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Abstract: In this paper, we present the identification of polymorphisms at an early stage, identified by
applying non-standard methods such as SAXS. We provide an analytical approach to polymorphism
in the quality/purity of an active pharmaceutical ingredient (API), supplied to a generic company
by two different suppliers (i.e., manufacturers). Changes in thermodynamic polymorphism firstly
become visible in traces in the larger crystal lattices, which are visible on the SAXS spectrum only
using the logarithmic scale, as shown in the result figures. Hence, we are here on the trail of
the beginning of a new polymorph in nicomorphine, whose crystal waviness at the early stage is
visible only in the additional symmetrical peaks identified and calculated using SAXS, while the
chemical analyses excluded all kinds of chemical impurities. The chemical and structural properties
were studied using the following techniques: SAXS, WAXS, DSC, dissolution, Raman spectroscopy,
and FTIR. Only the SAXS technique could identify crucial differences and calculate the additional
signals related to giant crystals, whilst a standard method such as WAXS showed none, and nor
did the chemical analyses, such as Raman spectroscopy and FT-IR. This means that due to water
in crystallization (known in nicomorphine) or thermodynamic waviness, the formation of the new
polymorph starts first in traces, which become visible at larger distances from the crystal lattice,
detectible only in the SAXS range. This is a very important premise and hypothesis for further
research, and we believe that this work lays a new stone in understanding the origin of new unknown
polymorphs and their mixtures. Therefore, the aim of this work is to show that the use of non-standard
methods (i.e., SAXS) can be of great benefit to API analysis and the identification of polymorphic
changes in the early phase, which can cause varied stability, solubility and bioavailability and thus
different therapeutic effects or side effects.

Keywords: polymorphism; crystallinity; purity; solid-state drugs; powder; small-angle X-ray scatter-
ing; Raman; FTIR; dissolution; DSC

1. Introduction

The quality of medicines, particularly their crystalline purity in the solid state or
polymorphism, is very important to pharmaceutical products and their actual efficacy [1].
To test and detect this in a timely manner, various well-known analytical methods are used.
In order to detect these phenomena at an early stage, it is good to use techniques with a
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different resolution lengthscale of analysis, such as SAXS in this case. In this work, we
managed to detect the beginning of the polymorphic transformation of nicomorphine at
a very early stage, which is visible only on the logarithmic scale of SAXS but not using
other methods.

The fact is that nowadays, most pharmaceutical companies deal with different sup-
pliers of active pharmaceutical ingredients (APIs). Prices and purity play an impor-
tant role, especially when choosing a supplier. The API quality and crystalline purity
must be satisfied, otherwise the final product not only causes manufacturing problems
(e.g., tableting or dissolution, stability) [1–3] but can also induce possible therapeutic side
effects. It is generally known that several processes (e.g., high-energy milling) can alter
the crystalline state of an unstable API. However, APIs with larger or smaller molecules
may contain more than one crystalline form [4]. Specific crystalline polymorphic forms are
associated with a small-molecule therapeutic effect [5] or with a protein [6,7]. The meaning
of the word “polymorphism” is of Greek origin, where polus = many and morph = shape.
Different polymorphs have not only different solubilities and dissolution rates but also
different stability and bioavailability, which can directly influence different side effects
or therapeutic effectiveness [8]. The physical properties that differ for each crystal form
are the packing, thermodynamics and spectroscopic effects of the API polymorphism on
medication bioavailability, which are, within manufacturing, considered in the regulatory
framework of new drug delivery systems [9–11] and known products like generics [9].

X-ray techniques are very suitable for providing information about API polymor-
phism [12,13]. In addition, to obtain proper quality control, more than one technique is
required [14–16]. Understanding the relationship between the properties of pharmaceutical
solids and their physical structures is therefore important in choosing the most appropriate
form of an API for drug product development [17,18]. Thus, we propose a multi-technical
approach based on chemical information, dissolution and crystal structure. Small-angle
X-ray scattering (SAXS) is presented in this work to be highly useful for API structural
analytics based on its identification of the fingerprint [19–21] of the crystal structure seen
only in the small-angle range. The data are obtained simultaneously using two separate
detectors, which collect the X-ray signal from the analyzed sample at two different angles,
the small angle (SAXS) and the wide angle (WAXS). Interestingly, the standard-method
WAXS does not detect differences, but SAXS analysis shows changes visible at the intensity
of the logarithmic scale. SAXS is not a common technique used for crystalline purity
detection, but the aim of this work is to show the usefulness of non-standard methods
with an extended resolution scale. In addition, the SAXS data match differential scanning
calorimetry (DSC) data since both techniques are physically structural-based, compared
with all other chemical analytics, which do not serve API differences. Hence, WAXS, Raman
spectroscopy and FT-IR, as standard analytical techniques, did not display any significant
differences between the two APIs provided by the two producers.

