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Abstract: Integrins, an important superfamily of cell adhesion receptors, play an essential role in can-
cer progression, metastasis, and angiogenesis, establishing them as prime targets for both diagnostic
and therapeutic applications. Despite their significant potential, integrin-targeted therapies have
faced substantial challenges in clinical trials, including variable efficacy and unmet high expectations.
Nevertheless, the consistent expression of integrins on tumor and stromal cells underscores their
ongoing relevance and potential. Traditional RGD-based imaging and therapeutic agents have faced
limitations, such as inconsistent target expression and rapid systemic clearance, which have reduced
their effectiveness. To overcome these challenges, recent research has focused on advancing RGD-
based strategies and exploring innovative solutions. This review offers a thorough analysis of the
latest developments in the RGD–integrin field, with a particular focus on addressing previous limita-
tions. It delves into new dual-targeting approaches and cutting-edge RGD-based agents designed
to improve both tumor diagnosis and therapeutic outcomes. By examining these advancements,
this review illuminates new pathways for enhancing the specificity and efficacy of integrin-targeted
therapies, paving the way for more effective cancer diagnosis and treatment strategies.

Keywords: RGD-binding integrin; αvβ3; dual targeting; theranostic; solid tumors; PET imaging

1. Introduction

Cancer remains a critical global health challenge, with an estimated 19.3 million new
cases and 10 million deaths reported worldwide in 2020, according to GLOBOCAN. The
disease now accounts for nearly 1 in 6 deaths globally, making it the second leading cause
of mortality [1]. Despite progress in early detection and treatments, the global burden
of cancer continues to rise, with projections indicating a 47% increase in new cases by
2040, reaching over 28 million annually [1–4]. This surge, driven by population aging and
growth, alongside changing risk factors such as lifestyle and environmental exposures,
underscores the escalating challenge faced by healthcare systems worldwide.

Despite progress in early detection and conventional treatments like chemotherapy
and radiation, the burden of cancer continues to rise, with projections exceeding 35 million
new cases by 2050 [2]. This stark reality underscores the urgent need for more precise and
effective diagnostic and therapeutic approaches.

Historically, cancer treatment was limited primarily to surgery, which aimed to re-
move tumors. However, as our understanding of cancer biology has advanced, so too have
the available therapies. Today, cancer treatment options include surgery, chemotherapy,
radiation therapy, immunotherapy, and targeted therapies. Each of these approaches can
be tailored based on the type of cancer, its stage, and the individual patient’s needs [5].
Personalized and precision medicine are transforming cancer care by offering more targeted
and efficient strategies [6]. This approach delves into the molecular foundations of cancer,
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enabling the identification of unique patient-specific targets, such as overexpressed recep-
tors and tumor-associated proteins. For instance, agents based on peptides, antibodies, and
nanoparticles offer highly specific targeting in both preclinical cancer models and patients’
disease states through targeted imaging, while also aiming to eliminate cancer cells with
therapies that minimize harm to healthy tissue [7]. Despite these promising advancements,
current targeting strategies face challenges such as tumor heterogeneity, drug resistance,
and non-specific uptake by healthy tissues [8]. These hurdles can compromise both diag-
nostic accuracy and therapeutic effectiveness, highlighting the need for ongoing research
and innovation in this dynamic field.

Integrins, particularly αvβ3, have emerged as prominent targets in precision oncology
due to their involvement in critical processes of cancer progression, including angiogenesis,
invasion, and metastasis [9]. A broad array of αvβ3-targeting agents has been developed
over the years, with many incorporating the well-characterized RGD (arginine–glycine–
aspartate) motif, known for its high affinity binding to this integrin [10,11]. These agents
range from small peptides to monoclonal antibodies and nanoparticle conjugates. How-
ever, despite promising preclinical results, the clinical translation of RGD-based integrin-
targeting agents has faced significant challenges, including inadequate tumor selectivity,
heterogeneous αvβ3 expression, and the rapid clearance of small RGD peptides [11–14].

To address these limitations, dual-targeting strategies are being actively investigated.
By simultaneously engaging two distinct receptors or proteins on cancer cells, in the
tumor microenvironment or on immune cells, dual-targeting agents offer improved tissue
uptake and enhanced pharmacokinetics compared to their monovalent counterparts [15].
Combining αvβ3 integrin targeting via the RGD motif with additional tumor-specific
markers has demonstrated potential for enhancing the precision and efficacy of these
agents [16,17]. This review explores the evolving landscape of dual-targeting strategies,
focusing on RGD-based integrin-targeting approaches involving αvβ3, and their potential
to provide more powerful tools for cancer diagnosis and therapy.

2. Integrins—Unveiling Tumor Dynamics
2.1. Fundamentals of Integrin Biology

Integrins are a large family of transmembrane adhesion receptors that play a vital
role in cell communication and signaling. These receptors are composed of heterodimeric
complexes formed by α and β subunits, resulting in 24 unique receptors in humans [18–20].
Each subunit is a type 1 transmembrane protein. These proteins have a large extracellular
domain for ligand binding and a smaller transmembrane and intracellular region that
participates in cell signaling [21].

Integrins can bind a wide variety of ligands, including insoluble extracellular matrix
(ECM) proteins (e.g., fibronectin, laminin, collagen), matricellular proteins (e.g., Cyr61,
CTGF, NOV), cell surface proteins (e.g., ICAMs, VCAM-1), and soluble factors (e.g., fib-
rinogen, complement proteins, VEGF, FGF2, TGFβ) [22]. Integrins exhibit promiscuous
binding, where a single integrin can bind multiple ligands, and redundancy, where different
integrins can bind the same ligand [22]. This flexibility enables integrins to support diverse
cellular functions in dynamic environments, allowing cells to respond in multiple ways
to the same ECM proteins. Integrins are grouped into four receptor classes based on their
ligand-binding specificities: collagen receptors (recognized by α1β1, α2β1, α10β1 and
α11β1), laminin receptors (recognized by α3β1, α6β1, α6β4 and α7β1), leukocyte-specific
(recognized by α9β1, α4β1, α4β7, αEβ7, αLβ2, αMβ2, αXβ2 and αDβ2), and Arg-Gly-Asp
(RGD) [19,23,24]. The RGD motif, recognized by eight integrins (α5β1, α8β1, αvβ1, αvβ3,
αvβ5, αvβ6, αvβ8, and αIIbβ3), is notably found in several molecules, including ECM
proteins like fibronectin and vitronectin [25].

Integrins have two main functions: mediating cellular or ECM adhesion and facilitat-
ing signal transduction through outside–in and inside–out signaling. Outside–in signaling
transmits signals from ECM ligands to elicit specific cellular responses, while inside–out
signaling triggers conformational changes to adjust ligand affinity [26,27]. Integrins exhibit
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dynamic conformational flexibility, switching between active (high affinity) and inactive
(low affinity) states [21,28]. The active state is regulated by intracellular adaptor proteins
talin and kindlin binding to the β-subunit cytoplasmic tail and is stabilized by ligand
binding at the extracellular domain [29]. To ensure firm adhesion, integrins must cluster
into adhesion complexes that link to the cytoskeleton.

Upon activation, integrins recruit several kinases such as SRC family kinases (SFKs), focal
adhesion kinase (FAK), and integrin-linked kinase (ILK), which activate downstream pathways,
including phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB/AKT), mitogen-activated
protein kinase (MEK)/extracellular signal-regulated kinase (ERK), and yes-associated protein
(YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) [26,30]. These signaling cas-
cades affect various aspects of cell behavior, including survival, proliferation, metabolism,
differentiation, shape, and motility [31]. While integrins are vital for physiological pro-
cesses like embryogenesis, immune response, wound healing, and angiogenesis, they are
also implicated in pathological conditions such as cancer, cardiovascular diseases, and
inflammation [32–36].

