), 22 mm; T9 (225 µL AgNPs:200 µL gums), 17.6 mm;
and T10 (250 µL AgNPs:200 µL gums), 14 mm. The AgNPs alone, C1 (100 µL AgNPs), and
gums alone, C2 (200 µL gums), exhibited 17 mm and 16 mm zones of inhibition, which are
comparatively less than immobilized AgNPs and more effective in killing the highly resistant
P. aeruginosa, as shown in Figures 9e and 14.
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Figure 14. Pictorial presentation of zones of inhibitions of immobilized AgNPs against P. aeruginosa
as (a) T1 (25 µL AgNPs + 200 µL gums) and T2 (50 µL AgNPs + 200 µL gums); (b) T3 (75 µL AgNPs
+ 200 µL gums) and T4 (100 µL AgNPs + 200 µL gums); (c) T5 (125 µL + 200 µL gums) and T6
(150 µL AgNPs + 200 µL gums); (d) T7 (175 µL AgNPs + 200 µL gums) and T8 (200 µL AgNPs +
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2.11. Immobilized AgNP-Induced Growth Inhibition of S. typhi

Herewith, the zones of inhibition of the immobilized AgNPs against highly resistant S.
typhi were recorded as T1 (25 µL AgNPs:200 µL gums), 19.3 mm; T2 (50 µL AgNPs:200 µL
gums), 15.6 mm; T3 (75 µL AgNPs:200 µL gums), 19 mm; T4 (100 µL AgNPs:200 µL gums),
14 mm; T5 (125 µL AgNPs:200 µL gums), 14.6 mm; T6 (150 µL AgNPs:200 µL gums), 12.6
mm; T7 (175 µL AgNPs:200 µL gums), 13.6 mm; T8 (200 µL AgNPs:200 µL gums), 14.6 mm;
T9 (225 µL AgNPs:200 µL gums), 15.6 mm; and T10 (250 µL AgNPs:200 µL gums), 16.6 mm.
The differential ratios of immobilized AgNPs displayed antibacterial potential within the
range of 12.6 to 19.3 mm, which was significantly slightly higher than that of C1 (100 µL
AgNPs) and C2 (200 µL gums), which exhibited 14.3 mm and 16.3 mm zones of inhibition,
respectively. This means that the immobilized AgNPs were also more effective than NPs or
gum alone against resistant S. typhi, as shown in Figures 9f and 15.
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3. Discussion

Plant gums are natural substances that are not harmful to humans or to the environ-
ment. They are also sustainable, meaning that they can be produced and used without
depleting natural resources. Additionally, they are recyclable, cost-effective, and biodegrad-
able. These properties make them ideal for use in a variety of industries, including phar-
maceuticals, nanoparticle synthesis, and food. M. oleifera is a highly important medicinal
plant that is found in both tropical and subtropical regions around the globe. Numerous
significant phenols, amino acids, proteins, vitamins, and betacarotenes may be found
in all anatomical structures of the plant. Antiulcer, antidiuretic, anticancer, antipyretic,
anti-inflammatory, antidiabetic, antihypertensive, antidiabetic, cholesterol-lowering, and
antioxidant qualities are found in all parts of this plant. Traditional medical systems have
traditionally used this herb since ancient times, particularly in south Asia [65].

Multidrug-resistant (MDR) bacteria are extremely dangerous and pose a serious threat
to global health systems because they can survive antibiotic treatments. These bacteria are
able to adapt to antibiotics by changing their genetic makeup to become resistant to known
antibiotics and their combinations [66]. Nanoparticles are a new type of antimicrobial
agent that are being researched as a way to combat these MDR bacteria; they target the
bacterial cells in multiple ways, making it difficult for the bacteria to escape [67]. The
emergence of antibiotic-resistant bacteria has made it difficult to treat bacterial infections.
There is an urgent need for new and powerful antibacterial agents. AgNPs have shown
excellent antibacterial activity. AgNPs can target bacterial cells in multiple ways, such as
by altering cell membrane permeability and protein denaturation, causing oxidative stress,
deactivating enzymes, generating ROS, damaging DNA, and changing gene expression.
These unique properties make it difficult for bacteria to develop resistance to AgNPs.

