Potential Therapeutic Properties of Olea europaea Leaves from Selected Cultivars Based on Their Mineral and Organic Profiles
Abstract
:1. Introduction
2. Results
2.1. Mineral Analysis of the Selected Cultivars
2.2. Organic Analysis
2.2.1. Nutritional Assessment of OLEs from Selected Cultivars
2.2.2. Phenolic Composition of OLEs from Selected Cultivars
2.2.3. Fatty Acid Composition of the OLEs of Selected Cultivars
2.2.4. Antioxidant Activity of the OLEs from Selected Cultivars
2.2.5. Antimicrobial Activity of Selected Cultivars
2.2.6. Vitamin E Profile of Selected Cultivars
2.2.7. Enzymatic Inhibition by Selected Cultivars
Acetylcholinesterase and Butyrylcholinesterase Inhibition
Enzymatic Inhibition of Monoamine Oxidases A and B
Angiotensin-I-Converting Enzyme and Renin Inhibition
3. Discussion
3.1. Mineral Analysis of the Selected Cultivars
3.2. Organic Assessment
3.2.1. Nutritional Analysis and Fatty Acid Composition of the Selected Cultivars
3.2.2. TPC, TFC, and Antimicrobial Behavior of the Selected Cultivars
3.2.3. Antioxidant Profile and Phenolic Composition of the Selected Cultivars
3.2.4. Vitamin E Composition of the Selected Cultivars
3.2.5. Enzymatic Inhibition by the Selected Cultivars
4. Materials and Methods
4.1. Chemical Reagents
4.2. Sample Collection
4.3. Sample Preparation and Extraction Procedure
4.4. Water Content
4.5. Quantification of Inorganic Elements
4.6. Proximate Organic Composition
4.7. Total Phenolic Content (TPC)
4.8. Total Flavonoid Content (TFC)
4.9. Phenolic and Tocopherol Profiles
4.10. Lipid Profile
4.10.1. Lipid Extraction
4.10.2. Determination of Fatty Acids
4.11. Antioxidant Activity
4.11.1. DPPH• Radical Scavenging Activity
4.11.2. FRAP Assay
4.11.3. •NO Scavenging Activity
4.12. Enzyme Inhibition
4.12.1. AChE and BuChE Inhibition
4.12.2. MAO-A and MAO-B Inhibition
4.12.3. Angiotensin Converting Enzyme (ACE) Inhibition
4.12.4. Renin Inhibition
4.13. Antimicrobial Activity
4.13.1. Microorganisms and Culture Conditions
4.13.2. Agar Diffusion Assay
4.14. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Passeri, V.; Sammut, C.; Mifsud, D.; Domesi, A.; Stanzione, V.; Baldoni, L.; Mousavi, S.; Mariotti, R.; Pandolfi, S.; Cinosi, N.; et al. The Ancient Olive Trees (Olea europaea L.) of the Maltese Islands: A Rich and Unexplored Patrimony to Enhance Oliviculture. Plants 2023, 12, 1988. [Google Scholar] [CrossRef]
- Ronca, C.L.; Marques, S.S.; Ritieni, A.; Giménez-Martínez, R.; Barreiros, L.; Segundo, M.A. Olive Oil Waste as a Source of Functional Food Ingredients: Assessing Polyphenolic Content and Antioxidant Activity in Olive Leaves. Foods 2024, 13, 189. [Google Scholar] [CrossRef]
- Minelli, P.; Montinari, M.R. The Mediterranean Diet And Cardioprotection: Historical Overview And Current Research. J. Multidiscip. Healthc. 2019, 12, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.S.; Adedara, I.A.; Farombi, E.O.; Emanuelli, T. Nutraceutical potential of olive pomace: Insights from cell-based and clinical studies. J. Sci. Food Agric. 2024. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aloy, M.; Groff, N.; Masuero, D.; Nisi, M.; Franco, A.; Battelini, F.; Vrhovsek, U.; Mattivi, F. Exploratory Analysis of Commercial Olive-Based Dietary Supplements Using Untargeted and Targeted Metabolomics. Metabolites 2020, 10, 516. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Garcia, L.; Navarro-Hortal, M.D.; Romero-Marquez, J.M.; Llopis, J.; Forbes-Hernández T., Y.; Xiao, J.; Quiles, J.L.; Sanchez-Gonzalez, C. Valorization of Olea europaea and olive oil processing by-products/wastes. Adv. Food Nutr. Res. 2023, 107, 193–212. [Google Scholar] [CrossRef] [PubMed]
- Chrysant, S.G.; Chrysant, G.S. Olive Oil Consumption and Cardiovascular Protection: Mechanism of Action. Cardiol. Rev. 2024, 32, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Goya, C.; Santana-Garrido, Á.; Espinosa-Martín, P.; Vázquez, C.M.; Mate, A. Wild and cultivated olive trees: Nutraceutical insights of extra virgin olive oils in cardiovascular and ocular diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 166904. [Google Scholar] [CrossRef] [PubMed]
- Ross F., C.; Mayer D., E.; Horn, J.; Cryan J., F.; Del Rio, D.; Randolph, E.; Gill C. I., R.; Gupta, A.; Ross R., P.; Santon, C.; et al. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: A role for gut microbiota? Nutr. Neurosci. 2024. [Google Scholar] [CrossRef]
- Godny, L.; Dotan, I. Is the Mediterranean Diet in Inflammatory Bowel Diseases Ready for Prime Time? J. Can. Assoc. Gastroenterol. 2024, 7, 97–103. [Google Scholar] [CrossRef]
- Luaces, P.; Expósito, J.; Benabal, P.; Pascual, M.; Sanz, C.; Pérez, A.G. Accumulation Patterns of Metabolites Responsible for the Functional Quality of Virgin Olive Oil during Olive Fruit Ontogeny. Antioxidants 2023, 13, 12. [Google Scholar] [CrossRef]
- Costa, M.; Costa, V.; Lopes, M.; Paiva-Martins, F. A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo. Crit. Rev. Food Sci. Nutr. 2024, 64, 1403–1428. [Google Scholar] [CrossRef]
- Cardoni, M.; Mercado-Blanco, J. Confronting stresses affecting olive cultivation from the holobiont perspective. Front. Plant Sci. 2023, 14, 1261754. [Google Scholar] [CrossRef] [PubMed]