2.2. RGD-Binding Integrins in Cancer Progression

Dysregulation of integrins is a defining feature of numerous malignancies, with al-
terations in their expression frequently observed to promote tumor growth, survival, and
metastasis [35]. Among them, integrins that recognize the RGD motifs, such as αvβ3, αvβ5,
αvβ6, and α5β1, are critically involved in cancer progression [37–40]. These integrins
facilitate essential oncogenic processes, including tumor cell adhesion, proliferation, migra-
tion, invasion, and contributing to neovascularization, immune evasion, and resistance to
therapies [9].

Integrins-αvβ3, -αvβ6, and -α5β1, which are typically expressed at low levels in
normal epithelia tissues, are frequently upregulated in tumors [35]. A key function of
these integrins is the regulation of neovascularization. This process involves the formation
of new blood vessels that supply essential nutrients and oxygen to the tumor, thereby
supporting its growth [41,42]. Notably, integrin-αvβ3, which is expressed at minimal
levels in quiescent endothelial cells, is significantly upregulated during tumor angiogenesis,
where it plays a pivotal role in neovascularization [33,43]. Recent research has expanded
our understanding of integrins beyond their conventional roles, implicating them in pro-
cesses such as epithelial-to-mesenchymal transition (EMT), cancer stemness, and metabolic
rewiring [44–46]. Moreover, integrins like αvβ6 and αvβ8 are involved in the activation
of TGFβ, a key regulator of tumor immune evasion and suppression of anti-tumor immu-
nity [47–49]. These findings suggest that integrins not only contribute to the structural
aspects of tumor progression but also actively modulate the tumor microenvironment and
immune landscape.

The role of RGD-recognizing integrins in metastasis is increasingly recognized as
a critical area of investigation. Integrin-αvβ3, -αvβ5, and -αvβ6 have been implicated
in promoting metastasis to distant organs, such as the lungs and bones. Additionally,
αvβ3, αvβ5, and αvβ8 facilitate the transmigration of tumor cells cross the blood–brain
barrier, enabling the establishment of brain metastasis [50–55]. Integrin-α5β1 has also been
identified as a mediator of liver and bone metastasis through pathways involving c-Met,
Src, and focal adhesion kinase (FAK) [56].

Emerging evidence also highlights the role of exosomes in mediating metastatic
processes, with integrins being highly expressed on these vesicles [57]. For example,
αvβ5-expressing exosomes target liver macrophages to enhance liver metastasis, while
αvβ6-expressing exosomes from prostate cancer cells promote cell migration and metastasis
in a paracrine manner. Similarly, αvβ3 on breast cancer-derived exosomes has been linked
to an increased propensity for lung metastasis [51,58,59].

These insights underscore the pivotal role of integrins in cancer progression and un-
derscore their potential as therapeutic targets in oncology. Consequently, significant efforts
have been directed toward developing novel anticancer therapies that target integrins,
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with the aim of inhibiting tumor progression, preventing metastasis, and overcoming
therapeutic resistance.

3. RGD Peptides in Focus—Bridging Cancer Diagnosis and Targeted Therapy
3.1. Targeting RGD-Recognizing Integrins for Cancer Diagnosis

The discovery of the integrin-binding RGD domain has driven the development
of RGD-based peptides for cancer diagnosis and treatment, representing a significant
advancement in oncology therapeutics and imaging strategies [11]. These peptides can
directly inhibit integrins or serve as delivery for anticancer drugs and imaging agents,
thereby enhancing treatment efficacy while minimizing off-target effects and damage to
healthy tissues.

Imaging techniques have become invaluable tools in cancer diagnosis due to their
non-invasive nature and ability to provide detailed insights into tumor biology [60]. By
conjugating RGD peptides with radioactive or fluorescent probes, it becomes feasible
to visualize and monitor tumors with high integrin expression, using advanced imag-
ing modalities such as positron emission (PET) and single-photon emission tomography
(SPECT) [61]. Numerous RGD radiotracers have shown promising results in preclinical
and clinical studies across a range of cancers including ovarian, breast, lung, head and
neck, non-small cell lung, and cervical cancers [62].

Among all RGD-binding integrins, αvβ3 has emerged as a prominent target, garnering
extensive interest in the development of tumor-targeting radiotracers. For diagnostic
imaging, gamma-emitting radionuclides such as the Technetium-99 m (99mTc) are used in
SPECT, while positron-emitting radionuclides such as Fluorine-18 (18F) and Gallium-68
(68Ga) are employed in PET [60,61,63]. Some RGD-derived tracers dedicated to imaging
are summarized in Table 1.

Table 1. RGD-derived radiotracers recently evaluated in humans for the non-invasive imaging
of integrins.

Radiotracers Application Tumor Type Clinical Trial References

18F-Galacto-RGD PET imaging GBM, HNSCC, prostate
cancer Phase I [64–66]

18F-Alfatide PET imaging Lung cancer, GBM Phase I [67–70]
68Ga-NOTA-PRGD2 PET imaging Lung cancer, gliomas Phase I [71–73]

68Ga-DOTA-RGD2 PET imaging HSNCC, breast, thyroid
cancer, and chondrosarcoma Phase I and Case report [74–76]

68Ga-NODAGA-
E[c(RGDyK)]2

PET imaging Breast, neuroendocrine
tumors, and thyroid cancers Phases I and II [77–79]

99mTc-3PRGD2 SPECT imaging Lung cancer Phase III NCT04233476
68Ga-cycratide PET imaging Pancreatic cancer First in human [80]

18F-αvβ6-BP PET imaging Pancreatic cancer First in human [81]
18F-FP-R01-MG-F2 PET imaging Pancreatic cancer Phase I [82]

For instance, 18F-Galacto-RGD PET has been evaluated to detect and visualize αvβ3
integrin expression in various cancers. In glioblastoma (GBM) (SUV range, 0.8–2.8; mean,
1.6 ± 0.5) and in head and neck squamous cell carcinoma (HNSCC) (SUV range, 2.2–5.8;
mean, 3.4 ± 1.2), it allows for non-invasive monitoring of αvβ3 integrin expression [64,65].
Additionally, 18F-Galacto-RGD has been effective in visualizing bone metastases in prostate
cancer patients [66].

Similarly, 18F-Alfatide has shown promise in identifying malignant lung tumors with
high tumor-to-background ratios [67]. Additionally, all malignant lymph nodes in patients
with lung tumors were successfully visualized on 18F-Alfatide PET/CT in patients, and
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the sensitivity, specificity, and accuracy were 100.0%, 94.9%, and 95.4%, respectively [68].
18F-Alfatide has also been positively evaluated for αvβ3 imaging in GBM, with uptake
levels correlating with tumor grade. It has also shown potential for assessing GBM response
standard therapies [69,70].

68Ga-NOTA-PRGD2 PET/CT is another imaging tool that has been evaluated in
multiple cancer types. In GBM, it has shown superior accuracy in visualizing αvβ3 integrin
expression, assessing tumor grade, and differentiating between high-grade glioma and
uncommon meningioma [71,72]. Studies conducted in lung malignancies demonstrated
greater specificity for 68Ga-NOTA-PRGD2 than the current gold standard, 18F-FDG PET/CT,
for the detection of lymph node metastasis with positive and negative predictive values of
90.0% (27/30) and 93.8% (121/129), respectively, whereas those of 18F-FDG PET/CT were
30.2% (29/96) and 90.5% (57/63), respectively [73]. Such results were also confirmed using
68Ga-DOTA-RGD2 PET/CT. 68Ga-DOTA-RGD2 enhances the visualization of angiogenesis
in HNSCC and is effective in detecting primary and metastatic lymph nodes in breast
cancer, surpassing 18F-FDG in specificity and accuracy for thyroid cancer detection [74,75].
Notably, in cases of chondrosarcoma, 18F-FDG showed limited uptake due to low mitotic
activity. However, 68Ga-DOTA-RGD2 PET/CT showed significant uptake, suggesting a
potential role for angiogenesis-targeted radiopharmaceuticals in refractory cases [76].

