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Abstract: This study aimed to explore the mechanism through which Tibetan medicine Liuwei
Muxiang (LWMX) pills acts against colorectal cancer (CRC). We firstly retrieved the active ingredients
and the correlated targets of LWMX pills from public databases. The CRC-related targets were
determined through bioinformatic analysis of a public CRC dataset. By computing the intersection of
the drug-specific and disease-related targets, LWMX pill–CRC interaction networks were constructed
using the protein–protein interaction (PPI) method and functional enrichment analysis. Subsequently,
we determined the hub genes using machine learning tools and further verified their critical roles
in CRC treatment via immune infiltration analysis and molecular docking studies. We identified
81 active ingredients in LWMX pills with 614 correlated targets, 1877 differentially expressed genes,
and 9534 coexpression module genes related to CRC. A total of 5 target hub genes were identified
among the 108 intersecting genes using machine learning algorithms. The immune infiltration analy-
sis results suggested that LWMX pills could affect the CRC immune infiltration microenvironment by
regulating the expression of the target hub genes. Finally, the molecular docking outcomes revealed
stable binding affinity between all target hub proteins and the primary active ingredients of LWMX
pills. Our findings illustrate the anti-CRC potential and the mechanism of action of LWMX pills and
provide novel insights into multitarget medication for CRC treatment.

Keywords: colorectal cancer; Liuwei Muxiang pills; network pharmacology; bioinformatics; traditional
Tibetan medicine

1. Introduction

According to global cancer statistics, colorectal cancer (CRC) ranks third in incidence
and second in mortality rate among all kinds of malignant tumors [1]. It is a critical cancer
that imposes a severe public health burden worldwide. Surgical resection, chemoradiother-
apy, and molecular-targeted therapy are the principal treatment strategies for patients with
CRC at present [2]. However, the accompanying adverse effects, limited survival improve-
ment, susceptibility to drug resistance, and heavy economic burden of these treatment
schemes indicate that the current clinical treatment status of CRC is still not optimal [3].
Therefore, there is an urgent need to explore and develop new candidate drugs for CRC
with reliable potency, minimal toxicity, and a desirable cost-effectiveness.

Traditional Chinese medicine has been utilized in anticancer therapy for a long time.
Currently, a growing number of clinical trials have shown that traditional Chinese medicine
is helpful for the prevention and treatment of multiple kinds of tumors. For instance, in a
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recent randomized controlled trial of non-small-cell lung cancer, patients who had received
oral Shenlingcao liquid combined with conventional chemotherapy declared better quality
of life and greater improvements in cancer-related symptoms after radical resection in
comparison with those who had received conventional chemotherapy alone [4]. In terms
of hepatocellular carcinoma, the latest clinical trials have also confirmed that traditional
Chinese medicine can help reduce its incidence and improve the prognosis in patients [5,6].
Practitioners of traditional Tibetan medicine (TTM), an influential part of Chinese herbal
medicine, have constructed a whole theoretical, clinical medicine system based on empiri-
cal experience gained during the past few centuries [7]. TTM is now widely accepted in
various Asian countries, and studies have shown that it has definite curative effects in pre-
venting cancerous lesions and reducing adverse reactions after anticancer therapy [8–11].
Additionally, the complex mechanisms through which TTM therapy functions in various
types of cancer have been elucidated using emerging network pharmacology-based meth-
ods [12,13]. Since network pharmacology-based techniques conform to the “multi-target”
and “multi-pathway” concepts of TTM treatment, they can provide researchers with a
systematic understanding of the interacting networks of disease targets, medications, and
pathways, which is critical in TTM-based drug development [14].

