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In recent years, continuous progress has been made in the development of new
anticancer drugs, and several compounds (small molecules, engineered antibodies, im-
munomodulators, etc.) have been approved, dramatically changing the landscape of tumor
treatment [1]. Despite these efforts, cancer remains a major threat to human health and one
of the leading causes of death worldwide [2]. This underscores the need for an even better
understanding of the molecular mechanisms behind cancer initiation and progression. To
date, the advent of immunotherapy, gene therapy and molecular targeted therapy has
revolutionized the treatment of most cancers. In targeted therapy, the genetic signature
of each type of cancer is targeted with drugs designed to act against actionable driver
genes, avoiding the side effects of conventional chemotherapy and improving treatment
efficacy. The advent of cancer immunotherapy and gene therapy has enriched the available
armamentarium in the fight against this pathology, even with some limitations [3]. The
efforts of the scientific community against cancer can also be seen in the number of drugs
approved by the FDA for cancer treatment in 2023 (15 out of a total of 55 new drugs) [4].

Over the past few decades, computational methods have become an essential tool
in the drug design process because they can reduce research costs and accelerate the
development process [5]. Several factors have been contributing to the expansion of in
silico applications. The increasing availability of 3D macromolecule structures through
experimental (X-ray or cryo-EM) or computational methods (AlphaFold) [6] allows us to
study most of the genome. The development of supercomputers enables the atom-based
simulation of even larger systems. The availability of ultra-large compound libraries,
which expand the explorable chemical space through screening campaigns, is another
important factor. Furthermore, the growing application of artificial intelligence algorithms
to drug discovery is having an increasing impact: AI algorithms are being applied in a
variety of areas, such as the aforementioned protein structure prediction, QSAR/QSPR,
structure-based modeling, and the prediction of AD-ME/toxicity profiles [7].

The application of computational methods in the design of anticancer drugs has
proven to be very effective [8]. Given the wide variety of tumor types and the large number
of possible pharmacological targets, this is a challenging area of research [2].

For the Special Issue on “Computational Methods in the Design of Anticancer Drugs”,
we aimed to collect the most recent discoveries in the field of anticancer drug design using
computational methods. The 11 articles (8 papers and 3 reviews) cover a wide range of
topics, from pharmacophore modeling to molecular docking, molecular dynamics, and
ADMET prediction, and focus on many different targets, highlighting the diverse target
landscape in cancer treatment.

Bülbül et al. (contribution 1) focused on the development of novel selective HDAC3
(Histon DeACetylase 3) inhibitors containing the alkylhydrazide zinc-binding group. They
generated and evaluated pharmacophore and atom-based QSAR models, and the binding
mode of compounds was determined using molecular docking and molecular dynamics
simulations. The developed models provide a clear explanation for the in vitro data.

Moreover, Córdova-Bahena et al. (contribution 2) generated a pharmacophore model
using a set of well-known Casein Kinase 1 isoform epsilon (CK1ε) inhibitors. The resulting
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model was used to screen a library of FDA-approved drugs for repositioning purposes.
Molecular docking and molecular dynamics were used to analyze new compounds. The
antineoplastic drug Etravirine, which activates the WNT pathway in osteosarcoma cells by
increasing the expression of the cyclin-dependent kinase (CDK) inhibitor p21, emerged as a
CK1ε inhibitor.

In addition, Bhujbal et al. (contribution 3) focused on Polo-like kinase 1 (PLK1) in-
hibitors, which can be used to treat various types of cancer, such as lung, colon, prostate,
ovarian, breast, melanoma, and AML. They performed hybrid 3D-QSAR and molecu-
lar docking to design potent and selective inhibitors. Two compounds showed good
IC50 values.

Crocetti and coworkers (contribution 4) used a ligand-based technique to develop more
potent fatty acid binding protein 4 (FABP4) inhibitors, starting with a known pyrimidine
ligand and applying bioisosteric replacements and scaffold hopping in the pyrimidine skele-
ton. They synthesized and biologically tested novel 4-amino and 4-ureido-pyridazinone-
based compounds as FABP4 inhibitors. The molecular docking study confirmed the ability
of the most active molecules to better interact inside the FABP4 binding pocket.

Al-Zahrani et al. (contribution 5) virtually screened 1289 flavonoids using molecular
docking to the mitogen-activated protein kinase (MAPK) MEK1. ADMET prediction and
100 ns molecular dynamics (MD) simulations were then applied to the top five docked
compounds, revealing them as promising potent inhibitors.

Franco et al. (contribution 6) focused on the inhibition of nicotinic acid phospho-
ribosyl transferase (NAPRT), the rate-limiting enzyme of the Preiss–Handler NAD biosyn-
thetic pathway, which can overcome resistance to nicotinamide phosphoribosyl transferase
(NAMPT) inhibition and lead to better anti-tumor effects. Selected hits from the virtual
screening were tested in a cellular assay using the ovarian cell line OVCAR-5, and the
recombinant hNAPRT and showed a synergistic effect with the NAMPT inhibitor FK866.

The same research group (contribution 7) performed a structure-based virtual screen-
ing on a 537,009 drug-like compound library and identified two additional chemical
scaffolds that functioned as NAPRT inhibitors. The new compounds showed compa-
rable anti-cancer activity with respect to the previously discovered NAPRT inhibitor, 2-
hydroxynicotinic acid (2-HNA), a better predicted solubility, and favorable
drug-like properties.

Bartelink et al. (contribution 8) applied a computational method to develop a physio-
logical pharmacokinetic (PBPK) model to predict the image quality (tumor-to-lung contrast)
of three PET radiotracers binding the epidermal growth factor receptor tyrosine kinase
(EGFR TKI PET/CT: 11C-erlotinib, 18F-afatinib and 11C-osimertinib), used to assess EGFR
overexpression and mutation in NSCLC. The model was also developed to predict the
uptake of healthy tissue in three radiolabeled EGFR ligands.

Finally, there are three reviews in this Special Issue. One, written by Wang et al.
(contribution 9), focuses on applications of artificial intelligence in the design of anticancer
drugs, demonstrating the basic ideas behind these techniques, as well as their advantages
and disadvantages. The authors reviewed the literature from the past decade, focusing
on all articles presenting computational studies using AI to assist in the identification
of effective cancer treatments. In addition, the authors provided a compilation of useful
databases (omics, chemical compounds, drugs, etc.) as a valuable tool in the application of
AI for drug discovery.

Primavera et al. (contribution 10) focused on small-molecule AKT inhibitors that
were validated for anticancer activity using computer-aided drug design methods. The
authors provided an introductory analysis of AKT structural features and binding sites.
Then, a comprehensive analysis of inhibitors identified via different approaches (pharma-
cophore screening, docking, QSAR, machine learning) is reported, distinguishing between
orthosteric and allosteric binders.

In our review (contribution 11), we examined the most relevant papers that elucidated
the binding mechanism of PD-L1 with PD-1 and small molecules through computational
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analyses. In particular, the hot spot residues involved in the interaction between PD-L1
and PD-1 and the PD-L1 dimerization induced by small molecule binding are described.
Virtual screening campaigns, mainly structure-based, that were performed to identify new
small-molecule PD-L1 binders are also reported.

As Guest Editors, we hope that the findings included in this Special Issue will inspire
further investigations in this challenging field.
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