Among the recently developed RGD-based radiotracers, 68Ga-NODAGA-E[c(RGDyK)]2
has garnered significant attention due to its promising clinical performance. In a first-in-
human phase I trial, 68Ga-NODAGA-E[c(RGDyK)]2 was safely used for imaging integrin
αvβ3 in patients with breast cancer and in NEN (neuroendocrine neoplasms) patients,
exhibiting low radiation exposure and favorable tumor monitoring [77]. In a phase II
study, high tumor uptake was noted across all NEN grades, with a correlation between
increased uptake and poorer prognosis [78]. High integrin αvβ3 expression (defines as
SUVmax > 5.25) had a hazard ratio of 2.11 and 6.95 for progression-free survival and overall
survival, respectively (p = 0.01 for both). Additionally, this tracer was employed to assess
RGD-binding integrin expression in thyroid cancer patients with negative radioiodine
scintigraphy, revealing high expression in metastatic lesions, particularly in bone metas-
tases [79]. Further research is warranted to validate its potential as a predictive tool for
selecting patients suitable for integrin αvβ3-targeted therapies.

Finally, a phase 3 clinical trial of 99mTc-3PRGD2 (NCT04233476) showed safety and
efficacy for the diagnosis of lung cancer, potentially paving the way for its approval as a
novel radiopharmaceutical for cancer diagnosis.

Beyond αvβ3, RGD radiotracers targeting other integrins have also been developed
and evaluated in clinical translational studies. The 68Ga-labeled cyclic peptide 68Ga-
cycratide, designed to target integrin αvβ6 via the RGDLATL sequence, exhibited en-
hanced serum stability and increased tumor uptake in comparison to the linear form, show-
ing promise in detecting pancreatic neoplastic lesions and postoperative recurrence [80].
The tumor uptake of 68Ga-cycratide was significantly higher than that of 68Ga-linear-pep
(2.15 ± 0.46 vs. 0.94 ± 0.58%ID/g; p < 0.05). The αvβ6-targeting peptide 18F-αvβ6-BP has
shown effective tumor imaging, underscoring its clinical potential across various malignan-
cies due to its ability to selectively target tumors with high αvβ6 expression [81]. Similarly,
the tracer 18F-FP-R01-MG-F2 has yielded promising results in a pilot-phase PET/CT study,
demonstrating safety and favorable radiation dosimetry in patients with pancreatic cancer,
further supporting its potential as a diagnostic tool in αvβ6-positive tumors [82].

These advancements in RGD-based radiotracers are poised to enhance cancer detection
and monitoring, providing novel insights into tumor biology and opening avenues for
more targeted and effective therapies. Moreover, RGD peptides are being developed not
only as diagnostic agents but also as therapeutic agents, underscoring their dual potential
in oncology.
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3.2. RGD-Based Peptides for Cancer Therapy
3.2.1. Pharmacological Targeting of Integrins

A range of RGD-containing peptides have been developed to inhibit angiogenesis
and tumorigenesis. Among these, Cilengitide (cyclo-Arg-Gly-Asp-DPhe-NMe-Val), a
cyclic pentapeptide that blocks the RGD binding site, has emerged as a selective inhibitor
of αvβ3 and αvβ5 integrins [83]. While preclinical studies demonstrated its efficacy in
inhibiting angiogenesis and glioblastoma (GBM) growth, and early-phase clinical trials
showed moderate anti-tumor effects, later-phase trials were less successful [84–86]. A phase
II trial even suggested improved overall survival rates with Cilengitide [87]. However,
subsequent larger-scale trials, including the randomized phase III CENTRIC and phase II
CORE studies, failed to show significant improvements in overall survival with the addition
of Cilengitide [12,13]. The limited success in these later trials may be attributed to the
tumor microenvironment’s complexity, which can activate compensatory VEGF pathways
and resistance mechanisms [88]. Nevertheless, in a retrospective study, high levels of αvβ3
were associated with anti-tumor response to Cilengitide, suggesting the potential need
for patient stratification based on αvβ3 expression [89]. Furthermore, Cilengitide’s fast
blood clearance underscores the necessity of alternative strategies, such as combining RGD
peptides with other molecules, to improve integrin-targeting therapies.

3.2.2. RGD-Based Peptides for Drug Delivery

RGD-based peptides are also increasingly explored for their ability to enhance the
targeted delivery of therapeutics, including chemotherapy agents, peptides, and nucleic
acids, via nanocarriers such as liposomes, nanoparticles, and micelles in pre-clinical stud-
ies [90]. RGD peptide-modified nanoparticles, such as solid lipid nanoparticles (SLNs) and
pH-sensitive nanoparticles (RGD-NAMs), have demonstrated improved oral bioavailability
and tumor targeting [91,92]. RGD-DOX-SLNs loaded with doxorubicin offer superior tu-
mor inhibition and reduced side effects in breast cancer models, while RGD-NAMs enable
controlled drug release through temperature- and pH-sensitive mechanisms [91,93]. More-
over, paclitaxel-loaded RGD nanoparticles have shown improved targeting and efficacy
in lung cancer treatment, leading to significant tumor reduction and reduced systemic
toxicity compared to free drugs [94]. The LCP-RGD nanoparticle, designed with a cal-
cium phosphate core and RGD-modified components, provides an effective platform for
co-delivering docetaxel (DTXL) and GRP78 siRNA. This nanoparticle demonstrates high
drug and siRNA loading capacity, and enhanced anti-cancer effects, making it a promising
tool for overcoming drug resistance in castration-resistant prostate cancer [95].

3.2.3. RGD-Based Radiotracers for Targeted Radiotherapy

Certain RGD-based radiopharmaceuticals in nuclear medicine not only assist with
diagnosis but also provide therapeutic benefits through targeted radiotherapy, especially in
oncology, known as the ‘theranostic approach’ [96]. In these treatments, α- and β-particle-
emitting radionuclides like Iodine-131 (131I), Lutetium-177 (177Lu), and Yttrium-90 (90Y)
are preferred for their high linear energy transfer (LET) [60,61,63]. In preclinical stud-
ies, RGD radiotracers like 177Lu-3PRGD2 and RAFT-RGD labeled with 67/64Cu, 177Lu,
or 90Y have shown significant tumor growth inhibition in αvβ3-positive glioblastoma
models [97–100]. 177Lu-DOTA-E(cRGDfK)2 has demonstrated significant anti-tumor ef-
fect, indicating its potential for peptide receptor radionuclide therapy [101]. Similar
anti-tumor effects were reported in melanoma using a 177Lu-PAMAM-DOTA-cRGDfK
counterpart [102]. In preclinical models of pancreatic ductal adenocarcinoma expressing
both αvβ3 and αvβ6, 225Ac-DOTA-RGD2 effectively inhibits tumor growth and extends
survival with minimal toxicity, supporting the potential of the development of targeted
alpha-therapy [103].

Despite promising preclinical results, clinical research on RGD-radiotracers for cancer
therapy remains limited. 177Lu-DOTA-RGD2 was evaluated in a patient with thyroid
cancer based on TEP images obtained after 68Ga-DOTA-RGD2 injection. Post-therapy
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imaging demonstrated reduced tracer uptake and significant clinical improvement [104].
This represents the first reported use of 68Ga-DOTA-RGD2 and 177Lu-DOTA-RGD2 in
theranostic treatment, paving the way for future studies. Additionally, an ongoing clinical
trial is assessing the safety and dosimetry of 177Lu-AB-3PRGD2 in lung cancer patients,
with results expected by late 2024 [105].

These advancements highlight the promise of RGD-based nanoparticles and radio-
pharmaceuticals in overcoming cancer therapy challenges, enhancing drug delivery and
efficacy while reducing side effects. However, issues related to tumor microenvironment
complexity and targeting precision persist, indicating the need for further refinement and
optimization of this targeting strategy.