2. Results and Discussion
2.1. SWAXS

To observe differences between the two batches of nicomorphine, SWAXS was per-
formed first, since it is particularly sensitive to impurities. At first, mainly identical Bragg
peaks were detected in both batches in the WAXS angular range, displaying the same
q-values that are the fingerprint of the materials (Figure 1). The APIs displayed visible
Bragg peaks in the angular WAXS range of 17◦ < 2θ < 27◦. The WAXS fingerprints appear
according to the structural crystalline forms. Such instrumentation cannot detect any
scattering signal beyond the diffraction angle 2θ = 27◦. The APIs of both batches in the
WAXS spectrum serve crystallinity peaks at 4.8, 4.7, 4.5, 4.4, 4.2, 4.0, 3.7, 3.6, 3.5, 3.4 and
3.3 Å. All calculated peak values (see Figure 1) for both APIs are comparable, remained in
the same positions in this angular range, and indicate a higher degree of structural order
(crystallinity), not an amorphous state. Such a stronger crystallinity could yield a higher
stability of the APIs.
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Figure 1. WAXS data, displaying signals for the two APIs.

Thus, according to the WAXS data, one can assume that the APIs from different
producers were in crystalline form without additional impurities. However, the additional
polymorphic impurity found in the SAXS region (see Figure 2) did not influence the API
structure in the WAXS region, since all crystalline peaks showed the same values (Figure 1)
in the WAXS spectrum.

Furthermore, the SAXS region of our analytics displays an additional material internal
order [8]. Figure 2 shows spectra with a 2θ-axis (x-scale) in relation to the 2θ scattering
angle via the equation q = 4π sin θ/λ versus the scattering intensity (y-axis). The reason for
the small-angle X-ray signal of scattering [22] is the electron density difference in a material,
such as that which occurs at interfaces (i.e., in a powder between air and solid). At the
same time, large crystal lattice signals can also appear in the SAXS region in the form of
Bragg peaks. For that reason, our samples (Figure 2) show Bragg peaks in the SAXS scale
that correspond to the crystalline structure of the API. The data from batches 1 and 2 are
displayed in a logarithmic y scale (Figures 2 and 3) to better visualize the Bragg peaks in
the SAXS region.

The SAXS signal of the APIs from batch 1 (producer 1) display peaks by 17.1 and
13.9 Å, while batch 2 (producer 2) does not display such differences in order or polymorphic
impurities (Figure 2). The SWAXS measurements were repeated and reproduced with triplet
measurements (Figure 2b).

In general, the advantage of SAXS and WAXS methods is reflected in the ability of
X-rays to pass through the solid material and provide information about the internal and
external morphology at once. This is not the case with all spectroscopic methods, which
can mainly only analyze solids at the surface (such as FTIR and Raman). However, the
disadvantage of SAXS and WAXS is that they are only physical structure methods, without
the possibility of direct analysis of chemical groups, except with peak references. An
additional disadvantage of both SAXS and WAXS is their limitation in the scale of detection
resolution, as SAXS is only relevant to small scattering angles and WAXS only to wide
scattering angles (the scale at which fingerprints of organic molecules should be present).
For this reason, the combination of SAXS and WAXS into SWAXS is a very powerful tool
where at the WAXS scale we can see the fingerprints of materials and at the SAXS scale we
can also see the self-assembly structure or fingerprints of larger structural order as here in
our work.
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Figure 2. SAXS data with different signals for the two API batches: (a) single representative trace,
(b) triplet measurements. The additional different signals are highlighted by red circles.

2.2. ATR-FTIR

Next, we performed ATR-FTIR on the two batches. The analysis revealed no variation
between the IR spectra from multiple measurements, within one batch or between the
batches. The representative spectrum for both batches is shown in Figure 3. The spectra
show bands between 1360 and 1310 cm−1, which are attributed to C-N stretching vibrations
arising from the aromatic tertiary amine bond in pyridine. In addition, the band between
1190 and 1130 belongs to a secondary amine, i.e., to non-aromatic but aliphatic and hete-
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rocyclic C-N stretching. The bands between 1500 and 1600 cm−1 belong to an aromatic
ring. Methyl C-H3 vibrations are between 1400 and 1450 cm−1 and belong to the 1st methyl
group. The C-H vibrations from aromatic rings are visible between 1200 and 1400 cm−1.
Carbon–oxygen single bonds are visible between 1200 and 1000 cm−1. The pyridine ring
can be identified at 700 cm−1. The stretching of cyclic ethers, C-O-C, can be recognized
between 1140 and 1070 cm−1. In addition, the epoxy C-O-ring stretching shows bands
between 890 and 800 cm−1. The spectra indicate that no chemical difference between the
two API batches is visible according to FTIR analytics.
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2.3. Raman