In this study, immobilized AgNPs were effective against both Gram-positive and
Gram-negative MDR bacteria. These synergistic combinations showed exceptional activity
against B. subtilis in T2 (50 µL AgNPs:200 µL gums) with a zone of inhibition of 23.66 mm.
They also showed excellent activity against K. pneumoniae in T8 (200 µL:200 µL) with a
zone of inhibition of 22 mm and good activity against P. aeruginosa in T6 (150 µL:200 µL)
with a zone of inhibition of 22 mm. Against E. coli, T3 (75 µL:200 µL) displayed a zone of
inhibition of 19.33 mm, and 19.33 mm against S. typhi as T1. Additionally, they showed
activity against P. mirabilis in T4 (100 µL:200 µL) with zone of inhibition of 16.33 mm. The
authors of [68] reported that the antimicrobial activity of AgNPs against K. pneumonia was
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14.33 mm, 15.66 mm against P. aeruginosa, 15.33 mm against E. coli, and 13.33 mm against
P. mirabilis, and further reported that the antimicrobial activity of streptomycin against
K. pneumoniae was 16.33 mm, 16.0 mm against P. aeruginosa, 16.0 mm against E. coli, and
15.33 mm against P. mirabilis. They further investigated the antimicrobial activity of the
combination of AgNPs and streptomycin against K. pneumoniae (19.66 mm), P. aeruginosa
(20.0 mm), E. coli (20.3 mm), and P. mirabilis (17.66 mm). The authors of [69] reported that
the antimicrobial activity of levofloxacin against S. typhi was 15.0 mm and the combination
of levofloxacin and AgNPs possesses antimicrobial activity against S. typhi with a 20 mm
zone of inhibition.

M. oleifera has been shown to have antifungal, antibacterial, and water-purification
properties. The compound pterygospermin found in the roots and flowers of the plant
has antifungal activity against Neurospora crassa, Rhizopus stolonifera, Microsporum gypseum,
and Aspergillus niger [20]. A range of microbes, including P. aeruginosa, Vibrio cholera, and S.
typhi, are resistant to the ethanolic extract of the leaves [18]. The seed extracts of the plants
have been demonstrated to inhibit the growth of bacteria in both liquid and on solid media,
suggesting that they could be used in water purification [70]. Methanol extracts of the
leaves have also been shown to repress microbes such as K. pneumoniae and Staphylococcus
aureus of the urinary tract infections. Alkaloids, flavonoids, and steroids found in M.
oleifera fruits have an inhibiting impact on Candida albicans cultures either through protein
denaturation or by residing in the spore’s germination through their steroid ring [19].

In this study, the immobilized AgNPs mechanistically cause the cell death of resistant
bacterial strains by disrupting the cell membrane, leading to the leakage of cellular contents
and then cell death. The immobilized AgNPs generated reactive oxygen species (ROS),
which damage cellular components, such as proteins, DNA, and lipids. In addition,
immobilized AgNPs denature bacterial proteins, disrupting important cellular processes
such as metabolism, DNA replication, and protein synthesis. The immobilized AgNPs
kill bacterial cells through a combination of mechanisms, including membrane disruption,
oxidative stress, protein denaturation, and DNA damage, as shown in Figure 16.