3.3. Challenges and Limitations in Integrin Targeting

Integrin-targeted therapies, particularly those utilizing RGD peptides such as cilengi-
tide, have shown substantial promise in preclinical cancer models, including osteosarcoma,
medulloblastoma, and glioblastoma [39,84,106]. However, their translation into clinical
success has faced numerous challenges. One major issue is the variability in integrin expres-
sion across different tumor types and even within different regions of the same tumor [9].
Tumor heterogeneity can result in inconsistent therapeutic outcomes. Some tumor cells may
not express the targeted integrins or their ligands, or they may express them at insufficient
levels for effective targeting. This heterogeneity is widely recognized as a major factor
contributing to therapeutic resistance and treatment failure [107]. By understanding the
underlying drivers of this heterogeneity, we could develop novel strategies to overcome
treatment resistance.

Another significant challenge is the redundancy of integrin functions, which com-
plicates targeting strategies [22]. Since multiple integrins can bind to the same extracel-
lular matrix (ECM) proteins, blocking a single integrin might not be enough to disrupt
tumor growth or metastasis, as other integrins could compensate for its loss. This redun-
dancy necessitates designing therapies that can effectively target multiple integrins or
pathways to achieve meaningful therapeutic effects. Additionally, integrins may have
context-dependent roles; for example, some may promote tumor growth in primary tumors
while inhibiting metastasis, or vice versa [108].

This dynamic behavior of integrins across cancer stages complicates drug development,
as integrin expression can change within tumors over time. This makes it difficult to identify
consistent therapeutic targets, as a drug effective in early-stage cancer may not work in
later stages [109].

Moreover, the sequestration of RGD-targeted drugs by tumor-derived extracellular
vesicles (TEVs) presents another obstacle. TEVs, which are prevalent in the tumor microen-
vironment, may express the same integrins as the tumor cells, leading to the inadvertent
absorption of therapeutic agents before they reach their intended targets [57,59,110]. This
sequestration reduces the efficacy of the treatments and poses a significant challenge to
RGD-targeted therapies.

Given these challenges, a promising strategy is to employ dual targeting approaches
that combine RGD with other targeting moieties or therapeutic strategies. This dual
approach could help overcome issues related to integrin redundancy and variability by
ensuring that a broader spectrum of tumor cells is targeted more effectively, while also
reducing the likelihood of therapeutic agents being sequestered by TEVs. In this way,
double targeting could significantly improve the outcomes of cancer management with
RGD-based therapies, making them more effective in clinical settings (Figure 1).
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Figure 1. Schematic representation of tumors with high RGD-binding integrin expression, which
drives tumor progression, metastasis, and angiogenesis. The figure illustrates various strategies
targeting RGD-binding integrins, such as drug delivery through nanoparticles and liposomes, imag-
ing and radiotherapy with radiopharmaceuticals, and pharmacological intervention using RGD
inhibitors. Additionally, dual-targeting approaches are shown, which combine the targeting of RGD-
binding integrins with other molecular targets. These dual-targeting strategies aim to improve the
specificity and efficacy of both diagnostic and therapeutic interventions by simultaneously addressing
multiple pathways involved in tumor growth and resistance, offering enhanced therapeutic outcomes
compared to traditional single-target approaches.

4. Dual-Targeting Approaches Based on RGD Peptides

Heterobivalent ligands provide notable advantages over monovalent agents in cancer
management by targeting multiple receptors simultaneously or independently. This ap-
proach is particularly advantageous for tumors characterized by heterogeneous receptor
expression, where single-target strategies may fall short [17]. Monospecific agents, such as
RGD-based radiotracers, have shown potential, and their efficacy can be limited by partial
receptor expression, resulting in incomplete lesion detection. While the use of separate
monospecific agents could address this issue by targeting different receptors individually,
this strategy presents several drawbacks, including increased regulatory hurdles, height-
ened patient discomfort, and elevated costs. In contrast, heterobivalent approaches, which
use multifunctional platforms like radiotracers, nanoparticles, and liposomes, simplify the
process with a single application, enhancing stability, avidity, and tumor detection [15].
In this review, we delve into RGD-based dual-targeting strategies, mostly focusing on
radiotracers (Table 2) that target αvβ3 and other biomarkers to advance cancer diagnosis
and treatment.
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Table 2. Dual-targeting heterobivalent radiotracers incorporating RGD motifs for tumor imaging and
therapy currently in development.

Targets RGD-Based Molecule Radioisotope Application Tumor Model
(In Vivo) Clinical Trial References

GRPR and αvβ3

NOTA-BBN-RGD 68Ga PET imaging PC3 mice

Prostate (First in
human(FIH)) and

breast cancer
(Phase I)

[111–113],
NCT02749019

RGD-Glu-[DO3A]-6-Ahx-
RM2

86Y/90Y
PET imaging and

therapy PC3 mice / [114]

RM26-RGD (LNC1015) 68Ga PET imaging PC3 mice

Breast (FIH),
brain (Phase I),

and prostate
cancer (Phase I)

[115,116],
NCT05549024

SSTR and αvβ3 NOTA-3P-TATE-RGD 68Ga PET imaging H69 and A549
mice

SCLC and
NSCLC (Phase I),
GEP-NETs (Phase
I), and RAIR-TC

(Phase I)

[117–120]

FAP and αvβ3

FAPI-RGD (LNC1007) 68Ga PET imaging Panc02 mice
Various solid

tumors (Phases
I/II)

[121–126]

AlF-LNC1007 18F PET imaging U87MG mice Breast cancer
(Phase I)

[127,128],
NCT06471712

DOTA-FAPI-RGD 68Ga/177Lu
PET/SPECT
imaging and

therapy
U87MG mice / [129]

FAP-RGD 68Ga/177Lu
PET/SPECT
imaging and

therapy

HT1080-FAP and
U87MG mice / [130]

DOTA-EB-FAPI-RGD
(LNC1009)

177Lu
SPECT imaging

and therapy U87MG mice / [131]

PSMA and αvβ3 iPSMA-RGD
177Lu

SPECT imaging
and therapy / / [132]

225Ac Therapy HCT116 mice / [133]

APN/CD13 and
αvβ3

NGR-RGD (HX01) 68Ga PET imaging Various tumor
models

Solid tumors
(Phase I)

[134–136],
NCT06416774

HX01-L6 68Ga/177Lu
PET/SPECT
imaging and

therapy
BxPC-3 mice / [137]

NRP-1 and αvβ3
AlF-NOTA-RGD-

ATWLPPR
18F PET imaging U87MG mice / [138]

DOTA-RGD-A7R 68Ga PET imaging MCF-7 mice / [139,140]

VEGFR and αvβ3 iRGD-C6-lys-C6-DA7R 211At Therapy U87MG mice / [141]

EGFR and αvβ3
NOTA-RGD-GE11

NODA-GA-PEG3-GE11-
PEG3-RGD

68Ga PET imaging NCI-H292 mice / [142]
64Cu PET imaging BxPC3 mice / [143]
68Ga PET imaging A431 mice / [144]

uPAR and αvβ3
AE105-NOTA-RGD 68Ga/64Cu PET imaging U87MG mice / [145]
AE105-PEG8-NOTA-

PEG4-RGD
68Ga/64Cu PET imaging U87MG and

PANC-1 mice / [146,147]

MC1R and αvβ3 SiFAlin-GG-Nle-
c(DHfRWK)-PEG8-RGD

18F PET imaging B16F1 mice / [148]

4.1. Dual-Targeting RGD-Based Radiotracers for Imaging and Targeted Therapy
4.1.1. Dual Targeting of GRPR and αvβ3

Gastrin-releasing peptide receptor (GRPR) is a is a G protein-coupled receptor that
binds to the neuropeptide gastrin-releasing peptide (GRP), playing a critical role in stimulat-
ing gastric acid secretion and regulating gastrointestinal motility [149]. GRPR contributes to
tumor growth and progression and is overexpressed in various cancers, including prostate,
breast, small cell lung (SCLC), colon, gastrointestinal, and pancreatic cancer, as well as
glioblastomas and neuroblastomas [150]. Due to its expression pattern, GRPR is an attrac-
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tive target for cancer imaging and therapy. Theranostic agents targeting GRPR are currently
under clinical investigation [151].