- Arias, N.S.; Scholz, F.G.; Goldstein, G.; Bucci, S.J. Low-temperature acclimation and legacy effects of summer water deficits in olive freezing resistance. Tree Physiol. 2021, 41, 1836–1847. [Google Scholar] [CrossRef] [PubMed]
- Alemu, M.; Asfaw, Z.; Lulekal, E.; Warkineh, B.; Debella, A.; Sisay, B.; Debebe, E. Ethnobotanical study of traditional medicinal plants used by the local people in Habru District, North Wollo Zone, Ethiopia. J. Ethnobiol. Ethnomed. 2024, 20, 4. [Google Scholar] [CrossRef] [PubMed]
- Klionsky, D.J.; Abdel-Aziz, A.K.; Abdelfatah, S.; Abdellatif, M.; Abdoli, A.; Abel, S.; Abeliovich, H.; Abildgaard, M.A.; Yakubu Y., P.; Acevedo-Arozena, A.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy 2021, 17, 1–382. [Google Scholar] [CrossRef] [PubMed]
- Lorzadeh, N.; Kazemirad, Y.; Kazemirad, N. Treatment of genital herpes using olive leaf extract. Clin. Case Rep. 2021, 9, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Acar-Tek, N.; Ağagündüz, D. Olive Leaf (Olea europaea L. folium): Potential Effects on Glycemia and Lipidemia. Ann. Nutr. Metab. 2020, 76, 10–15. [Google Scholar] [CrossRef]
- Álvares, A.A.; Garcêz, A.; Silva, L.T.; Averbuch, N.; Garavaglia, J. Olive leaf extract effect on cardiometabolic risk factors: A systematic review and meta-analysis of randomized clinical trials. Nutr. Rev. 2024, nuad164. [Google Scholar] [CrossRef]
- Vijakumaran, U.; Shanmugam, J.; Heng, J.W.; Azman, S.S.; Yazid, M.D.; Haizum Abdullah, N.A.; Sulaiman, N. Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules 2023, 28, 1861. [Google Scholar] [CrossRef]
- Ismail, M.A.; Norhayati, M.N.; Mohamad, N. Olive leaf extract effect on cardiometabolic profile among adults with prehypertension and hypertension: A systematic review and meta-analysis. PeerJ 2021, 9, e11173. [Google Scholar] [CrossRef]
- Vezza, T.; Rodríguez-Nogales, A.; Algieri, F.; Garrido-Mesa, J.; Romero, M.; Sánchez, M.; Toral, M.; Martín-García, B.; Gómez-Caravaca, A.M.; Arráez-Román, D. The metabolic and vascular protective effects of olive (Olea europaea L.) leaf extract in diet-induced obesity in mice are related to the amelioration of gut microbiota dysbiosis and to its immunomodulatory properties. Pharmacol. Res. 2019, 150, 104487. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Gutiérrez, M.; Bascón-Villegas, I.; Rodríguez, A.; Pérez-Rodríguez, F.; Fernández-Prior, Á.; Rosal, A.; Carrasco, E. Valorisation of Olea europaea L. Olive Leaves through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity. Foods 2021, 10, 966. [Google Scholar] [CrossRef] [PubMed]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, toxicity, and clinical applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Difonzo, G.; Squeo, G.; Pasqualone, A.; Summo, C.; Paradiso, V.M.; Caponio, F. The challenge of exploiting polyphenols from olive leaves: Adition to foods to improve their shelf-life and nutritional value. J. Sci. Food Agric. 2021, 101, 3099–3116. [Google Scholar] [CrossRef] [PubMed]
- Borjan, D.; Leitgeb, M.; Knez, Ž.; Hrnčič, M.K. Microbiological and Antioxidant Activity of Phenolic Compounds in Olive Leaf Extract. Molecules 2020, 25, 5946. [Google Scholar] [CrossRef] [PubMed]
- Almaksour, Z.; Boudard, F.; Kelly, M.T.; Pujalté, I.; Villareal, M.; Isoda, H.; Guzman, C.; Larroque, M.; Margout, D. Varietal Effect on the Concentration and Anti-Inflammatory Activity of Hydroxytyrosol in French Olive Oils. J. Med. Food 2020, 23, 1328–1331. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef]
- Ferreira, D.M.; de Oliveira, N.M.; Chéu, M.H.; Meireles, D.; Lopes, L.; Oliveira, M.B.; Machado, J. Updated Organic Composition and Potential Therapeutic Properties of Different Varieties of Olive Leaves from Olea europaea. Plants 2023, 12, 688. [Google Scholar] [CrossRef]
- Khwaldia, K.; Attour, N.; Matthes, J.; Beck, L.; Schmid, M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1218–1253. [Google Scholar] [CrossRef]
- Baccouri, B.; Rajhi, I.; Theresa, S.; Najjar, Y.; Mohamed, S.N.; Willenberg, I. The potential of wild olive leaves (Olea europaea L. subsp. oleaster) addition as a functional additive in olive oil production: The effects on bioactive and nutraceutical compounds using LC–ESI–QTOF/MS. Eur. Food Res. Technol. 2022, 248, 2809–2823. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Horwitz, W.; Latimer, G. AOAC-Association of official analytical chemists. In Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; Volume 45, pp. 75–76. [Google Scholar]
- Zhang, D.; Yao, L.; Chang, Y.; Yang, G.; Xue, Z.; Wang, L.; Zheng, Y.; Guo, L. Evaluation and Comparison of Bioactive Constituents of Artemisiae argyi Folium Collected at Different Developmental Stages. J. AOAC Int. 2021, 104, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Lees, M.; Sloanestanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Soares, C.; Sousa, S.; Machado, S.; Vieira, E.; Carvalho, A.P.; Ramalhosa, M.J.; Morais, S.; Correia, M.; Oliva-Teles, T.; Domingues, V.F.; et al. Bioactive lipids of seaweeds from the portuguese north coast: Health benefits versus potential contamination. Foods 2021, 10, 1366. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.; Paíga, P.; Marques, M.; Neto, T.; Carvalho, A.P.; Paiva, A.; Simões, P.; Costa, L.; Bernardo, A.; Fernández, N.; et al. Multi-step subcritical water extracts of Fucus vesiculosus L. and codium tomentosum stackhouse: Composition, health-benefits and safety. Processes 2021, 9, 893. [Google Scholar] [CrossRef]