However, the exact mechanism through which immobilized AgNPs kill bacteria is
still not fully understood. However, it is thought that immobilized AgNPs may release
silver ions (Ag+); this is likely one of the ways that AgNPs kill bacteria [71]. The silver
ions (Ag+) are essential for the antibacterial and toxicity activities of silver (Ag). To
maintain these activities, silver must be in its ionized state (Ag+) [72]. Ag+ can bind to
nucleic acids, and they prefer to bind to nucleosides (the sugar-base units) rather than
the phosphate groups [73]. This is why all silver-based materials that have antibacterial
activity ultimately release silver ions [74]. Some studies have shown that positively charged
nanoparticles (NPs) are attracted to negatively charged bacterial cells [75]. These NPs
have been proposed to be very effective at killing bacteria [76]. Ag+ ions are attracted to
sulfur-containing proteins in the cytoplasm and cell wall of bacteria. This attraction causes
the Ag+ ions to attach to the bacteria and make their cell walls more permeable. This
allows the Ag+ ions to enter the bacteria and kill them [77]. Once Ag+ enter bacteria, they
deactivate the enzymes such as respiratory enzymes. This causes the bacteria to produce
reactive oxygen species (ROS), which are toxic agents that damage the bacteria’s DNA and
other important molecules. The Ag+ ions also prevent the bacteria from producing energy
such as in interrupting adenosine triphosphate (ATP) release [78]. ROS can play a major
role in damaging the cell membrane and deoxyribonucleic acid (DNA); the DNA is mainly
made up of phosphorus and sulfur, and when it interacts with Ag+ ions, a number of
difficulties can be caused, including the prevention of DNA replication and cell division. In
addition, the Ag+ ions can also efficiently stop protein synthesis by denaturing cytoplasmic
ribosomal components [79].
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Furthermore, AgNPs can kill bacteria even if they are not Ag+ ions, which can damage
the cell membranes of bacteria, and due to the nanoscale size, they can also enter bacteria
and change the way the cell membrane works [79]. Therefore, immobilized AgNPs can kill
bacteria by damaging their cell membranes and disrupting their signal transduction path-
ways, causing the organelles inside bacteria to rupture, which can lead to cell death. AgNPs
can also dephosphorylate tyrosine residues on protein substrates, which can interfere with
the bacteria’s signal transduction pathways. This disruption of signal transduction can lead
to cell apoptosis (programmed cell death) and the inhibition of cell division [80].
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4. Materials and Methods
4.1. Collection of Plant Materials

The gum of M. oleifera was gathered from healthy and fresh plants from the Medicinal
Botanic Garden (MBG), Medicinal Botanic Center (MBC), Pakistan Council of Scientific and
Industrial Research (PCSIR), Laboratories Complex, Peshawar, Pakistan. Furthermore, all
methods were carried out according to institutional and national guidelines, which comply
with international standards.

4.2. Authentication of Plant Materials

Samples were collected from three-year-old M. oleifera trees in March 2024 (Spring
season), grown in clay soil with a suitable soil pH (5.8) and temperature range, from 28
to 32 ± 2 ◦C (a Moring tree picture is in the Supplementary File). These plant materials
(gum and M. oleifera) were recognized and verified by Dr. Hina Fazal (a specialist in plant
taxonomy), and the herbarium specimen with Voucher No. MBC-PES-10811 was deposited
in the herbarium of the Medicinal Botanic Center (MBC), Pakistan Council of Scientific and
Industrial Research (PCSIR), Laboratories Complex, Peshawar, Pakistan.

4.3. Extract Preparation

For antimicrobial activity, active parts (gum) of the plants were powdered; 1.0, 2.5, and
5.0 g of powdered gum was dissolved in HPLC-grade water (Sigma; Aldrich; Darmstadt,
Germany) to obtain a final volume of 10 mL. The colloidal solution was stored at 4 ◦C in
airtight small bottles after accurate weighing before activities and its immobilization with
silver nanoparticles.