Furthermore, Raman spectra were recorded with the two batches. In fact, the spec-
tral signature in the calculated Raman spectra also does not show significant differences
between both batches of nicomorphine (Figure 4).
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The spectra show several bands with small bandwidth, characteristic of crystalline
conformations. A tight attribution of all nicomorphine normal modes is in concordance
with the aim of the present work, since no chemical difference appears. However, a simple
comparison with the Raman spectra of morphine and picolinic acid [23,24] found in the
literature can be performed. According to this literature, the Raman bands between 3250
and 2750 cm−1 can be attributed to C-H stretching. In the region of 2750 to 2240 cm−1,
overtone vibrations of features are likely recorded. The signal at 1750 cm−1 instead can
attributed to the carboxyl C=O symmetric stretching from picolinic acid. The high intensity
at about 1000 cm−1 can be attributed to picolinic acid ring breath C- stretching modes.
Finally, the features at about 600 cm−1 allow for a combination of C-C and C-N bending
and stretching modes (see Figure 4).

2.4. Dissolution

We then followed the dissolution of nicomorphine in the two batches by using UV
spectroscopy and HPLC. The in vitro dissolution profiles (Figure 5) of the granulate in-
cluding the API (compositions from the producer not described) show that both analytics
(UV and HPLC) display the same trend of drug release (nicomorphine). Complete drug
release happens within 30 min; however, the final concentration values differ slightly
between the two methods (Figure 5). The error bars are larger in the early stage of the
dissolution for both methods (Figure 5), i.e., the first 10 min, and afterwards appear more
stable for UV. The HPLC display some discrepancies in the dissolution values at the end of
the release, i.e., in the minutes range from 25 to 30 min. Thus, the dissolution evaluations
for both methods appear to be the same with slight differences at the beginning and the
end of the API release.

However, using the UV method enables a quick analysis of samples that can be
performed immediately following the dissolution experiment, and there is no preparation
time for the mobile phase solutions. In some cases, transferring the solutions from the test
tubes to the HPLC vials can increase the potential for analytical errors. While one might
think that analysis of dissolution samples via HPLC would always be the most efficient
and effective method, analysis via UV spectroscopy does provide immediate data and
trends, as well as significant cost savings. On the other hand, there are situations in which
HPLC offers advantages over UV spectroscopy. Depending upon wavelength, the type of
dosage form (e.g., capsules), and the dissolution medium being used, the capabilities of
UV spectroscopy may be limited. Separation via HPLC might be needed to characterize
degradation products and excipients that absorb at the same wavelength as the active one.
Evidently, the porosities in both granulates batches are the same; otherwise, differences in
the pore diameter would cause differences in the in vitro dissolution profiles. The values
cross over 100% drug release in the case of the HPLC indicates some uncertainty with this
method relating to the molecular separations.

2.5. DSC

Finally, the thermotropic behavior of the two batches was observed via DSC. For
each batch, one thermogram is shown in Figure 6. The sample of nicomorphine from
the first supplier shows a sharp endothermic peak at 158.8 ◦C during heating (Figure 6a).
The onset starts at 151.6 ◦C and ends at 164.0 ◦C. The second endothermic peak appears
at a temperature of around 235.4 ◦C. The sharpness of the peaks displays the purity of
the samples and reports only one polymorphic structure. In addition, we obtained an
exothermic transition at 261.3 ◦C before melting. The cooling signal remains at a stable
state without additional transitions.

The other batch of nicomorphine displays an endothermic sharp peak at 160.3 ◦C
during heating (Figure 6b). The onset starts at 152.5 ◦C and ends at 166.0 ◦C. This first
transition shows the same behavior as obtained with previous batches (see Figure 6a).
However, the second endothermic transition is shifted to a temperature of 177.2 ◦C. The
shift indicates the presence of impurity, since the transition signal does not appear as sharp
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as in the first batch (Figure 6b). However, any kind of impurities should cause melting
point depression. In addition, the main exothermic transition remains the same at 261.3 ◦C
and the cooling signal appears stable without showing any additional transition. In general,
the DSC traces show the same trend as the SAXS traces, already concluding the presence of
some minor impurity. This could be either with an additional polymorphic change as a
polymorphic mixture and the presence of an additional polymorph or a minor chemical
impurity, which is obviously not detectable with the standard chemical analytics of Raman
and FTIR.
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3. Materials and Methods
3.1. Materials

The two batches of nicomorphine were obtained in powder form from the G.L. Pharma
Company (Lannach, Austria) with the question of purity. The two batches were produced
by two different suppliers, and the company wanted to decide on one of them.