- Vaz, M. Azeite de Trás-os-Montes: Influência da Localização do Olival e das Cultivares nas Características dos Azeites; Instituto Piaget: Lisboa, Portugal, 2011. [Google Scholar]
- de Oliveira, N.M.; Lopes, L.; Chéu, M.H.; Soares, E.; Meireles, D.; Machado, J. Updated Mineral Composition and Potential Therapeutic Properties of Different Varieties of Olive Leaves from Olea europaea. Plants 2023, 12, 916. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, J.W. Metabolites of Life: Phosphate. Metabolites 2023, 13, 860. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Aschner, M.; Silina, E.V.; Stupin, V.A.; Zaitsev, O.N.; Sotnikova, T.I.; Tazina, S.I.; Zhang, F.; Guo, X.; Tinkov, A.A. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023, 13, 1006. [Google Scholar] [CrossRef] [PubMed]
- Negru, A.G.; Pastorcici, A.; Crisan, S.; Cismaru, G.; Popescu, F.G.; Luca, C.T. The Role of Hypomagnesemia in Cardiac Arrhythmias: A Clinical Perspective. Biomedicines 2022, 10, 2356. [Google Scholar] [CrossRef]
- Gommers, L.M.M.; Hoenderop, J.G.J.; de Baaij, J.H.F. Mechanisms of proton pump inhibitor-induced hypomagnesemia. Acta Physiol. 2022, 235, e13846. [Google Scholar] [CrossRef]
- Issler, T.; Sule, K.; Lewrenz, A.-M.; Prenner, E.J. Differential interactions of essential and toxic metal ions with biologically relevant phosphatidic acid and phosphatidylserine membranes. Biometals 2024. [Google Scholar] [CrossRef]
- Gioilli, B.D.; Kidane, T.Z.; Fieten, H.; Tellez, M.; Dalphin, M.; Nguyen, A.; Nguyen, K.; Linder, M.C. Secretion and uptake of copper via a small copper carrier in blood fluid. Metallomics 2022, 14, mfac006. [Google Scholar] [CrossRef] [PubMed]
- Tsang, T.; Davis, C.I.; Brady, D.C. Copper biology. Curr. Biol. 2021, 31, R421–R427. [Google Scholar] [CrossRef]
- Rahidul Hassan, H. A review on different arsenic removal techniques used for decontamination of drinking water. Environ. Pollut. Bioavailab. 2023, 35, 2165964. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Arun, S.M.; Zhou, C. Effect of freeze-thaw pretreatment combined with variable temperature on infrared and convection drying of lotus root. LWT 2022, 154, 112804. Available online: https://www.sciencedirect.com/science/article/pii/S0023643821019575 (accessed on 11 February 2024). [CrossRef]
- Nunes, M.A.; Palmeira, J.D.; Melo, D.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Alves, R.C.; Ferreira, H.; Oliveira, M.B.P.P. Chemical Composition and Antimicrobial Activity of a New Olive Pomace Functional Ingredient. Pharmaceuticals 2021, 14, 913. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Kong, W.; Suo, H.; Shen, X.; Newton, M.A.; Burkett, W.C.; Zhao, Z.; John, C.; Sun, W.; Zhang, X.; et al. Oleic Acid Exhibits Anti-Proliferative and Anti-Invasive Activities via the PTEN/AKT/mTOR Pathway in Endometrial Cancer. Cancers 2023, 15, 5407. [Google Scholar] [CrossRef] [PubMed]
- Grubić Kezele, T.; Ćurko-Cofek, B. Neuroprotective Panel of Olive Polyphenols: Mechanisms of Action, Anti-Demyelination, and Anti-Stroke Properties. Nutrients 2022, 14, 4533. [Google Scholar] [CrossRef]
- Ascoli Bartoli, T.; Lepore, L.; D’Abramo, A.; Adamo, G.; Corpolongo, A.; Scorzolini, L.; Giancola, M.L.; Bevilacqua, N.; Palazzolo, C.; Mariano, A. Systematic analysis of direct antiglobulin test results in post-artesunate delayed haemolysis. Malar. J. 2021, 20, 206. [Google Scholar] [CrossRef]
- Hadrich, F.; Mahmoudi, A.; Chamkha, M.; Isoda, H.; Sayadi, S. Olive Leaves Extract and Oleuropein Improve Insulin Sensitivity in 3T3-L1 Cells and in High-Fat Diet-Treated Rats via PI3K/AkT Signaling Pathway. Oxidative Med. Cell. Longev. 2023, 2023, 6828230. [Google Scholar] [CrossRef]
- Subias-Gusils, A.; Álvarez-Monell, A.; Boqué, N.; Caimari, A.; Mariné-Casadó, R.; Escorihuela, R.M.; Solanas, M. Effects of a Calorie-Restricted Cafeteria Diet and Oleuropein Supplementation on Adiposity and mRNA Expression of Energy Balance Related Genes in Obese Male Rats. Metabolites 2023, 13, 147. [Google Scholar] [CrossRef]
- Zupo, R.; Castellana, F.; Crupi, P.; Desantis, A.; Rondanelli, M.; Corbo, F.; Clodoveo, M.L. Olive Oil Polyphenols Improve HDL Cholesterol and Promote Maintenance of Lipid Metabolism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Metabolites 2023, 13, 1187. [Google Scholar] [CrossRef]
- Subias-Gusils, A.; Álvarez-Monell, A.; Boqué, N.; Caimari, A.; Del Bas, J.M.; Mariné-Casadó, R.; Solanas, M.; Escorihuela, R.M. Behavioral and Metabolic Effects of a Calorie-Restricted Cafeteria Diet and Oleuropein Supplementation in Obese Male Rats. Nutrients 2021, 13, 4474. [Google Scholar] [CrossRef]
- Antonopoulou, S.; Demopoulos, C.A. Protective Effect of Olive Oil Microconstituents in Atherosclerosis: Emphasis on PAF Implicated Atherosclerosis Theory. Biomolecules 2023, 13, 700. [Google Scholar] [CrossRef]