One dual-targeting tracer developed for GRPR and αvβ3 was developed, the BBN-
RGD. After successful preclinical studies in mouse models of pancreatic tumors, which
demonstrated higher tumor uptake of 68Ga-BBN-RGD compared to 68Ga-BBN or 68Ga-
RGD alone, a first-in-human trial evaluated the safety and diagnostic effectiveness of
68Ga-NOTA-BBN-RGD in prostate cancer patients [111,112]. The study showed no adverse
effects and confirmed the radiotracer’s safety, with a radiation dose well below FDA limits.
68Ga-NOTA-BBN-RGD PET/CT detected more primary tumors (3/4 vs. 2/4 for 68Ga-BBN),
metastatic lymph nodes (14 vs. 5), and bone lesions (20 vs. 12) compared to 68Ga-BBN alone,
indicating superior diagnostic performance. This result prompted additional evaluation
of the radiotracer in breast cancer patients [113]. The findings revealed substantial 68Ga-
NOTA-BBN-RGD accumulation in primary tumors and metastases, correlating with GRPR
and αvβ3 expression. In 11 patients who underwent two PET scans in this study, 68Ga-
BBN-RGD PET/CT identified 13 suspected primary tumor lesions in 9 patients, along
with 8 metastatic lymph nodes, 9 bone metastases, and 4 lung metastases. In comparison,
68Ga-BBN PET/CT detected 11 suspected primary tumor lesions in 7 patients, along with
3 metastatic lymph nodes, 3 bone metastases, and 2 lung metastases.

Another dual-targeting tracer, RGD-Glu-[DO3A]-6-Ahx-RM2, was developed by link-
ing RGD and RM2 peptides with a DOTA chelating, radiolabeled with 86Y or 90Y and
tested in preclinical models [114]. Biodistribution studies in mice bearing pancreatic tu-
mors revealed significant tumor uptake and retention of the tracer. Micro PET imaging
supported these findings, showing effective targeting and retention, which positions RGD-
Glu-[DO3A]-6-Ahx-RM2 as a promising candidate for further imaging studies in larger
animal models and potentially in clinical settings.

Finally, the recently developed radiotracer RM26-RGD (LNC1015) has shown strong
potential as a dual-targeting agent for GRPR and αvβ3 in PET imaging [115]. In preclinical
studies using a pancreatic xenograft model, 68Ga-RM26-RGD demonstrated high stability,
favorable binding affinity, and superior tumor uptake compared to the monomeric tracers
68Ga-RGD and 68Ga-RM26. Early clinical trials in breast cancer patients corroborated these
findings, revealing significantly higher tumor uptake and improved tumor-to-background
ratios compared to 18F-FDG. Additionally, in a cohort of 23 brain tumor patients, 68Ga-
RM26-RGD demonstrated high tumor uptake and favorable tumor-to-background ratios
compared to the monomeric tracers 68Ga-RM26 and 68Ga-BBN, with a moderate positive
correlation with tumor grade [116]. Currently, this tracer is being further evaluated in a
clinical trial for PET/CT imaging of breast, brain, and prostate cancers, where its diagnostic
efficacy is being compared to 18F-FDG, 68Ga-RGD, and 68Ga-RM26 (NCT05549024). Overall,
these findings highlight the potential of dual-targeting radiotracers that focus on αvβ3
integrin and GRPR to improve the accuracy of cancer diagnosis and staging in specific
cancer types.

4.1.2. Dual Targeting of SSTR and αvβ3

Somatostatin receptors (SSTRs) are a class of G protein-coupled receptors that bind
somatostatin, a peptide hormone that inhibits the release of several other hormones and
regulates various physiological [152]. There are five known subtypes of SSTRs (SSTR1-5),
which are expressed in various tissues including the brain, gastrointestinal tract, and
pancreas. SSTRs are overexpressed in many neuroendocrine tumors, making them crit-
ical targets for both diagnostic imaging and therapy [153]. Radiolabelled somatostatin
analogs, such as 68Ga-DOTATATE and 177Lu-DOTATATE (Luthatera®), are commonly
used in PET imaging and targeted radionuclide therapy, respectively, to detect and treat
SSTR-expressing tumors. Lutathera® became the first FDA-approved peptide receptor
radionuclide therapy (PRRT) following the NETTER-1 trial, which demonstrated a re-
markable progression-free survival (PFS) in comparison to octreotide [154]. Despite these
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advances, resistance to PRRT can develop, necessitating the exploration of alternative
therapeutic strategies, such as dual-targeting approaches.

The radiotracer 68Ga-NOTA-3P-TATE-RGD has been recently evaluated for its dual-
targeting properties towards SSTR2 and αvβ3. This tracer exhibited binding affinities
comparable to its monomeric counterparts in both in vitro and in vivo models of small
(SCLC) and non-small cell lung cancers (NSCLC), suggesting its broad applicability for
detecting cancers involving both SSTR2 and integrin αvβ3 [117]. In a proof-of-concept study
involving 32 patients with NSCLC and SCLC, 68Ga-NOTA-3P-TATE-RGD provided high-
quality imaging with significantly improved tumor-to-background (T/B) ratios compared to
its monomeric forms [118]. Immunohistochemical analysis further confirmed the presence
of SSTR2 and variable integrin αvβ3 levels in tumor lesions, highlighting the tracer’s
effectiveness in dual targeting.

In a subsequent study involving 35 patients with neuroendocrine tumors (NETs),
68Ga-NOTA-3P-TATE-RGD identified more liver lesions (634 vs. 532, p = 0.021) and showed
superior T/B ratios in the liver compared to 68Ga-DOTATATE (8.4 ± 5.5 vs. 4.7 ± 3.7,
p < 0.001), proving particularly effective in detecting FDG-avid NETs [119]. Finally, in a
cohort of 12 patients with radioiodine-refractory thyroid carcinoma (RAIR-TC)—a type of
thyroid cancer resistant to traditional iodine-based treatments—68Ga-NOTA-3P-TATE-RGD
demonstrated slightly higher T/B ratios for lymph node metastases and was comparable
to 18F-FDG in detecting other metastases [120,155]. Overall, 68Ga-NOTA-3P-TATE-RGD
emerges as a versatile dual-targeting radiotracer that enhances imaging and detection
across various cancers, improving diagnostic precision and therapeutic management.

4.1.3. Dual Targeting of FAP and αvβ3

Fibroblast activation protein (FAP) is a serine protease predominantly expressed in
the stroma of solid tumors including breast, pancreatic, and colorectal cancers, while being
minimally present in normal tissues [156]. Its elevated expression correlates with tumor
progression and poor prognosis, making it a promising target for imaging and therapy. FAP
is commonly targeted with radiotracers such as Fibroblast Activation Protein Inhibitors
(FAPIs), which specifically bind to FAP, enabling precise imaging and potential therapeutic
intervention in tumor-associated stromal cells [157–159].

The dual-targeting PET tracer 68Ga-NOTA-FAPI-RGD, designed to target both FAP
and integrin αvβ3, demonstrated significantly enhanced tumor uptake, retention, and
TBR compared to its monomeric counterparts 68Ga-FAPI-02 and 68Ga-RGDfK in preclini-
cal pancreatic tumor models [121]. Indeed, tumor uptake of 68Ga-NOTA-FAPI-RGD was
5.33 ± 0.27% ID/g, compared to 2.89 ± 0.09% ID/g for 68Ga-RGDfK and 1.16 ± 0.07%
ID/g for 68Ga-FAPI-02 at 2 h post-injection. This result led to a preliminary clinical study
involving six newly diagnosed cancer patients, where 68Ga-NOTA-FAPI-RGD showed fa-
vorable pharmacokinetics with rapid and high tumor uptake, prolonged retention, effective
dosimetry and comparable maximal uptake to 18F-FDG, underscoring its strong diagnostic
potential [121].