4.4. Biogenic Synthesis of Silver Nanoparticles

Leaves of M. oleifera plant were collected from the Medicinal Botanic Garden (MBG),
PCSIR Labs Complex, Peshawar, Pakistan. The leaves were oven-dried at 50 ◦C for 24 h and
subsequently grinded with the help of a grinder. Distilled water (1000 mL) and powdered
leaves (5 g) was boiled for 5 min, filtered twice, and then cooled at 4 ◦C for further usage.
A silver nitrate (AgNO3) solution of 8.0 mM was prepared upon dissolving the appropriate
amount of silver nitrate in deionized water. The solution was mixed using a vortex machine,
and further dilutions of 6.0 mM, 4.0 mM, and 2.00 mM were made from the stock solution,
following the equation C1V1 = C2V2. Plant extracts were combined with silver nitrate
solutions in order to produce silver nanoparticles using the protocol in [81]. In a series
of reactions including equal volumes of a twofold dilution of plant extract (8.0 mg/mL
to 2.0 mg/mL) and AgNO3 (8.0 mg/mL to 2.0 mg/mL), various concentrations of plant
extract and AgNO3 were mixed to select the most efficient concentration for the synthesis
of AgNPs. Here, 5 mL of reactant in 15 mL tube was kept at room temperature for 24 h,
and any change in color indicated the development of AgNPs. The best biosynthesized
nanoparticle was selected based on the surface plasmon resonance and peak area. The
biogenic nanoparticles were collected as pellets after centrifugation at 13,000 rpm for
15 min at room temperature. The supernatant was discarded, and the pellet was dissolved
in deionized water and centrifuged again using the same protocol. This process was
repeated thrice. The final supernatant was discarded, and the pellets were dried and stored
in a refrigerator as biogenic nanoparticles.

4.5. Characterization of Silver Nanoparticles
4.5.1. UV–Spectrophotometry

A UV–visible spectrophotometer was used to measure the formation of silver nanopar-
ticles using light absorption between 300 and 600 nanometers [82].

4.5.2. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR analysis was performed to investigate the functional groups on the nanoparticles
according to the protocol in [83]. Free biomass residues and non-capping ligand impurities
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were eliminated. The remaining solution was centrifuged at 10,000 rpm for 10 min, and
the final suspension was reconstituted in 2 mL of distilled water. This centrifugation and
redispersion process were repeated three times, after which the purified suspension was
freeze-dried. The resulting powder was then used for FTIR analysis.

4.5.3. X-Ray Diffraction

X-ray diffraction (XRD) analysis was employed to study the overall oxidation state
and crystalline structure of silver nanoparticles [84]. Through the centrifugation and
redispersion of the pellets into deionized water, prepared nanoparticles were purified and
freeze-dried and analyzed through XRD.

4.5.4. TEM Analysis

Transmission Electron Microscopy (TEM) was performed to investigate the size, mor-
phology, and distribution of the silver nanoparticles. A drop of a sample was loaded on
copper grids coated with carbon and placed on the grid. Further, the film on the grid was
left to dry at room temperature and analyzed through a Transmission Electron Microscope.
An elemental analysis of the biosynthesized silver nanoparticles conducted calibrated using
an energy-dispersive X-ray (EDX) detector [83].

4.6. Selection of Nanoparticles

The silver nanoparticles (AgNPs) were selected for the growth inhibition of resistant
microorganisms including both Gram-positive and Gram-negative; however, some reports
suggested that these AgNPs can also inhibit the growth of fungi and viruses by disrupting
the cell membrane and generating ROS [85].

4.7. Selection of Pathogens

In this study, M. oleifera gums and AgNPs were applied against Bacillus subtilis (B.
subtilis), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Proteus mirabilis (P.
mirabilis) Pseudomonas aeruginosa (P. aeruginosa), and Salmonella typhi (S. typhi), which cause
various infections in humans [86–90]. These infectious microbes (Table 2) were received
from different hospitals through the Pakistan Council of Scientific and Industrial Research
(PCSIR) Laboratories Complex, Peshawar, Pakistan. These microorganisms were kept at
4 ◦C before antimicrobial activities.

Table 2. Collected bacterial strains, voucher specimen numbers, strain types, and sources. The strains
were Gram-positive (G+ve) and Gram-negative (G-ve).