- Gavahian, M.; Mousavi Khaneghah, A.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- Wasner, H.K. Metformin’s Mechanism of Action Is Stimulation of the Biosynthesis of the Natural Cyclic AMP Antagonist Prostaglandylinositol Cyclic Phosphate (Cyclic PIP). Int. J. Mol. Sci. 2022, 23, 2200. [Google Scholar] [CrossRef] [PubMed]
- Love, K.M.; Barrett, E.J.; Horton, W.B. Metformin’s Impact on the Microvascular Response to Insulin. Endocrinology 2022, 163, bqac162. [Google Scholar] [CrossRef]
- Bertelli, M.; Kiani, A.K.; Paolacci, S.; Manara, E.; Kurti, D.; Dhuli, K.; Bushati, V.; Miertus, J.; Pangallo, D.; Baglivo, M.; et al. Hydroxytyrosol: A natural compound with promising pharmacological activities. J. Biotechnol. 2020, 309, 29–33. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Nieto, G.; Pateiro, M.; Lorenzo, J.M. Phenolic Compounds Obtained from Olea europaea By-Products and their Use to Improve the Quality and Shelf Life of Meat and Meat Products-A Review. Antioxidants 2020, 9, 1061. [Google Scholar] [CrossRef]
- Zoubdane, N.; Abdo, R.A.; Nguyen, M.; Bentourkia, M.; Turcotte, E.E.; Berrougui, H.; Fulop, T.; Khalil, A. High Tyrosol and Hydroxytyrosol Intake Reduces Arterial Inflammation and Atherosclerotic Lesion Microcalcification in Healthy Older Populations. Antioxidants 2024, 13, 130. [Google Scholar] [CrossRef]
- Quirós-Fernández, R.; López-Plaza, B.; Bermejo, L.M.; Palma-Milla, S.; Gómez-Candela, C. Supplementation with Hydroxytyrosol and Punicalagin Improves Early Atherosclerosis Markers Involved in the Asymptomatic Phase of Atherosclerosis in the Adult Population: A Randomized, Placebo-Controlled, Crossover Trial. Nutrients 2019, 11, 640. [Google Scholar] [CrossRef]
- Kumar, N.; Gorai, B.; Gupta, S.; Shiva; Goel, N. Extrapolation of hydroxytyrosol and its analogues as potential anti-inflammatory agents. J. Biomol. Struct. Dyn. 2021, 39, 5588–5599. [Google Scholar] [CrossRef]
- Arismendi Sosa, A.C.; Mariani, M.L.; Vega, A.E.; Penissi, A.B. Extra virgin olive oil inhibits Helicobacter pylori growth in vitro and the development of mice gastric mucosa lesions in vivo. Front. Microbiol. 2022, 13, 961597. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- de Carvalho, A.G.A.; Olmo-García, L.; Gaspar, B.R.A.; Carrasco-Pancorbo, A.; Castelo-Branco, V.N.; Torres, A.G. Evaluating Quality Parameters, the Metabolic Profile, and Other Typical Features of Selected Commercial Extra Virgin Olive Oils from Brazil. Molecules 2020, 25, 4193. [Google Scholar] [CrossRef]
- Martins, B.T.; Bronze, M.R.; Ventura, M.R. Phenolic Compounds from Virgin Olive Oil: Approaches for Their Synthesis and Analogues. J. Agric. Food Chem. 2022, 70, 14109–14128. [Google Scholar] [CrossRef]
- Guo, L.; Gong, S.; Wang, Y.; Sun, Q.; Duo, K.; Fei, P. Antibacterial Activity of Olive Oil Polyphenol Extract Against Salmonella Typhimurium and Staphylococcus aureus: Possible Mechanisms. Foodborne Pathog. Dis. 2020, 17, 396–403. [Google Scholar] [CrossRef]
- Ramata-Stunda, A.; Petriņa, Z.; Valkovska, V.; Borodušķis, M.; Gibnere, L.; Gurkovska, E.; Nikolajeva, V. Synergistic Effect of Polyphenol-Rich Complex of Plant and Green Propolis Extracts with Antibiotics against Respiratory Infections Causing Bacteria. Antibiotics 2022, 11, 160. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Cozzolino, R.; Martignetti, A.; Malorni, L.; De Feo, V.; Cruz, A.G.; d’Acierno, A. Antibacterial activity of three extra virgin olive oils of the Campania region, Southern Italy, related to their polyphenol content and composition. Microorganisms 2019, 7, 321. [Google Scholar] [CrossRef]
- Liu, Y.; McKeever, L.C.; Malik, N.S.A. Assessment of the Antimicrobial Activity of Olive Leaf Extract Against Foodborne Bacterial Pathogens. Front. Microbiol. 2017, 8, 113. [Google Scholar] [CrossRef]
- Alkhatib, A. Antiviral Functional Foods and Exercise Lifestyle Prevention of Coronavirus. Nutrients 2020, 12, 2633. [Google Scholar] [CrossRef]
- Somerville, V.; Moore, R.; Braakhuis, A. The effect of olive leaf extract on upper respiratory illness in high school athletes: A randomised control trial. Nutrients 2019, 11, 358. [Google Scholar] [CrossRef]
- de Oliveira, J.R.; Antunes, B.S.; do Nascimento, G.O.; de Kawall, J.C.S.; Oliveira, J.V.B.; Silva, K.G.D.S.; Costa, M.A.T.; Oliveira, C.R. Antiviral activity of medicinal plant-derived products against SARS-CoV-2. Exp. Biol. Med. 2022, 247, 1797–1809. [Google Scholar] [CrossRef]
- Yang, X.; Yan, T.; Shen, D.; Sheng, M.; Huang, W.; Li, L.; Chai, D. Prognostic Value of Wagner Grade and Platelet Level in Diabetics with Infected Foot Ulcers After Antibiotic Therapy. Infect. Drug Resist. 2023, 16, 7435–7445. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Yang, Y.; Liu, X.; Yuan, Y.; Song, S.-R.; Zhao, Y.; Mao, J. Clinical and laboratory findings to differentiate late-onset sepsis caused by Gram-negative vs Gram-positive bacteria among perterm neonates: A retrospective cohort study. Int. Immunopharmacol. 2023, 116, 109769. [Google Scholar] [CrossRef]
- Sizar, O.; Leslie, S.W.; Unakal, C.G. Gram-Positive Bacteria. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470553/ (accessed on 10 February 2024).