In a pilot study involving 51 patients with suspected lung malignancies, 68Ga-NOTA-
FAPI-RGD outperformed 18F-FDG, 68Ga-RGD, and 68Ga-FAPI-04 in detecting primary
tumors and metastases, and exhibited superior accuracy in evaluating mediastinal lymph
nodes [122]. Further clinical evaluation in 22 patients across various cancer types revealed
that 68Ga-FAPI-RGD had higher tumor uptake and TBR compared to 18F-FDG and 68Ga-
FAPI-46, leading to an improved detection of primary tumors, lymph node, and bone
metastases. This study also evaluated the safety and effectiveness of the tracer [123].
The enhanced imaging capability of 68Ga-NOTA-FAPI-RGD was attributed to its dual
targeting of FAP and integrin αvβ3, making it more effective in detecting both tumor and
stromal components.

In comparative studies, 68Ga-NOTA-FAPI-RGD (LNC1007) exhibited superior detec-
tion of primary tumors and metastases in 61 patients across different cancers compared to
18F-FDG and 68Ga-FAPI-02 PET/CT [124]. It also showed enhanced performance in renal
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cell carcinoma (RCC) imaging, surpassing 18F-FDG and 68Ga-PSMA in detecting primary
lesions, skeletal, and peritoneal metastasis, with strong correlations to FAP expression [125].
Additionally, the tracer effectively distinguishes between aggressive and less aggressive
RCC. Finally, a recent case report showed 68Ga-NOTA-FAPI-RGD successfully identifying
metastasis in a case of radioiodine-refractory thyroid cancer, with superior uptake and
clearer lesion delineation compared to 18F-FDG, highlighting its potential for targeted
treatment [126].

A comparison of 68Ga- and 18F-AlF-LNC1007 revealed similar pharmacokinetics, with
both tracers showing high tumor uptake and prolonged retention in preclinical glioblastoma
models [127]. Clinical evaluations of 18F-AlF-LNC1007 in six cancer patients confirmed
its stability, effective imaging performance, and increasing TBR over time. In a study
involving 33 patients with breast cancer, 18F-AlF-LNC1007 was compared with 18F-FDG
and 18F-FAPI-04. It showed higher uptake in primary tumors and metastases than 18F-FDG
but showed lower TBR for bone metastases [128]. In contrast, 18F-FAPI-04 had better
performance in maximal uptake for all lesions, including bone metastases, while 18F-FDG
excelled in imaging liver metastases and correlated well with metastatic tumor volume in
small bone lesions. A clinical trial is currently recruiting to evaluate the pharmacokinetics,
biodistribution, dosimetry, and safety of 18F-LNC1007 in healthy volunteers and cancer
patients with minimal tumor burden (NCT06471712).

While FAPI-RGD-based tracers have demonstrated exceptional performance in clinical
diagnostics, ongoing research aims to optimize their structure for enhanced efficacy in
targeted radiotherapy. The DOTA-FAPI-RGD tracer, labeled with either 68Ga or 177Lu,
has shown high yields, stability, strong binding, and rapid internalization in FAP/αvβ3-
positive glioblastoma cells [129]. In preclinical models, this tracer achieved high tumor
uptake, rapid clearance, and clear imaging. The 177Lu-labeled version of this heterodimeric
ligand shows promise for therapeutic applications. Preclinical studies involving 68Ga-
or 177Lu-labeled FAP-RGD, synthesized from FAP-2286 and c(RGDfK), demonstrated
strong binding affinity, increased tumor uptake, and prolonged retention compared to their
monomeric counterparts [130]. These studies confirm the tracer’s favorable imaging properties
and effective antitumor responses, highlighting its potential for targeted radiotherapy.

A recent work of Wen et al., highlighted the potential of 177Lu-DOTA-EB-FAPI-RGD
(LNC1009), a modification of LNC1007 with an Evans Blue motility to enhance tumor
targeting, showed great promise for the imaging and therapy of solid tumors that are
FAP+/αvβ3

-, FAP/αvβ3
+, or FAP+/αvβ3

+ [131].
The promising results from dual-targeting PET tracers like 68Ga-FAPI-RGD, 18F-AlF-

LNC1007, or 177Lu-LNC1009 highlight their potential to significantly improve both diag-
nostic accuracy and therapeutic outcomes by enhancing tumor visualization and targeting
capabilities, particularly in complex cancer cases. However, further investigations are
warranted to determine their clinical value.

4.1.4. Dual Targeting of PSMA and αvβ3

This dual-target strategy also takes advantage of the recent development of PSMA-
derived tracers. PSMA is a glycoprotein predominantly expressed on the surface of prostate
epithelial cells and is significantly overexpressed in prostate cancer, particularly in ad-
vanced and metastatic forms [160]. PSMA contributes to cancer progression by promoting
tumor cell growth, invasion, and angiogenesis, and it interacts with the extracellular matrix,
which facilitates metastasis [161,162]. Its limited expression in normal tissues makes PSMA
an ideal target for both diagnostic imaging and targeted therapies, improving the precision
and effectiveness of prostate cancer management [163–165].

As heterobivalent peptides gain prominence in targeted radionuclide therapy, the
177Lu-iPSMA-RGD peptide, which targets both PSMA and αvβ3 integrins, serves as a
key example, designed to enhance tumor targeting and improve therapeutic results. The
peptide demonstrated a strong binding affinity to PSMA and αvβ3 integrins in vitro, as
well as an effective reduction in cell viability and induced apoptosis in U87MG glioblastoma
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cells [132]. While iPSMA-RGD showed potential for dual targeting, it did not outperform
the individual components in receptor recognition, warranting further preclinical studies
to assess its therapeutic potential.

For colorectal cancer, 225Ac-iPSMA-RGD showed increased cytotoxicity in HCT116
cells, inducing significant DNA damage, apoptosis, and cell death [133]. In mice, tumor
growth was markedly reduced with 225Ac-iPSMA-RGD compared to untreated controls.
Eleven days after treatment, 225Ac-iPSMA-RGD achieved a greater tumor reduction than
225Ac-RGD and 225Ac-PSMA. These findings, reflecting the ablative doses of the radiophar-
maceuticals, suggest that 225Ac-iPSMA-RGD has strong potential for treating colorectal
cancer, similar to the effectiveness seen with higher doses in metastatic prostate cancer. The
clinical applicability of such treatments needs to be further investigated.

4.1.5. Dual Targeting of APN/CD13 and αvβ3

Aminopeptidase N (APN), also known as CD13, is a cell surface metalloprotease
involved in various physiological and pathological processes, including tumor growth and
angiogenesis [166]. It is highly expressed on the surface of tumor-associated endothelial
cells and certain cancer cells, making it a valuable target for cancer imaging and therapy.
APN interacts indirectly with integrins by influencing the extracellular matrix and modu-
lating cell adhesion and migration processes, which are crucial for tumor progression [167].

The dual-targeting PET imaging tracer 68Ga-NGR-RGD was designed to target both
integrin αvβ3 and APN (CD13) [134]. In breast cancer models, this tracer demonstrated
high stability and specificity, achieving superior tumor uptake and contrast compared to
single-target tracers and detecting metastatic lung lesions. Further evaluation in ovarian
cancer models showed that 68Ga-NGR-RGD provided better contrast and more clearly
delineated peritoneal and liver metastases than 18F-FDG [135]. Renamed 68Ga-HX01, it
was tested in various tumor models, including those for pancreas, breast, gallbladder, lung,
ovary, colorectal, liver, stomach, and glioma cancers, outperforming single-target probes
and 18F-FDG with higher tumor uptake and improved tumor-to-background ratios [136].