As a widely accepted TTM drug, Liuwei Muxiang (LWMX) pills have been recorded
in the officially promulgated TTM Standard by the Chinese Ministry of Health since 1995
(drug code: WS3-BC-0283-95). The prescription of LWMX pills consists of six traditional
Chinese herbal drugs, including Aucklandiae Radix (Chinese: “Muxiang”), Phyllanthi Fructus
(Chinese: “Yuganzi”), Amomi Fructus Rotundus (Chinese: “Doukou”), Piperis Longi Fructus
(Chinese: “Biba”), Punica granatum (Chinese: “Shiliuzi”), and Veronica eriogyne (Chinese:
“Baxiaga”). According to TTM theory, LWMX pills function by “smoothing blood flow,
clearing stomach fire, and removing blood stasis”, which means that LWMX pills have
anti-inflammatory and anticancer effects, especially in gastrointestinal diseases. Several
previous studies have reported LWMX pills’ effectiveness and potential mechanisms in
treating gastrointestinal inflammation and carcinoma [15–17]. Nevertheless, the mechanism
through which LWMX pills function in CRC remains unexplored.

In this current study, we utilized network pharmacology-based analysis to identify
the pharmacological interaction network of LWMX pills with CRC. Furthermore, several
machine learning methods were employed to identify the target hub genes related to the
anti-CRC effects of LWMX pills. Subsequently, we performed further validation with im-
mune infiltration and molecular docking analyses. Our findings demonstrate the potential
anti-CRC mechanism of LWMX pills at the molecular and pathway levels, providing novel
evidence for TTM application in CRC treatment.

2. Results
2.1. Acquisition of the Drug Targets and Disease Targets

By searching the Traditional Chinese Medicine Systems Pharmacology Database and
Analysis Platform (TCMSP) and the SwissTargetPrediction database, we obtained 81 active
ingredients from the 6 TTM constituents of LWMX pills, which correlated with 614 target
genes (Supplementary Tables S1 and S2). Before performing differential expression analysis,
we normalized the CRC dataset to eliminate the batch effect (Supplementary Figure S1).
By performing differential expression analysis on the GSE44076 dataset, we discovered
1877 differentially expressed genes (DEGs). We graphically represent our data with a
heat map and a volcano plot (Figure 1a,b; Supplementary Table S2). Furthermore, we
employed weighted gene correlation network analysis (WGCNA) to establish a gene
coexpression network using the GSE44076 dataset to identify key gene modules related
to CRC. According to the scale independence and mean connectivity analyses, we found
that the optimal soft threshold was eight (Figure 1c,d). Subsequently, we constructed
a coexpression network, clustered the genes, and divided the gene modules using the
dynamic tree cut method. After merging similar modules, we obtained 12 different gene
modules, and the cluster dendrogram is depicted in Figure 1e. Moreover, based on the
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gene coexpression network, we plotted a network heat map of the correlations among
genes in each module (Figure 1f). Afterwards, the module–trait relationship analysis of
these 12 modules was performed, and the results suggested that the blue module (i.e.,
MEblue) showed the most prominent association with CRC/non-CRC control phenotypes
(Figure 1g). Further analysis revealed that there was a significant positive correlation
between gene significance (GS) for CRC and module membership (MM) in the blue module
(Figure 1h). In summary, the 9534 genes in the blue module were considered potential
target genes for CRC (Supplementary Table S2).
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Figure 1. Acquisition of relevant targets of LWMX pills in CRC. (a) Heat map of the 50 most significant
DEGs. (b) Volcano plot of the DEGs. (c,d) Scale independence and mean connectivity analysis in
WGCNA. (e) Cluster dendrogram and separation of gene modules in WGCNA. Different modules
are represented using different colors. (f) Network heat map of the correlation among the module
genes. (g) The diagram of module–trait relationship analysis for the 12 modules. (h) The scatterplot
of GS for CRC vs. MM in the blue module.
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2.2. Potential Target Prediction of LWMX Pills in CRC and Construction of Protein–Protein
Interaction (PPI) and Drug–Disease Networks