- Macdonald, K.E.; Boeckh, S.; Stacey, H.J.; Jones, J.D. The microbiology of diabetic foot infections: A meta-analysis. BMC Infect. Dis. 2021, 21, 770. [Google Scholar] [CrossRef]
- Song, Y.; Yang, F.; Mu, B.; Kang, Y.; Hui, A.; Wang, A. Phyto-mediated synthesis of Ag nanoparticles/attapulgite nanocomposites using olive leaf extract: Characterization, antibacterial activities and cytotoxicity. Inorg. Chem. Commun. 2023, 151, 110543. [Google Scholar] [CrossRef]
- Alowaiesh, B.F.; Alhaithloul, H.A.; Saad, A.M.; Hassanin, A.A. Green Biogenic of Silver Nanoparticles Using Polyphenolic Extract of Olive Leaf Wastes with Focus on Their Anticancer and Antimicrobial Activities. Plants 2023, 12, 1410. [Google Scholar] [CrossRef]
- Bouallagui, Z.; Mahmoudi, A.; Maalej, A.; Hadrich, F.; Isoda, H.; Sayadi, S. Contribution of Major Polyphenols to the Antioxidant Profile and Cytotoxic Activity of Olive Leaves. Anticancer Agents Med. Chem. 2019, 19, 1651–1657. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Sadeer, N.B.; Hussain, M.; Mahwish; Alsagaby, S.A.; Imran, M.; Mumtaz, T.; Umar, M.; Tauseef, A.; Al Abdulmonem, W.; et al. Therapeutical properties of apigenin: A review on the experimental evidence and basic mechanisms. Int. J. Food Prop. 2023, 26, 1914–1939. [Google Scholar] [CrossRef]
- Niu, C.; Zhang, J.; Okolo, P. Greasing the Wheels of Pharmacotherapy for Colorectal Cancer: The Role of Natural Polyphenols. Curr. Nutr. Rep. 2023, 12, 662–678. [Google Scholar] [CrossRef]
- Caporali, S.; De Stefano, A.; Calabrese, C.; Giovannelli, A.; Pieri, M.; Savini, I.; Tesauro, M.; Bernardini, S.; Minieri, M.; Terrinoni, A. Anti-Inflammatory and Active Biological Properties of the Plant-Derived Bioactive Compounds Luteolin and Luteolin 7-Glucoside. Nutrients 2022, 14, 1155. [Google Scholar] [CrossRef]
- Xi, M.; Hou, Y.; Wang, R.; Ji, M.; Cai, Y.; Ao, J.; Shen, H.; Li, M.; Wang, J.; Luo, A. Potential Application of Luteolin as an Active Antibacterial Composition in the Development of Hand Sanitizer Products. Molecules 2022, 27, 7342. [Google Scholar] [CrossRef]
- Qian, W.; Liu, M.; Fu, Y.; Zhang, J.; Liu, W.; Li, J.; Li, X.; Li, Y. Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties. Microb. Pathog. 2020, 142, 104056. [Google Scholar] [CrossRef]
- Sezen Karaoğlan, E.; Hancı, H.; Koca, M.; Kazaz, C. Some Bioactivities of Isolated Apigenin-7-O-glucoside and Luteolin-7-O-glucoside. Appl. Sci. 2023, 13, 1503. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Kokotkiewicz, A.; Miceli, N.; Taviano, M.F.; Maugeri, A.; Cirmi, S.; Synowiec, A.; Gniewosz, M.; Elansary, H.O.; et al. Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts. Molecules 2020, 25, 5609. [Google Scholar] [CrossRef]
- Shi, C.; Ma, Y.; Tian, L.; Li, J.; Qiao, G.; Liu, C.; Cao, W.; Liang, C. Verbascoside: An Efficient and Safe Natural Antibacterial Adjuvant for Preventing Bacterial Contamination of Fresh Meat. Molecules 2022, 27, 4943. [Google Scholar] [CrossRef]
- Nani, A.; Murtaza, B.; Sayed Khan, A.; Khan, N.A.; Hichami, A. Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules 2021, 26, 985. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Bouchal, Y.; Fernández-Prior, Á.; Vioque, B.; Fernández-Bolaños, J. Strawberry Puree Functionalized with Natural Hydroxytyrosol: Effects on Vitamin C and Antioxidant Activity. Molecules 2020, 25, 5829. [Google Scholar] [CrossRef]
- Šimat, V.; Skroza, D.; Tabanelli, G.; Čagalj, M.; Pasini, F.; Gómez-Caravaca, A.M.; Fernández-Fernández, C.; Sterniša, M.; Smole Možina, S.; Ozogul, Y.; et al. Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars. Antioxidants 2022, 11, 1656. [Google Scholar] [CrossRef]
- Rana, S.S.; Tiwari, S.; Gupta, N.; Tripathi, M.K.; Tripathi, N.; Singh, S.; Bhagyawant, S.S. Validating the Nutraceutical Significance of Minor Millets by mploying Nutritional-Antinutritional Profiling. Life 2023, 13, 1918. [Google Scholar] [CrossRef]
- C de S Ribeiro, B.; V de C Faria, R.; de S Nogueira, J.; Santos Valença, S.; Chen, L.; Romana-Souza, B. Olive oil promotes the survival and migration of dermal fibroblasts through Nrf2 pathway activation. Lipids 2023, 58, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Del Saz-Lara, A.; López de Las Hazas, M.-C.; Visioli, F.; Dávalos, A. Nutri-Epigenetic Effects of Phenolic Compounds from Extra Virgin Olive Oil: A Systematic Review. Adv. Nutr. 2022, 13, 2039–2060. [Google Scholar] [CrossRef]
- Serreli, G.; Melis, M.P.; Corona, G.; Deiana, M. Modulation of LPS-induced nitric oxide production in intestinal cells by hydroxytyrosol and tyrosol metabolites: Insight into the mechanism of action. Food Chem. Toxicol. 2019, 125, 520–527. [Google Scholar] [CrossRef]