The promising results led to the initiation of a clinical translation. A Phase Ia study
was conducted to evaluate the safety, biodistribution, radiation dose, and pharmacokinetics
of 68Ga-HX01 in healthy Chinese adults, while a Phase Ib study focused on its safety
and tumor imaging capabilities in patients with malignant solid tumors (NCT06416774).
Despite these advances, 68Ga-HX01 seems to face challenges with fast clearance and limited
tumor retention. To address these issues, a new radiopharmaceutical, 68Ga-HX01-L6,
was developed by adding an albumin binder to the HX01 structure [137]. 68Ga-HX01-L6
demonstrated significantly improved tumor uptake and retention in pancreas xenograft
models. When labeled with 177Lu, it showed rapid clearance from normal tissues and
high tumor uptake, positioning it as a promising candidate for therapeutic applications.
Further studies are needed to fully evaluate its therapeutic potential and confirm its role in
clinical settings.

4.1.6. Dual Targeting of NRP-1 and αvβ3

Neuropilin-1 (NRP-1) is a cell surface receptor that plays a crucial role in cell signaling,
angiogenesis, and tumor progression [168]. Overexpressed in several cancers, NRP-1
enhances tumor growth by promoting angiogenesis and cell migration, often in conjunction
with vascular endothelial growth factor (VEGF) [169]. Its interaction with these factors
makes NRP-1 a valuable target for imaging and therapies aimed at disrupting tumor
vasculature and limiting cancer spread [168,170,171].

A radiolabeled heterodimeric peptide, 18F-AlF-NOTA-RGD-ATWLPPR, was designed
to target both integrin αvβ3 and NRP-1 in tumors [138]. This peptide showed enhanced
tumor uptake and targeting compared to monomeric RGD and ATWLPPR (A7R). In vitro
and in vivo studies using GBM tumor models showed that the heterodimer’s uptake was
only partially inhibited by an excess of either unlabeled RGD or ATWLPPR, but it was
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completely blocked when both were present, leading to improved pharmacokinetics and
imaging quality.

In another study, a tetrameric RGD-A7R peptide conjugate labeled with a fluorescent
probe exhibited superior tumor uptake, imaging contrast, and pharmacokinetics compared
to monomeric peptides [172].

A recent study introduced the heterodimeric tracer 68Ga-DOTA-RGD-A7R, which
targets both αvβ3 and NRP-1 [139]. In breast cancer xenograft mouse models, this tracer
showed excellent stability, clear tumor imaging on PET/CT, and superior tumor uptake
compared to its individual components. Blocking studies validated the specificity of
68Ga-DOTA-RGD-ATWLPPR for its intended targets [139,140]. These studies highlight
the potential of dual-targeting tracers, such as 18F-AlF-NOTA-RGD-ATWLPPR and 68Ga-
DOTA-RGD-ATWLPPR, in enhancing the precision of cancer imaging and therapy by
effectively targeting both integrin αvβ3 and NRP-1, offering new avenues for advanc-
ing cancer diagnosis and treatment. However, no clinical studies have been conducted
until today.

4.1.7. Dual Targeting of Growth Factors Receptors (GFRs) and αvβ3

Growth factor receptors are well-established targets in oncology, with dual-targeting
agents incorporating RGD peptides developed to enhance the efficacy of their inhibitors.
Among them, studies have focused on Vascular endothelial growth factor receptor (VEGFR).
VEGFR promotes tumor growth by facilitating new blood vessel formation, while integrin
αvβ3, often co-expressed with VEGFR, helps stabilize these vessels [173]. Radiotracers
targeting both VEGFR and integrin αvβ3 provide detailed imaging of the tumor’s blood
supply and active regions.

A notable example is the development of a peptide targeting VRGFR and αvβ3,
iRGD-C6-lys-C6-DA7R radiolabelled with 211At, investigated recently for targeted radio-
therapy [141]. The peptide demonstrated stability, strong binding to U87MG glioma cells,
and significant in vitro antitumor effects, including reduced cell viability and increased
apoptosis. Biodistribution studies revealed rapid tumor uptake and clearance from normal
tissues via the kidneys. In vivo, it effectively inhibited tumor growth and extended survival
in glioma-bearing mice with minimal toxicity. These results suggest that VEGFR targeting
alongside αvβ3 is a promising strategy for detecting and treating glioma and potentially
other cancers

Similarly, epidermal growth factor receptor (EGFR), another crucial actor of tumor cell
growth and survival, was targeted by such an approach. Radiotracers that target EGFR
alongside integrin αvβ3 offer insights into both the tumor cells and their vascular support,
providing a more comprehensive view of tumor biology. This dual-targeting approach
could bolster diagnostic accuracy and treatment planning by integrating multiple aspects
of tumor dynamics.

Innovative heterodimeric peptides have been introduced, such as 68Ga-NOTA-RGD-
GE11, which combine integrin αvβ3-specific cyclic RGD peptides with the EGFR-targeting
peptide GE11 [142]. This dual targeting showed significantly improved tumor uptake
compared to its monomeric counterparts, 68Ga-NOTA-RGD and 68Ga-NOTA-GE11, in
lung tumor models. At 2 h post-injection, the tumor uptake values for 68Ga-NOTA-RGD-
GE11, 68Ga-NOTA-RGD, and 68Ga-NOTA-GE11 were 3.446 ± 0.548, 2.756 ± 0.483, and
2.408 ± 0.327% ID/g. Similarly, the 64Cu-labeled tracer, 64Cu-NOTA-RGD-GE11, exhibited
superior tumor uptake in pancreatic xenografts and showed enhanced specificity, with
uptake significantly blocked by non-radioactive peptides [143]. Additional development of
NODA-GA-PEG3-GE11-PEG3-c(RGDyK) and c(RGDfK) tracers highlighted the feasibility
of creating radiolabelled heterobivalent peptides (HBPLs) [144]. Although these HBPLs
were successfully labeled with 68Ga, exhibited high hydrophilicity, and demonstrated
stability, they showed strong binding to integrin αvβ3 but lacked specific interaction with
EGFR in vitro. In vivo studies in squamous cell carcinoma models have confirmed that
uptake was mediated exclusively by integrin αvβ3. Given the mixed results of the dual-
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targeting approach with GE11, future research should explore alternative EGFR-specific
peptides to enhance dual-targeting effectiveness and improve tumor imaging.

4.1.8. Dual Targeting of uPAR and αvβ3

uPAR is a cell surface receptor crucial for cell migration, tissue remodeling, and
inflammation. uPAR is frequently overexpressed in cancers such as breast, prostate, and
lung cancer, where it is associated with increased tumor invasion and poor prognosis [174].
This makes uPAR a valuable biomarker for imaging and monitoring tumor activity through
PET and SPECT radiotracers.

In a proof-of-concept study, researchers developed heterodimeric ligands targeting
both uPAR and integrin αvβ3 using an innovative bifunctional chelator (BFC) scaffold [145].
These ligands combined the peptide ligands AE105 (for uPAR) and cyclo(RGDyK) and
were radiolabelled with 64Cu and 68Ga. The heterodimers demonstrated enhanced stability
and superior imaging performance compared to single-target radiotracers. PET imaging
of U87MG tumor-bearing mice with the 64Cu-labeled tracer showed improved tumor
targeting capabilities, with higher tumor uptake and clearer images than those achieved
with individual-target tracers.

Subsequent studies further optimized these heterodimeric probes [146]. The trac-
ers continued to exhibit better binding affinity and higher receptor density than their
monomeric counterparts. Among the tested variants, the heterodimer with a PEG8 linker
delivered the best results, showing strong tumor retention and stability in both in vitro and
in vivo assays when labeled with 64Cu and 68Ga [146,147]. PET imaging of U87MG and
PANC-1 tumor xenografts demonstrated that this PEG8-linked heterodimer significantly
outperformed monomeric tracers, achieving higher tumor uptake and a superior signal-to-
background ratio, highlighting its potential as a highly effective imaging agent for tumors
expressing both uPAR and integrin αvβ3.