We obtained 108 genes by computing the intersection of the DEGs, the key module
genes in the WGCNA, and the target genes of the active ingredients in the LWMX pills
(Figure 2a; Supplementary Table S2). These intersecting genes were predicted to be potential
targets of LWMX pills in CRC treatment. By importing these intersecting target genes into
the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, we
obtained a primary PPI network diagram (Figure 2b). Afterward, we input the original PPI
information into Cytoscape 3.9.0 for visualization processing (Figure 2c). In the resulting
visualized PPI network, the higher the degree value of a given target protein, the larger its
node size, indicating that the protein played a more critical role in CRC treatment using
LWMX pills by interacting with other targets. The top 20 target proteins with the highest
degree values and their PPI information are shown in Table 1. Furthermore, we constructed
a LWMX pill–CRC network, including 60 active ingredients, 108 intersecting target genes,
6 TTM constituents, and 1 CRC disease node (Figure 2d). The active ingredients with the
highest degree values, such as quercetin, (-)-epigallocatechin-3-gallate, luteolin, palmitoleic
acid, and oleic acid, might interfere with the development of CRC through interactions
with cancer-related targets (Table 2).
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Figure 2. Potential target prediction of LWMX pills in CRC treatment and construction of PPI and
drug–disease network. (a) Venn diagram of potential target prediction. (b) The original PPI network
of the intersecting targets. (c) The visualized PPI network of the intersecting targets. (d) LWMX
pill–CRC network diagram. The red arrow represents CRC. The blue triangles represent LWMX
pills’ constituents. The purple squares represent active ingredients. The green circles represent the
intersecting targets. The connecting lines represent the associations among nodes.
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Table 1. Information on the top 20 targets sorted by degree value.

Full Target Name Target
Acronym Degree Betweenness

Centrality Closeness Centrality

Interleukin-1 beta IL1B 90 0.035500531 0.868852459
Prostaglandin G/H

synthase 2 PTGS2 89 0.035478698 0.861788618

Transcription factor Jun JUN 89 0.035418858 0.861788618
MAP kinase-activated protein kinase 3 MAPK3 85 0.030411643 0.834645669

Peroxisome proliferator-activated receptor gamma PPARG 85 0.026629396 0.834645669
Myc proto-oncogene protein MYC 83 0.026441028 0.821705426

Heat shock protein HSP 90-beta HSP90AB1 82 0.026165911 0.815384615
Protein c-Fos FOS 80 0.034046611 0.796992481

ATP-dependent
translocase ABCB1 ABCB1 79 0.025695306 0.796992481

Interleukin-1 alpha IL1A 72 0.016995181 0.757142857
G1/S-specific cyclin-D1 CCND1 71 0.015427766 0.75177305

Heme oxygenase 1 HMOX1 67 0.011811346 0.726027397
Glucocorticoid receptor NR3C1 67 0.02356451 0.731034483

Angiotensinogen AGT 66 0.014954789 0.721088435
Fatty acid synthase FASN 65 0.020256702 0.716216216
Cyclin-dependent
kinase inhibitor 1 CDKN1A 64 0.017355073 0.716216216

Broad substrate
specificity ATP-binding cassette

transporter ABCG2
ABCG2 64 0.010097723 0.711409396

Poly [ADP-ribose]
polymerase 1 PARP1 60 0.008521068 0.692810458

Cyclin-dependent
kinase 4 CDK4 59 0.014661166 0.692810458

Pro-glucagon GCG 59 0.009433137 0.688311688

Table 2. Information on the top 20 active ingredients sorted by the degree value.

Ingredient Code Ingredient Name Degree Betweenness
Centrality Closeness Centrality

MOL000098 Quercetin 46 0.028875395 0.393665158
MOL006821 (-)-Epigallocatechin-3-gallate 30 0.034899926 0.404651163
MOL000006 Luteolin 24 0.009673829 0.373390558

SLZ2 Palmitoleic acid 22 0.011690763 0.397260274
SLZ5 Oleic acid 21 0.010631126 0.395454545

SLZ11 9,12-hexadecadienoic acid 19 0.009826783 0.397260274
SLZ6 Linoleic acid 19 0.008236272 0.391891892
SLZ1 Palmitic acid-13C 19 0.009049947 0.376623377
SLZ9 Gondoic acid 18 0.008683739 0.390134529

SLZ10 Linolenic acid 18 0.008140464 0.390134529
SLZ3 Margaric acid 18 0.007711383 0.375
SLZ7 Γ-linolenic acid 18 0.009737845 0.391891892
BXG3 Protocatechuic acid 18 0.020991044 0.379912664
SLZ4 Stearic acid-1-13C 17 0.00703053 0.373390558