- De Cicco, P.; Ercolano, G.; Tenore, G.C.; Ianaro, A. Olive leaf extract inhibits metastatic melanoma spread through suppression of epithelial to mesenchymal transition. Phytother. Res. 2022, 36, 4002–4013. [Google Scholar] [CrossRef] [PubMed]
- Infante, R.; Infante, M.; Pastore, D.; Pacifici, F.; Chiereghin, F.; Malatesta, G.; Donadel, G.; Tesauro, M.; Della-Morte, D. An Appraisal of the Oleocanthal-Rich Extra Virgin Olive Oil (EVOO) and Its Potential Anticancer and Neuroprotective Properties. Int. J. Mol. Sci. 2023, 24, 17323. [Google Scholar] [CrossRef]
- Antoniou, C.; Hull, J. The Anti-cancer Effect of Olea europaea L. Products: A Review. Curr. Nutr. Rep. 2021, 10, 99–124. [Google Scholar] [CrossRef]
- de Aguiar Sobral, P.; Miyahira, R.F.; Zago, L. Health Outcomes Related to the Consumption of Olive Products: A Brief Review. Plant Foods Hum. Nutr. 2023, 78, 643–653. [Google Scholar] [CrossRef]
- Pannucci, E.; Caracciolo, R.; Romani, A.; Cacciola, F.; Dugo, P.; Bernini, R.; Varbaro, L.; Santi, L. ; An hydroxytyrosol enriched extract from olive mill wastewaters exerts antioxidant activity and antimicrobial activity on Pseudomonas savastanoi pv. savastanoi and Agrobacterium tumefaciens. Nat. Prod. Res. 2021, 35, 2677–2684. [Google Scholar] [CrossRef]
- Ferreira, D.M.; de Oliveira, N.M.; Lopes, L.; Machado, J.; Oliveira, M.B. Potential Therapeutic Properties of the Leaf of Cydonia Oblonga Mill. Based on Mineral and Organic Profiles. Plants 2022, 11, 2638. [Google Scholar] [CrossRef]
- Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and Tocotrienols-Bioactive Dietary Compounds; What Is Certain, What Is Doubt? Int. J. Mol. Sci. 2021, 22, 6222. [Google Scholar] [CrossRef]
- Fu, J.-Y.; Meganathan, P.; Gunasegaran, N.; Tan, D.M.Y. Effect of nano-delivery systems on the bioavailability and tissue biodistribution of vitamin E tocotrienols. Food Res. Int. 2023, 171, 113048. [Google Scholar] [CrossRef]
- Tarchoune, I.; Sgherri, C.; Eddouzi, J.; Zinnai, A.; Quartacci, M.F.; Zarrouk, M. Olive Leaf Addition Increases Olive Oil Nutraceutical Properties. Molecules 2019, 24, 545. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, G. The biological activities of butyrylcholinesterase inhibitors. Biomed. Pharmacother. 2022, 146, 112556. [Google Scholar] [CrossRef]
- Mathew, B.; Parambi, D.G.T.; Mathew, G.E.; Uddin, M.S.; Inasu, S.T.; Kim, H.; Marathakam, A.; Unnikrishnan, M.K.; Carradori, S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer’s and Parkinson’s diseases. Arch. Pharm. 2019, 352, e1900177. [Google Scholar] [CrossRef]
- Abdellaoui, K.; Boussadia, O.; Miladi, M.; Boughattas, I.; Omri, G.; Mhafdhi, M.; Hazzoug, M.; Acheuk, F.; Brahem, M. Olive Leaf Extracts Toxicity to the Migratory Locust, Locusta migratoria: Histopathological Effects on the Alimentary Canal and Acetylcholinesterase and Glutathione S-Transferases Activity. Neotrop. Entomol. 2019, 48, 246–259. [Google Scholar] [CrossRef]
- Gulcan, H.O.; Orhan, I.E. A Recent Look into Natural Products that have Potential to Inhibit Cholinesterases and Monoamine Oxidase B: Update for 2010–2019. Comb. Chem. High Throughput Screen. 2020, 23, 862–876. [Google Scholar] [CrossRef]
- Mathew, B.; Kim, H. Inhibitors of Monoamine Oxidase and Acetylcholinesterase as a Front Runner in CNS Drug Discovery. Comb. Chem. High Throughput Screen. 2020, 23, 834–835. [Google Scholar] [CrossRef]
- Chaurasiya, N.D.; Leon, F.; Muhammad, I.; Tekwani, B.L. Natural Products Inhibitors of Monoamine Oxidases-Potential New Drug Leads for Neuroprotection, Neurological Disorders, and Neuroblastoma. Molecules 2022, 27, 4297. [Google Scholar] [CrossRef]
- Garjón, J.; Saiz, L.C.; Azparren, A.; Gaminde, I.; Ariz, M.J.; Erviti, J. First-line combination therapy versus first-line monotherapy for primary hypertension. Cochrane Database Syst Rev. 2020, 2, CD010316. [Google Scholar] [CrossRef]
- Ajebli, M.; Eddouks, M. Phytotherapy of Hypertension: An Updated Overview. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 812–839. [Google Scholar] [CrossRef]
- Saad, B. A Review of the Anti-Obesity Effects of Wild Edible Plants in the Mediterranean Diet and Their Active Compounds: From Traditional Uses to Action Mechanisms and Therapeutic Targets. Int. J. Mol. Sci. 2023, 24, 12641. [Google Scholar] [CrossRef]
- Chukwuma, C.I.; Matsabisa, M.G.; Ibrahim, M.A.; Erukainure, O.L.; Chabalala, M.H.; Islam, M.S. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. J. Ethnopharmacol. 2019, 235, 329–360. [Google Scholar] [CrossRef]