Voucher Specimen
Numbers

Bacterial
Strain Types Source

MBC-MIC-208 B. subtilis G + ve PCSIR Peshawar
MBC-MIC-003 E. coli G − ve PCSIR Peshawar
MBC-MIC-459 K. pneumoniae G − ve PCSIR Peshawar
MBC-MIC-405 P. mirabilis G − ve PCSIR Peshawar
MBC-MIC-051 P. aeruginosa G − ve PCSIR Peshawar
MBC-MIC-104 S. typhi G − ve PCSIR Peshawar

4.8. Nutrient Agar Preparation

To make nutrient agar media, 900 mL of distilled water and 28 g of nutrient agar
(15 g/L agar, 5 g/L gelatin component, 5 g/L NaCl, 1 g/L beef extract, and 2 g/L yeast
extract) (Sigma, Aldrich, Darmstadt, Germany) were added to a 1 L screw-capped container.
The solution was heated while being thoroughly agitated, the volume was increased to 1 L,
and the bottle was sealed. The nutritional agar media bottle and the tools (Wire loops, Flasks,
Glass tubes, Eppendorf tubes, swabs, cell spreaders, micropipette tips, and disks) that were
used in the next tests were autoclaved at 121 ◦C for 20 min at 1.5 pounds per square inch
(PSI) to sanitize them. The nutritional agar medium and sterilized equipment were added
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to the laminar flow unit (LFU) once it had cooled to 55 ◦C. Under sterile circumstances,
the medium was transferred onto Petri dishes with approximately 35 milliliters of media
applied to each plate. After being left for half an hour to form, the Petri dishes were
covered with lids. The Petri dishes were turned upside down and incubated for 24 h at
37 ◦C to check for contamination. After that, these plates were put through testing for
antibacterial activity [91]. Gram staining was performed for all isolated colonies according
to the standard procedure in [92].

4.9. Antibiotic Susceptibility Test

The disk diffusion method and the Kirby–Bauer method of antibiotics was performed
for the microbial sensitivity. Nutrient broth (1.3 g/100 mL) and nutrient agar (2.8 g/100 mL)
were combined with hot distilled water to prepare the cultures for testing. The mixture was
then transferred into test tubes (6–7 mL), Petri dishes (20 mL), and flasks (18–23 mL). To check
for undesirable microbial development, the medium was sterilized at 121 ◦C for 20 min at 15
pressure and then incubated overnight at 37 ◦C. The microorganisms were streaked onto solid
medium plates from the stock cultures, and cultured containers were placed for 24 h at 37 ◦C.

After being moved to liquid medium on the second day, the bacterial cultures were
incubated for 10 h at 100 rpm in a GLSC-SBR-04-28 water bath at 32 ◦C. The optical density
(OD) of the growing culture was maintained between 0.1 and 0.2, and the turbidity of the
microbial growth in the test tubes was standardized by comparing it to the 0.5 McFarland
standard. After that, solid media plates were covered with 0.1 mL of the standardized
cultures, and they were refrigerated for 15 min to allow for absorption. Each cultivated
plate’s surface was meticulously coated in three copies of a standard disk containing
each antibiotic. A negative control disk was utilized, which lacked antibiotics. In order
to determine if the bacterium is sensitive or resistant to antibiotics, the cultured plates
were incubated for 24 h at 37 ◦C. The antimicrobial efficiency was then assessed using the
millimeter diameter of the zones of inhibition surrounding the disks [93].

4.10. Antimicrobial Assay of Immobilized AgNPs

The physical mixing method was applied for the immobilization of AgNPs in gum of
M. oleifera. In preliminary experiments, 10% to 80% gum solution was less effective for the
encapsulation of AgNPs. Here, 85% was the best candidate for the immobilization process,
while more than 85% was unable to move/flow in suspension. The different concentrations
of AgNPs suspension were maintained using a magnetic stirrer/ultrasonicator, and 85%
gum solution (slightly heated) was added to the suspension drop-wise, followed by cooling
to form round shaped bodies for easy attachment to the bacterial cell. After the successful
uniform and homogenous polymerization of NPs with gum, differential AgNPs were
allowed for immobilization with gum (85%).