SLZ12 L-aspartic acid 15 0.005323021 0.345238095
SLZ13 L-glutamic acid 15 0.005323021 0.345238095
SLZ14 Sericic acid 14 0.00715489 0.381578947
SLZ8 Arachidic acid 13 0.003773497 0.348

MOL000358 Beta-sitosterol 10 0.004651937 0.335907336
MOL000422 Kaempferol 10 0.003127066 0.341176471
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2.3. Functional Enrichment Analysis and Construction of Ingredient–Target–Pathway Network

We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses on these 108 intersecting target genes. The results of
the GO analysis are shown in Figure 3a. The potential target genes were mainly enriched in
the following biological process (BP) terms: fatty acid metabolic process, response to fatty
acid, regulation of lipid metabolic process, lipid catabolic process, and response to drug. The
enriched cellular component (CC) entries included the apical part of cell, cytoplasmic vesicle
lumen, vesicle lumen, basolateral plasma membrane, and peroxisomal matrix. The enriched
molecular function (MF) terms included hydrolyase activity, carbon-oxygen lyase activity,
carbonate dehydratase activity, monocarboxylic acid binding, and lyase activity. In addition,
according to the KEGG pathway enrichment analysis, these intersecting target genes were
primarily enriched in signaling pathways such as the PPAR signaling pathway, pathways
in nitrogen metabolism, the TNF signaling pathway, pathways associated with thyroid
cancer, and pathways in alcoholic liver disease (Figure 3b). Furthermore, based on the top
20 pathways in the KEGG analysis, we used Cytoscape 3.9.0 to construct an ingredient–
target–pathway network diagram for CRC treatment with LWMX pills (Figure 3c).

2.4. Determination of Target Hub Genes with Machine Learning

To further determine the critical hub genes in CRC treatment using LWMX pills, we
set the capability to discriminate between CRC samples and non-CRC samples in the
GSE44076 dataset as the evaluation criterion and filtered the 108 intersecting target genes
using three machine learning algorithms. With the support vector machine–recursive
feature elimination (SVM-RFE) algorithm, we identified 10 core target genes, including
LDLR, TUBB3, JUN, CTSG, EPHA2, CDKN1C, AGT, FOS, CAT, and NQO2 (Figure 4a,b).
As a result of least absolute shrinkage and selection operator (LASSO) analysis, 15 genes
(GCG, AUH, UBA2, TUBB3, JUN, CAT, CFD, AGT, LDLR, NQO2, GSTA1, EPHA2, FOS,
CTSG, and CDKN1C) out of 108 were selected as core target genes (Figure 4c,d). According
to the random forest (RF) algorithm, used to calculate the variable importance (VIP) values
of all potential target genes, we obtained 17 core genes (EGR1, FOS, HADHB, ACADM,
NR4A2, JUNB, JUN, ACLY, CDKN1C, PTGS2, ADORA3, EPHA2, EGLN1, AKR1C3, PDE6A,
TUBB3, and CHRM3) whose VIP values were greater than 0.5 (Figure 4e,f). By computing
the intersection of these machine-learning-predicted core target genes, five of them (TUBB3,
JUN, EPHA2, FOS, and CDKN1C) were identified as the target hub genes of CRC treatment
with LWMX pills (Figure 4g). Subsequently, we conducted gene correlation (Figure 4h) and
expression analyses on different samples for these five target hub genes (Figure 4i–m). The
results showed that they are closely related to each other, and their expression levels are
significantly higher in CRC tissues than in non-CRC tissues.