4.1.9. Dual Targeting of MC1R and αvβ3

This dual-targeting approach was also recently evaluated for melanoma imaging
and targeting. Melanocortin-1 receptor (MC1R) is a G protein-coupled receptor primarily
expressed in melanocytes, where it regulates melanin production. Activation of MC1R
stimulates the synthesis of eumelanin, providing photoprotection to the skin. MC1R is
critical in melanoma, with its variants increasing UV sensitivity and cancer risk. In tumors,
MC1R affects immune response, tumor growth, and metastasis by influencing cellular
adhesion and migration [175,176]. Its dysregulation can facilitate melanoma progression
and spread.

A recent study focused on developing a heterobivalent radiotracer targeting both
the MC1R and integrin αvβ3, which play critical roles in melanoma progression and
metastasis [148]. Six ligands, incorporating c(RGDfK) and GG-Nle-c(DHfRWK) (Gly-
Gly-Nle-cyclic Asp-His-DPhe-Arg-Trp-Lys), were synthesized and radiolabelled with 18F
to enhance tumor-targeting sensitivity and visualization. Among them, one compound
(18F-SiFAlin-GG-Nle-c(DHfRWK)-PEG8-RGD) demonstrated strong receptor affinity, hy-
drophilicity, and superior tumor uptake and TBR in melanoma and glioblastoma mouse
models. This makes it a promising radiotracer for PET/CT imaging of malignant melanoma.
However, studies in patients should be performed to fully characterize the potential of
such radiotracer.

4.2. Dual-Targeting RGD-Based Nanoparticles and Liposomes; Implications for Brain
Tumor Management

In addition to major recent developments in the theranostic field, advancements in tar-
geted delivery systems have emerged, particularly for glioma therapy. Several innovations
rely on RGD-derived peptides to enhance both tumor specificity and blood–brain barrier
(BBB) penetration. Polyamidoamine (PAMAM) dendrimers, known for their stability and
nanoscale size, are optimized for glioma therapy through PEGylation, which promotes pas-
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sive targeting via the Enhanced Permeability and Retention (EPR) effect. Further, RGDyC
modification provides active targeting by binding to integrin αvβ3 receptors on tumor
cells [177]. In a rat glioma model, the RGDyC-modified PEG-PAMAM/ATO (arsenic
trioxide) system showed superior therapeutic efficacy and significant anti-tumor effects
as compared to ATO alone and mPEG-PAMAM/ATO due to improved BBB penetration
and targeted delivery [178]. RGDyC-modified PEG-PAMAM/ATO was also associated
with reduced secondary effects in this model. However, despite these combined passive
and active targeting strategies, effectively delivering therapeutics across the BBB remains
a challenge.

To address this issue, PAMAM was further modified with both the iRGD peptide for
tumor-specific targeting via integrin αvβ3 and the TGN peptide, which binds to transferrin
receptors on BBB endothelial cells to enhance brain penetration [179]. The resulting system
(iRGD/TGN-PEG-PAMAM) loaded with ATO showed high entrapment efficiency, pH-
sensitive release, and significantly improved drug delivery across the BBB. In vitro and
in vivo studies have confirmed an enhanced accumulation and activation of ATO in glioma
tissue, leading to increased therapeutic efficacy and reduced side effects. This dual-targeting
approach demonstrates a promising strategy for targeted glioma therapy by optimizing
both tumor specificity and BBB penetration.

Building on these advancements, a hepatitis B core protein-based virus-like particle
(TGN/RGD-VLP) was developed to co-deliver paclitaxel (PTX) and siRNA to glioblastoma
models [180]. This approach effectively targeted both the αvβ3 integrin and TGN, resulting
in enhanced drug delivery to tumor sites. The combined therapy (PTX/siRNA@TGN/RGD-
VLP) outperformed PTX alone, significantly reducing tumor growth, promoting necrosis
and apoptosis, extending median survival, and minimizing weight loss.

Further advancing targeted delivery for glioma therapy, a study developed chitosan-
PLGA nanoparticles functionalized with AS1411 aptamer, targeting nucleolin overex-
pressed on brain cancer cells, and RGD peptide, to enhance the targeted co-delivery of
docetaxel (DTX) and up conversion nanoparticles (UCNP) for brain cancer therapy and
imaging [181]. These nanoparticles, with an average size of less than 200 nm, exhibited high
DTX and UCNP encapsulation and sustained DTX release over 72 h. The dual-functional
nanoparticles significantly improved cellular uptake and cytotoxicity, showing an 89-fold
greater efficacy than unmodified particles. Additionally, they increased DTX bioavailability
and UCNP accumulation in brain tissues, leading to substantial tumor growth suppression
in brain tumor-bearing mice without notable toxicity. The DUCPN-RGD-AS1411 nanoparti-
cles demonstrate potential for effective brain cancer treatment and real-time imaging.

In a related development, a novel approach utilized dual-target liposomes to en-
hance drug delivery across the BBB. These liposomes were modified with a glucose-RGD
(Glu-RGD) derivative to target glioma cells and facilitate BBB penetration [182]. The Glu-
RGD-modified liposomes, encapsulating PTX, showed significantly improved targeting
efficiency and accumulation at tumor sites compared to unmodified PTX and other lipo-
some formulations. The liposomes demonstrated enhanced drug delivery with a 4.41-fold
increase in uptake efficiency and a 4.72-fold increase in concentration efficiency at tu-
mor sites. This method further underscores the progress in developing effective delivery
systems that combine BBB penetration with targeted therapy for gliomas.

These advancements underscore the ongoing efforts to overcome the challenges of
blood–brain barrier penetration and dual tumor targeting, paving the way for future
innovations in brain cancer management. Future challenges will include the variability of
the blood–brain barrier’s permeability among patients and potential differences in tumor
biology between animal models and human cancers. Additionally, the long-term safety and
effectiveness of these nanoparticle-based therapies need thorough evaluation. To confirm
their potential, comprehensive clinical studies are necessary to assess their performance in
human subjects, ensuring that these innovations can be safely and effectively applied in
clinical settings.
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5. Conclusions

Despite their promise, RGD-derived molecules designed for the treatment of solid
tumors have faced several challenges, including rapid clearance, potential immunogenicity,
and heterogeneity in integrin expression. Dual-targeting strategies based on RGD in cancer
imaging and therapy have made notable progress, using radiotracers to target multiple
biomarkers or receptors, which could enhance both diagnostic precision and therapeutic
efficacy. Additionally, recent advancements in targeted delivery systems, such as RGD-
based nanoparticles and liposomes, have improved drug delivery across the blood–brain
barrier (BBB) and boosted therapeutic effectiveness, highlighting the need for continued
development. However, challenges persist, including variability in BBB permeability and
differences between animal models and human cancers. Future research should focus
on refining dual-targeting approaches by investigating specific mechanisms that could
enhance tumor selectivity while minimizing off-target effects. For many dual-targeting
strategies, the therapeutic efficacy has yet to be fully validated in preclinical models, where
studies on biodistribution and pharmacodynamics could offer valuable insights into their
potential effectiveness. Additionally, it is essential to optimize these systems to balance
potency and safety. Finally, comprehensive clinical trials are needed to assess not only the
safety and efficacy of these innovations but also their long-term immunogenicity, patient-
specific responses, and potential for personalized treatment adaptations. These trials will
be crucial for translating dual-targeting therapies from experimental settings to widespread
clinical use.

In conclusion, dual-targeting strategies and advanced delivery systems could lead to
significant progress in cancer management, promising better diagnosis, treatment precision,
and improved patient outcomes. Clinical trials involving RGD-based dual molecules are
crucial to establishing their role in cancer therapy.
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