- Susalit, E.; Agus, N.; Effendi, I.; Tjandrawinata, R.R.; Nofiarny, D.; Perrinjaquet-Moccetti, T.; Verbruggen, M. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: Comparison with Captopril. Phytomedicine 2011, 18, 251–258. [Google Scholar] [CrossRef]
- Barroso, M.F.; Ramalhosa, M.J.; Alves, R.C.; Dias, A.; Soares, C.M.D.; Oliva-Teles, M.T.; Delerue-Matos, C. Total antioxidant capacity of plant infusions: Assessment using electrochemical DNA-based biosensor and spectrophotometric methods. Food Control. 2016, 68, 153–161. [Google Scholar] [CrossRef]
- Benichou, T.; Pereira, B.; Mermillod, M.; Tauveron, I.; Pfabigan, D.; Maqdasy, S.; Dutheil, F. Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0195166. [Google Scholar] [CrossRef] [PubMed]
- Bondia-Pons, I.; Molto-Puigmarti, C.; Castellote, A.I.; Lopez-Sabater, M.C. Determination of conjugated linoleic acid in human plasma by fast gas chromatography. J. Chromatogr. A 2007, 1157, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, I.; Magalhães, R.; Coutinho, F.; Couto, A.; Sousa, S.; Delerue-Matos, C.; Domingues, V.F.; Oliva-Teles, A.; Peres, H. Evaluation of the seaweeds Chondrus crispus and Ulva lactuca as functional ingredients in gilthead seabream (Sparus aurata). J. Appl. Phycol. 2019, 31, 2115–2124. [Google Scholar] [CrossRef]
- Vuletin Selak, G.; Baruca Arbeiter, A.; Cuevas, J.; Perica, S.; Pujic, P.; Raboteg Božiković, M.; Bandelj, D. Seed Paternity Analysis Using SSR Markers to Assess Successful Pollen Donors in Mixed Olive Orchards. Plants 2021, 10, 2356. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Units | O. europaea Cobrançosa | O. europaea Madural | O. europaea Verdeal | DRIs—Male (31–50 y.o.) ** | |
---|---|---|---|---|---|---|
Elements | ||||||
As | mg/kg | <3.0 ± 0.03 | <3.0± 0.03 | 7 ± 0.03 | N/A | |
Ba | mg/kg | 18 ± 0.05 | 13 ± 0.05 | 12 ± 0.05 | N/A | |
Ca | g/Kg | 11 ± 0.05 | 12 ± 0.05 | 11 ± 0.05 | 1.00 g/d | |
Cd | mg/kg | <0.25 | <0.25 | <0.25 | N/A | |
Cr | mg/kg | 0.65 ± 0.03 | <0.5 | 0.72 ± 0.03 | 35 mg/d | |
Cu | mg/kg | 12 ± 0.05 | 5.6 ± 0.03 | 6.5 ± 0.03 | 0.90 mg/d | |
Fe | mg/kg | 104 ± 0.05 | 91 ± 0.05 | 82 ± 0.05 | 8 mg/d | |
K | g/Kg | 9.2 ± 0.03 | 7.1 ± 0.03 | 13 ± 0.05 | 3.40 g/d | |
Mg | g/Kg | 1.2 ± 0.03 | 1.7 ± 0.03 | 1.4 ± 0.03 | 0.42 g/d | |
Mn | mg/kg | 47 ± 0.05 | 46 ± 0.05 | 56 ± 0.05 | 2.3 mg/d | |
Na | g/Kg | 0.05 ± 0.03 | 0.04 ± 0.03 | 0.07 ± 0.03 | 1.5 g/d | |
Pb | mg/kg | <2.5 | <2.5 | <2.5 | N/A | |
Se | mg/kg | <2.5 | <2.5 | <2.5 | 0.055 mg/d | |
Sr | mg/kg | 95 ± 0.05 | 101 ± 0.05 | 103 ± 0.05 | 14.0 mg/d | |
Zn | mg/kg | 12 ± 0.05 | 17 ± 0.05 | 17 ± 0.05 | 11.0 mg/d | |
Mo | mg/kg | <3.0 | <3.0 | <3.0 | 0.045 mg/d | |
S | g/Kg | 2.2 ± 0.03 | 0.37 ± 0.03 | 1.5 ± 0.03 | N/A | |
P | g/Kg | 1.3 ± 0.03 | 1.5 ± 0.03 | 1.5 ± 0.03 | 0.70 g/d |
Component | Ash (%) | Lipid (%) | Protein (%) | Water (%) | TPC (mgGAE/g Sample) | TFC (mgECE/g Sample) | |
---|---|---|---|---|---|---|---|
Cultivar | |||||||
O. europaea Cobrançosa | 4.34 ± 0.30 a | 5.03 ± 0.04 a | 6.15 ± 0.12 b | 8.86 ± 0.15 a | 37.90 ± 4.20 c | 30.40 ± 0.80 b | |
O. europaea Madural | 4.42 ± 0.14 a | 4.50 ± 0.30 a | 6.43 ± 0.09 a | 8.70 ± 0.17 a,b | 48.90 ± 2.40 b | 29.10 ± 0.50 b | |
O. europaea Verdeal | 4.79 ± 0.04 a | 4.80 ± 0.50 a | 3.81 ± 0.02 c | 8.20 ± 0.35 b | 59.30 ± 4.30 a | 53.70 ± 5.20 a |
Parameter | RT (min) | ʎmax (nm) | Cultivar (mg/g Dried Extract) | |||
---|---|---|---|---|---|---|
Compounds | O. europaea Cobrançosa | O. europaea Madural | O. europaea Verdeal | |||
Hydroxytyrosol | 9.70 | 276 | 7.78 ± 2.00 a | 10.86 ± 0.88 a | 10.64 ± 0.15 a | |
Tyrosol | 12.50 | 280 | 0.13 ± 0.04 b | 0.27 ± 0.05 a | 0.20 ± <0.01 a,b | |
Caffeic acid | 18.26 | 250, 290sh, 323 | 0.19 ± 0.03 a | 0.20 ± 0.01 a | 0.21 ± 0.03 a | |
Verbascoside | 32.23 | 253, 296sh, 331 | 2.30 ± 0.16 a | 2.31 ± 0.04 a | 2.40 ± 0.43 a | |
Luteolin-7-O-glucoside | 42.44 | 257, 267sh, 348 | 2.72 ± 0.01 b | 4.27 ± <0.01 a | 2.69 ± 0.03 b | |
Apigenin-7-O-glucoside | 46.07 | 267, 336 | 2.91 ± 0.07 b | 3.82 ± 0.22 a | 2.01 ± 0.09 c | |
Apigenin derivative | 48.60 | 268, 338 | 5.03 ± 0.11 b | 6.32 ± 0.29 a | 4.92 ± 0.10 b | |
Total | 21.06 | 28.05 | 23.07 |
Cultivars | O. europaea Cobrançosa | O. europaea Madural | O. europaea Verdeal | |
---|---|---|---|---|
FAs | ||||
SFA | ||||
C4:0 | - | - | - | |
C6:0 | - | - | - | |
C8:0 | - | - | - | |
C10:0 | - | - | - | |
C11:0 | - | - | - | |
C12:0 | 0.347% ± 0.007% | 0.28% ± 0.02% | 0.24% ± 0.01% | |
C13:0 | - | - | - | |
C14:0 | 2.48% ± 0.07% | 1.94% ± 0.05% | 2.85% ± 0.06% | |