2.5. Immune Infiltration Analysis

Firstly, we used cell-type identification by estimating relative subsets of RNA tran-
scripts (CIBERSORT) tool to visualize the infiltration of the 22 immune cells within each
sample in the GSE44076 dataset (Figure 5a). Then, we analyzed the distinctions in the
infiltration of the different immune cells in CRC tissues and non-CRC controls (Figure 5b).
The results suggested that in the CRC samples, the proportions of M0 macrophages, M1
macrophages, and activated mast cells were remarkably higher in CRC samples, while
those of plasma cells, regulatory T cells, M2 macrophages, resting dendritic cells, resting
mast cells, and eosinophils were significantly lower in CRC tissues. Furthermore, we
analyzed the correlation between the expression levels of the five target hub genes and
the infiltration of various types of immune cells (Figure 5c). The outcomes revealed that
the relative abundance of eosinophils and resting mast cells were significantly negatively
correlated with the expression levels of all the hub genes; on the other hand, the proportion
of activated mast cells was significantly positively associated with the expression levels of
all five hub genes.
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Figure 3. Functional enrichment analysis and the ingredient–target–pathway network of LWMX
pills in CRC. (a) Bar plot from the GO analysis. (b) Bubble plot from the KEGG analysis. (c) The
ingredient–target–pathway network diagram in CRC treatment using LWMX pills. The blue triangles
represent LWMX pills’ constituents. The green circles represent the intersecting targets. The orange
rectangles represent signaling pathways. The purple squares represent active ingredients. The
connecting lines represent the associations among nodes.
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Figure 4. Determining target hub genes through machine learning methods. (a,b) The accuracy and
error rate curves of 5-fold cross-validation based on the SVM-RFE algorithm. (c,d) The coefficients
and regularization diagrams from the LASSO analysis. (e,f) The error rate curve and VIP evaluation
from the RF method. (g) Venn diagram of hub target identification. (h) Heat map of the correlation
analysis among these five hub genes. (i–m) The box plots of the expression analysis of the hub targets
based on the GSE44076 dataset.
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Figure 5. Immune infiltration analysis of the target hub genes. (a) Stacked column chart of the
infiltration of multiple types of immune cells in each sample of the GSE44076 dataset. (b) Box plot of
different immune cells’ infiltration between CRC and normal samples. (c) Heat map of the correlation
between immune infiltration and the hub genes’ expression.

2.6. Molecular Docking

Molecular docking analysis was conducted to verify the binding potential between the
active ingredients of LWMX pills and the target hub genes. The corresponding structural
files of the five target hub genes from the Protein Data Bank (PDB) were prepared as protein
receptors, including TUBB3 (PDB ID: 6S8L), JUN (PDB ID: 6Y3V), EPHA2 (PDB ID: 1MQB),
FOS (PDB ID: 1A02), and CDKN1C (PDB ID: 4G5Y). The four active ingredients with
the highest degree values were selected as drug ligands: quercetin, (-)-epigallocatechin-3-
gallate, luteolin, and palmitoleic acid. The heat map of target–ingredient binding energy
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is shown in Figure 6a. It is widely accepted that a binding energy between a receptor
protein and a ligand compound of lower than −5 kcal/mol indicates corroborative binding
affinity [18]. Our findings revealed that all four active ingredients had remarkable binding
potential with respect to the target hub genes. Moreover, several typical target–ingredient
binding interactions with intense binding activity are visualized in Figure 6b–e.
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Figure 6. Molecular docking analysis of the active ingredients of LWMX pills with the target
hub proteins. (a) Heat map of binding energy between active ingredients and target hub proteins
(kcal/mol). (b) The docking map of (-)-epigallocatechin-3-gallate-FOS interaction, with a binding
energy of −8.46 kcal/mol. (c) The docking map of (-)-epigallocatechin-3-gallate-TUBB3 interaction,
with a binding energy of −8.14 kcal/mol. (d) The docking map of (-)-epigallocatechin-3-gallate-
EPHA2 interaction, with a binding energy of −7.49 kcal/mol. (e) The docking map of palmitoleic
acid-FOS interaction, with a binding energy of −7.30 kcal/mol.
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3. Discussion

CRC has become one of the most prevalent malignancies, imposing a severe public
health burden worldwide. It is the third most common carcinoma and the second most fatal
malignant cancer [1]. Although surgical resection, chemoradiotherapy, and immunotherapy
are applied for CRC treatment in clinical practice, their effectiveness is frequently limited by
poor survival improvement, along with drug resistance, unbearable side effects, and high
costs [3,19]. Consequently, it is crucial to develop novel potential drugs for CRC treatment
with higher effectiveness and lower toxicity.