In this study, six different bacterial strains were used for antimicrobial assay. These
bacterial strains included B. subtilis, E coli, K pneumoniae, P. mirabilis, P. aeruginosa, and S.
typhi. The well diffusion method was utilized for the antibacterial activity of nanoparticles
and gums, and the procedure was repeated for synergistic combinations/differential ratios
of nanoparticles + gums (Table 3) [94]. The zone of inhibition was measured in mm as the
diameter around the well. The bacterial strains were streaked in plates, and the wells were
bored in each plate.

The following treatments contained immobilized AgNPs with gum of M. oleifera: T1
(25 µL AgNPs + 200 µL gums), T2 (50 µL AgNPs + 200 µL gums), T3 (75 µL AgNPs
+ 200 µL gums), T4 (100 µL AgNPs + 200 µL gums), T5 (125 µL + 200 µL gums), T6
(150 µL AgNPs + 200 µL gums), T7 (175 µL AgNPs + 200 µL gums), T8 (200 µL AgNPs +
200 µL gums), T9 (225 µL AgNPs + 200 µL gums), T10 (250 µL AgNPs + 200 µL gums),
C1 (100 µL AgNPs alone), and C2 (200 µL gums alone). These combinations were applied
for the determination of antimicrobial activities. All the plates (containing bacteria and a
combination of AgNPs + gum) were kept at 37 ◦C in an incubator for one day. After that,
the zones of inhibition were recorded in millimeters (mm).
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Table 3. Differential treatments/concentrations of AgNPs and gum of M. oleifera for immobilization.

Treatments Applied Combinations

T1 25 µL AgNPs + 200 µL gums
T2 50 µL AgNPs + 200 µL gums
T3 75 µL AgNPs + 200 µL gums
T4 100 µL AgNPs + 200 µL gums
T5 125 µL AgNPs + 200 µL gums
T6 150 µL AgNPs + 200 µL gums
T7 175 µL AgNPs + 200 µL gums
T8 200 µL AgNPs + 200 µL gums
T9 225 µL AgNPs + 200 µL gums
T10 250 µL AgNPs + 200 µL gums
C1 100 µL AgNPs alone
C2 200 µL gums alone

4.11. Statistical Analysis

The antimicrobial activity of different treatments was measured three times. Excel was
used to calculate descriptive statistics (mean values ± standard error). One-way analysis
of variance (ANOVA) was conducted through Statistics software (Version 8.1; Tallahassee,
FL, USA) (V. 8.1; USA) and for determining significance and least significant differences.
Origin Lab software (Version 8.5; Northampton, MA, USA) was used to create graphical
representations of the data.

5. Conclusions

The immobilized AgNPs displayed promising potential by inhibiting the growth of
highly resistant B. subtilis, E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa, and S. typhi.
These results conclude that the immobilized AgNPs have proven antimicrobial activities;
however, the gum of M. oleifera may serve as a stabilizing or immobilizing agent for silver
nanoparticles, enhancing their antibacterial effects. Silver nanoparticles are known to
exhibit antimicrobial properties by interfering with bacterial cell membranes and other
cellular structures, leading to the inhibition of bacterial growth. The immobilization strategy
enhanced the antimicrobial efficacy that may be attributed to the natural polymerization of
gum and their stability and controlled release of silver ions. Further research and validation
are needed to confirm the effectiveness, understand the underlying mechanisms, and
assess the safety of such formulations for practical applications, especially in medical or
environmental contexts. This study shows the nanoparticles’ potential to be adopted by
pharmaceutical industries as highly effective antibacterial alternatives to synthetic drugs.
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