C15:0 | 0.24% ± 0.01% | 0.308% ± 0.006% | 0.27% ± 0.01% | |
C16:0 | 33.6% ± 0.1% | 31.3% ± 0.2% | 30.9% ± 0.6% | |
C17:0 | 0.57% ± 0.03% | 0.36% ± 0.02% | 0.49% ± 0.02% | |
C18:0 | 8.15% ± 0.03% | 8.8% ± 0.6% | 7.0% ± 0.2% | |
C20:0 | - | - | - | |
C21:0 | 0.34% ± 0.02% | 0.47% ± 0.02% | 0.53% ± 0.02% | |
C22:0 | - | - | - | |
C23:0 | 0.51% ± 0.04% | 0.80% ± 0.04% | 0.38% ± 0.02% | |
C24:0 | 2.4% ± 0.2% | 3.3% ± 0.3% | 3.04% ± 0.03% | |
MUFA | ||||
C14:1 n-5 | - | - | - | |
C15:1 n-5 | - | - | - | |
C16:1 n-7 | 1.18% ± 0.02% | 0.57% ± 0.03% | 0.48% ± 0.01% | |
C17:1 n-7 | - | - | - | |
C18:1 n-9 t | - | - | - | |
C18:1 n-9 c | 25.49% ± 0.09% | 19.7% ± 0.3% | 21.7% ± 0.2% | |
C20:1n-9 | 13.3% ± 0.1% | 17.6% ± 0.2% | 17.6% ± 0.2% | |
C22:1 n-9 | - | - | - | |
C24:1 n-9 | - | - | - | |
PUFA | ||||
C18:2 n-6 t | - | - | - | |
C18:2 n-6 c | 6.05% ± 0.04% | 8.5% ± 0.2% | 8.0% ± 0.1% | |
C18:3 n-3 | 0.52% ± 0.02% | 0.622% ± 0.005% | 0.71% ± 0.04% | |
C18:3 n-6 | 2.93% ± 0.03% | 3.8% ± 0.1% | 3.19% ± 0.10% | |
C20:2 n-6 | - | - | - | |
C20:3 n-3 | - | - | - | |
C20:3 n-6 | 2.01% ± 0.04% | 2.3% ± 0.2% | 2.3% ± 0.1% | |
C20:4 n-6 | - | - | - | |
C20:5 n-3 | - | - | - | |
C22:2 n-6 | - | - | - | |
C22:6 n-3 | - | 0.44% ± 0.02% | 0.40% ± 0.02% | |
ΣSFA | 48.6% | 46.71% | 45.75% | |
ΣMUFA | 39.9% | 37.87% | 39.74% | |
ΣPUFA | 11.5% | 15.42% | 14.51% | |
Σω3 | 0.5% | 0.84% | 1.10% | |
Σω6 | 11.0% | 14.58% | 13.41% |
Antioxidant Activity | DPPH●-RSA (ug/mL) | FRAP (mg AAE/g Sample) | ●NO (IC50, µg/mL) | |
---|---|---|---|---|
Cultivar | ||||
O. europaea Cobrançosa | 685.2 ±34.4 b | 16.6 ± 0.5 b | >2000 (32.2% inhibition at 2000 µg/mL) | |
O. europaea Madural | 490.8 ± 24.5 a | 19.1 ± 0.6 a | >2000 (24.8% inhibition at 2000 µg/mL) | |
O. europaea Verdeal | 217.2 ± 10.9 a | 17.0 ± 0.01 b | >2000 (47.3% inhibition at 2000 µg/mL) |
CULTIVAR | Inhibition Zone (mm) | |||||
---|---|---|---|---|---|---|
Gram(+) | Gram(−) | |||||
S. aureus (ATCC 25923) | S. epidermidis (NCTC 11047) | B. cereus (ATCC 14579) | E. coli (NCTC 9001) | Salmonella Enteritidis (ATCC 13076) | P. aeruginosa (ATCC 10145) | |
O. europaea Cobrançosa | 0 | 0 | 13.16 ± 3.97 a,b | 0 | 11.57 ± 0.80 b | 13.04 ± 0.53 b |
O. europaea Madural | 0 | 0 | 10.67 ± 0.61 b | 0 | 13.54 ± 0.10 b | 11.44 ± 0.94 b |
O. europaea Verdeal | 12.38 ± 0.60 a | 0 | 11.30 ± 0.70 b | 0 | 12.67 ± 0.62 b | 11.83 ± 1.01 b |
Lactic acid | 15.69 ± 2.07 a | 22.24 ± 1.19 | 18.42 ± 0.57 a | 17.67 ± 1.11 | 18.97 ± 1.40 a | 19.74 ± 3.61 a |
DMSO | 0 | 0 | 0 | 0 | 0 | 0 |
Sample | AChE—IC50 (µg/mL) | BuChE—IC50 (µg/mL) |
---|---|---|
O. europaea Cobrançosa | 995.5 | 1869.6 |
O. europaea Madural | 376.3 | >2000 (47.4% inhibition at 2000 µg/mL) |
O. europaea Verdeal | 1057.9 | 1987.1 |
Sample | MAO-A—IC50 (µg/mL) | MAO-B—IC50 (µg/mL) |
---|---|---|
O. europaea Cobrançosa | 251.1 | 516.1 |
O. europaea Madural | 194.1 | >1000 (36.0% at 1000 µg/mL) |
O. europaea Verdeal | 294.4 | 792.1 |
Sample | ACE—IC50 (µg/mL) | Renin—IC50 (µg/mL) |
---|---|---|
O. europaea Cobrançosa | 712.5 | <125.0 (66.4% inhibition at 125 µg/mL) |
O. europaea Madural | 553.2 | <125.0 (69.80% inhibition at 125 µg/mL) |
O. europaea Verdeal | 442.4 | <125.0 (68.01% inhibition at 125 µg/mL) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, N.M.; Machado, J.; Chéu, M.H.; Lopes, L.; Barroso, M.F.; Silva, A.; Sousa, S.; Domingues, V.F.; Grosso, C. Potential Therapeutic Properties of Olea europaea Leaves from Selected Cultivars Based on Their Mineral and Organic Profiles. Pharmaceuticals 2024, 17, 274. https://doi.org/10.3390/ph17030274
de Oliveira NM, Machado J, Chéu MH, Lopes L, Barroso MF, Silva A, Sousa S, Domingues VF, Grosso C. Potential Therapeutic Properties of Olea europaea Leaves from Selected Cultivars Based on Their Mineral and Organic Profiles. Pharmaceuticals. 2024; 17(3):274. https://doi.org/10.3390/ph17030274
Chicago/Turabian Stylede Oliveira, Natália M., Jorge Machado, Maria Helena Chéu, Lara Lopes, M. Fátima Barroso, Aurora Silva, Sara Sousa, Valentina F. Domingues, and Clara Grosso. 2024. "Potential Therapeutic Properties of Olea europaea Leaves from Selected Cultivars Based on Their Mineral and Organic Profiles" Pharmaceuticals 17, no. 3: 274. https://doi.org/10.3390/ph17030274
APA Stylede Oliveira, N. M., Machado, J., Chéu, M. H., Lopes, L., Barroso, M. F., Silva, A., Sousa, S., Domingues, V. F., & Grosso, C. (2024). Potential Therapeutic Properties of Olea europaea Leaves from Selected Cultivars Based on Their Mineral and Organic Profiles. Pharmaceuticals, 17(3), 274. https://doi.org/10.3390/ph17030274