TTM has been employed to treat various types of cancer for centuries and is generally
accepted across China and several other Asian countries [8]. It has been demonstrated
that TTM drugs are efficacious against various types of cancers: they prevent inflam-
matory injuries and have comparatively weaker side effects [20,21]. As a conventional
anti-inflammation and anticancer TTM drug, LWMX pills comprise six Tibetan herbal
medications that have anti-CRC potential. Specifically, numerous studies have indicated
that Punica granatum exhibits strong anti-CRC therapeutic ability [22–24]. Additionally,
Phyllanthi Fructus has been reported to have the potential to protect normal human colon
epithelial NCM460 cells from mitotic aberrations and genomic instability partially by reg-
ulating the spindle assembly checkpoint [25]. In addition, it was suggested that a herbal
preparation of Aucklandiae Radix can effectively ameliorate 5-FU-induced gastrointestinal
mucositis in CRC chemotherapy [26]. Notably, a recent mouse-model-based study by
Dhondrup et al. proved that LWMX pills are able to treat chronic gastritis and prevent
gastric cancer progression by inhibiting inflammation and oxidative stress [15]. Despite
TTM practitioners commonly prescribing LWMX pills for anti-CRC therapy, the molecular
mechanism of this medication had not yet been fully elucidated.

Our study is based on network pharmacology prediction and molecular docking
analysis, since these methods are suitable for comprehensively discovering the interaction
network of CRC-related targets, the active ingredients of LWMX pills, and key signaling
pathways. Similar techniques have also been utilized in several recent studies on Chi-
nese herbal medicine used for CRC treatment [27–29]. In this research, we first identified
81 bioactive ingredients in LWMX pills with 614 drug targets from LWMX pills, 1877 dif-
ferentially expressed CRC genes, and 9534 coexpression CRC module genes. Next, the
resulting 108 intersecting genes were analyzed using the PPI method, GO analysis, and
KEGG enrichment analysis. LWMX pill–CRC interaction networks and the outcomes of
the functional enrichment analysis indicated that multitarget CRC treatment with LWMX
pills involves multiple biological processes, such as inflammatory responses and cell cycle
regulation. Subsequently, five target hub genes (TUBB3, JUN, EPHA2, FOS, and CDKN1C)
were identified by using several machine learning algorithms. The findings of the immune
infiltration analysis suggested that LWMX pills can affect the CRC immune microenviron-
ment by regulating the expression levels of target hub genes, thereby exerting a therapeutic
effect on CRC. Finally, the molecular docking results revealed stable binding affinity be-
tween all target hub proteins and the primary active ingredients of LWMX pills; therefore,
we speculate that these possible interactions between the two are essential in the CRC
regulation mechanism of this TTM medication.

Following the evaluation of the diagnostic potential of the intersecting genes, we
selected five target hub genes using machine learning methods. One of them, TUBB3, was
found to have a positive correlation with epithelial–mesenchymal transition, cell growth,
and apoptosis in several CRC cell lines [30,31]. As a crucial part of the CRC-related JNK
signaling pathway, JUN can be regulated by numerous upstream targets to further impact
tumor growth, CRC cell invasion, and apoptosis [32,33]. In accordance with the results
of our KEGG analysis, Yan et al. recently found that in the IL-17 pathway, the deletion of
the IL-17 receptor decreases the expression level of A20, which activates the JNK/c-JUN
pathway and promotes tumor invasion, growth, and metastasis in patients with CRC [34].
High serum levels of EPHA2 have been previously determined in patients with CRC [35].
Additionally, the methylation of EPHA2 is regulated by several N6-methyladenosine modi-
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fication proteins, thus promoting vasculogenic mimicry formation via PI3K/AKT/mTOR
and ERK signaling pathways in CRC [36]. The transcription level of FOS has been shown to
be downregulated by piperlongumine, an active ingredient of Piperis Longi Fructus, which
can further inhibit cell growth, colony formation, and in vivo tumorigenesis in CRC [37].
CDKN1C has been reported to play a role in the regulation of the CRC cell cycle and drug
resistance to paclitaxel [38]. In a study by Yang et al., CDKN1C was proven to participate in
regulating the CRC cell cycle and proliferation under the influence of Lappaol F, a natural
compound from a Chinese herbal drug [39].