3.2. Methods
3.2.1. SWAXS

The laboratory’s S3-Microcamera (Hecus X-ray Systems, Graz, Austria) for SWAXS
was used to perform the measurements. The SWAXS (SAXS and WAXS) instrument is
equipped with a high-brilliance micro-beam system. The operation power is 50 kV and
1 mA (50 W), and the optics is point-focus (FOX3D, Xenocs, Grenoble, France) using a 1D
detection system where the data are delivered automatically with the acquisition Hecus
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3D View, Easy SWAXS 3.1 software. The detectors used for recording the SWAXS data
were two separate one-dimensional detectors (PSD-50, Hecus X-ray Systems, Graz, Austria)
having the angular scale for SAXS (0.06◦ < 2θ < 8◦) and for WAXS (17◦ < 2θ < 27◦). An
SAXS range calibration was performed by measuring silver behenate (with known lamellar
spacing of 5.838 nm), whereas the WAXS range calibration was defined by measuring
p-bromo-benzoic-acid. Thus, the scattering angle could be defined to respective detector
pixel signals. The symbol λ refers to the X-ray wavelength with a value of 1.54 Å. The q
vector is built to serve a wavelength-independent scale, i.e., the x or q-scale. The q-scale is
defined by the relation q = 4π sin θ/λ, where θ is the scattering angle. The measurement
exposure time was 10 min, and all measurements were conducted at room temperature.

3.2.2. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)

For the infrared measurements, attenuated total reflectance Fourier transform in-
frared spectroscopy (ATR-FTIR) was performed with a VERTEX 70 (Bruker, Rheinstetten,
Germany). The instrument possessed an ATR unit (MVP Pro Star, Diamond crystal Bruker,
Rheinstetten, Germany) and a DLaTGS detector. For better statistics, multiple measure-
ments were observed and analyzed with IR spectroscopy.

3.2.3. Raman

A Raman Station 400 F spectrometer (Perkin Elmer, Waltham, MA, USA) using
backscattering geometry was used for recording the Raman spectra. The instrument
possessed an echelle spectrograph with a cooled (at −50 ◦C) CCD detector and a laser
source (350 mW near-infrared (785 nm)), delivering a diameter of ca. 100 µm and 100 mW.
The triplet measurements were performed with the exposure time of 1 s. Collection of the
spectra was performed in a mapping mode. To efficiently scan a maximum sample area,
an automatic movement at a defined lateral resolution under the laser irradiation source
was performed. All measurements were conducted sufficiently in statistical terms to avoid
potential statistical artifacts.

3.2.4. Dissolution

Dissolution analytics were performed using a United States Pharmacopoeia (USP)
apparatus I (Pharma Test Type PTWS III C, Pharma Test Apparatebau AG, Hainburg,
Germany) at a rotation speed of 100 rpm and a temperature of 37 ◦C. The quantification
of the nicomorphine followed, via reversed-phase high performance chromatography
(RP-HPLC) and ultraviolet (UV) spectroscopy. A quantitative filter paper was used for
filtration of the collected sample for UV evaluation, and in the case of HPLC evaluation,
filtration was performed through 0.45 µm regenerated cellulose membranes.

3.2.5. Differential Scanning Calorimetry (DSC)

The DSC 204 F1 Phoenix instrument (Netzsch, Selb, Germany) was used for the DSC
measurements. Aluminum pans were filled with the powder samples (4 to 5 mg) and
closed via cold welding and the lid was pierced. A heating rate of 5 ◦C/min was applied
by heating the samples in a temperature range from 20 to 300 ◦C. At the end of the heating
procedure, the samples were kept and equilibrated at 300 ◦C for 5 min. Afterwards, the
samples were cooled down to 20 ◦C using the same rate of 5 ◦C/min. A flow of analytical-
grade nitrogen (20 mL/min) was applied. Triplet measurements were performed for each
batch from each supplier/producer.

4. Conclusions

A better understanding of the fundamental physicochemical behavior of pharmaceu-
tical molecules could be key to significantly increasing the success rate of today’s drug
structure discovery. Pharmaceuticals on the market consist mainly of molecular crystals
in the solid state. The arrangement of molecular crystals determines the physical and
chemical properties of pharmaceuticals and thus affects the formulation and processing of
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pharmaceutical products in solid doses, as well as the stability and speed of dissolution,
which are the key properties of a drug.

In our work, Raman and FT-IR spectra excluded chemical contamination of both
nicomorphine samples, whilst X-ray morphological analysis, especially in the SAXS re-
gion, could identify additional symmetric peaks as differences between the two samples,
reflecting a polymorphic structural change. Additionally, the DSC analysis confirmed the
physical differences between the studied samples from two different manufacturers. Since
only physical and not chemical differences were found in the samples (identified using
SAXS), it can be concluded that some polymorphic reorganization occurred. It is evident in
some initial traces, where additional Bragg peaks are identified only in the SAXS region,
indicating that the beginning of the transformation of this polymorph first occurs at larger
distances of the crystal lattice, visible on the SAXS scale.

The advantages of the SAXS method in pharmaceutical research and development are
discussed in various works on drug delivery and soft materials [25]. However, since an
API is the main part of a pharmaceutical product, supporting API studies by providing
additional parameters and information makes the method even more attractive. Good API
quality leads to a good pharmaceutical product. An API can consist of several different
crystalline forms that then form a polymorph through the process of polymorphism. In gen-
eral, API polymorphism remains a major challenge for the pharmaceutical industry, mainly
because it is difficult to follow or predict the nature of polymorphism. Crystallization of
the molecule into one or more crystalline forms, or combining with other molecules to
form a stable co-crystal, are examples of the nature of polymorphism complexity. However,
several polymorphic forms of a particular API could exist for long or short times due to
their stability. Thus, different polymorphic forms can have characteristics that differ from
each other. Each polymorph can have different chemical, thermal, physical or mechani-
cal properties, which can affect different stability, dissolution, solubility, bioequivalence,
bioavailability and production of the API [26]. Therefore, it is necessary to first characterize
the polymorphic form of the API to understand its nature. If the shape is not compatible
with the formulation, it can cause problems not only in the manufacturing process but
also in the applied therapy. Hence, the quality and purity of API polymorphs are the basis
for improving the stability and efficiency of pharmaceutical products and also avoiding
possible side effects.

However, there are already reports and works about [17,26–43] polymorphism in solids
using mainly X-ray powder diffraction (XRD), presenting it as a common phenomenon in
drugs, which can lead to compromised quality due to changes in their physicochemical
properties. Due to these issues, an increase in resources on this topic is crucial, including
new and deeper methods, since polymorphism must be controlled to prevent possible
ineffective therapy and/or improper dosage. In addition, this also leads us to strengthen
and support this area of analytics, since few mandatory tests for the identification and
control of polymorphism in medications are currently available, which can result in serious
public health concerns. Thus, more commitment is necessary by regulatory and quality
control authorities to monitor polymorphism for all commercial drugs and not only for
research and development [44–55]. The stability of drugs is always an important issue and
aging or instability are for many products still not sufficiently investigated at the nanoscale,
where changes in polymorphism with time can occur without their timely identification [26].
To improve the monitoring of a polymorphism, new techniques should be welcomed to
support and improve analytics, since monitoring includes the control of polymorphism in
raw materials, manufacturing steps and finished products by the end of the shelf life of the
drug. In this manner, possible public health concerns linked to polymorphism in medicines
can be avoided.

Based on many years of experience, we have come to the conclusion that polymorphic
changes and restructuring are much more often encountered and identified in applied
research, i.e., industry, than they are published. The reason for this is that industry research
is often confidential, whereby newly discovered polymorphs are not published and do not
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enter the literature base, which in our opinion should be changed for the general scientific
benefit. We also waited for a 5-year confidentiality period to pass before we could publish
this paper, but we are happy to share this information with the scientific world. According
to our analyses, the company G.L. Pharma could leave the supplier/producer with new
polymorphic API changes due to instability. We know that polymorphic changes can be
important for the stability, release, aging, bioavailability, etc., of pharmaceutical products;
with API physico-structural differences, a drug may effect lower bioavailability in the
human body and thus cause more side effects.

Therefore, the message of this paper is simply to show that the use of additional
non-standard methods with extended resolution scale for structure quality (such as SAXS)
can be very useful for detecting such objections in the drug and thereby avoiding possible
side effects of the drug in human body. The fact is that SAXS is also used like WAXS, XRD
or other methods [17,27–56] in the study of polymorphism [57–86], but these are mainly
self-assembling systems, so it has not yet become a standard method and part of the GMP
in pharmaceutical industry. Therefore, we believe that the introduction of new methods
into the standard pharmacy procedure should be considered for better analysis and quality
control of medicines.
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