By performing an immune infiltration analysis of the five target hub genes, we found
that they likely play a critical role in the invasion process of various immune cell types,
especially mast cells and eosinophils. It is widely accepted that the CRC-infiltrating
eosinophils mainly regulate their antitumor cytotoxicity by regulating cytokines such
as IFNγ and IL-18 [40,41]. However, the function of the CRC-infiltrating mast cells re-
mains controversial [42]. In addition, according to our molecular docking outcomes, (-)-
epigallocatechin-3-gallate seems to be a critical bioactive ingredient in LWMX pills. In terms
of antigastrointestinal cancer therapy, this compound has been reported to be involved in
the suppression of tumor cell proliferation, inhibition of metastasis, induction of cell cycle
arrest, prevention of inflammation process, and blockage of tumor angiogenesis [43].

There are several limitations to our study. Firstly, more ingredient–target pairs should
be analyzed using molecular docking. Secondly, an additional analysis of CRC prognosis
using relevant public databases could be considered. Thirdly, our findings need to be
further validated with both in vivo and in vitro experiments.

4. Materials and Methods
4.1. Acquisition of Relevant Targets of LWMX Pills

We first retrieved relevant data about four constituents of LWMX pills, namely, Auck-
landiae Radix, Phyllanthi Fructus, Amomi Fructus Rotundus, and Piperis Longi Fructus, from
the TCMSP (https://www.tcmsp-e.com/, accessed on 10 November 2023) [44]. According
to the pharmacokinetic parameters provided by the TCMSP, we determined the qual-
ified active ingredients in these herbal constituents by using filter criteria: both oral
bioavailability ≥ 30% and drug likeness ≥ 0.18 [45]. Then, we searched for the corre-
sponding target proteins of each active ingredient. To determine the qualified active
ingredients of Punica granatum and Veronica eriogyne, which were not included in the
TCMSP, we additionally reviewed the literature and obtained the typical SMILES struc-
tures of the small-molecule monomers mentioned in those studies from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 10 November 2023) [46,47].
Afterward, we imported these SMILES files into the SwissTargetPrediction database
(http://www.swisstargetprediction.ch/, accessed on 10 November 2023) to predict the cor-
responding target proteins for these bioactive compounds. These genes’ UniprotIDs were then
interpreted using the ID mapping tool of the Uniprot database (https://www.uniprot.org/,
accessed on 10 November 2023) [48]. At last, we combined the targets’ information men-
tioned above and obtained the drug targets of LWMX pills after removing any duplicates.

4.2. Acquisition of CRC-Related Targets

We searched the CRC dataset from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/, accessed on 10 November 2023) using the keyword
“Colorectal cancer”. As the training dataset obtained from our retrieval, the GSE44076
dataset contained data from 98 CRC samples and 50 healthy control samples [49]. All
the data analyzed in this study were extracted from the GEO database; thus, no ethical
approval or informed consent was required. In the next step, we used R 4.1.2 to normalize
the above data and then identified the DEGs associated with CRC using two criteria: |log2
fold change (FC)| ≥ 0.585 and adjusted p-value < 0.05. Subsequently, we performed
WGCNA to determine coexpression modules [50]. The top 25% most significant DEGs
were applied in the WGCNA to ensure the accuracy of the results. Firstly, we selected an

https://www.tcmsp-e.com/
https://pubchem.ncbi.nlm.nih.gov/
http://www.swisstargetprediction.ch/
https://www.uniprot.org/
http://www.ncbi.nlm.nih.gov/geo/
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optimal soft threshold to construct a weighted adjacency matrix and further converted it
into a topological overlap matrix (TOM). When the minimum module size was set to 100,
modules were created using the TOM similarity metric using the hierarchical clustering tree
algorithm. Each module is represented by a certain color. The relationship between modules
and disease states was quantified according to MM. GS was defined as the correlation
between a gene and the corresponding clinical phenotype.

4.3. Potential Target Prediction of LWMX Pills in CRC Treatment

By using a Venn diagram drawn with R 4.1.2, we intersected those previously described
DEGs, the CRC-associated targets that were discovered with WGCNA, and the drug targets
of LWMX pills to obtain several intersecting target genes that were predicted to be potential
targets of LWMX pills in CRC treatment.

4.4. Construction of PPI Network and Drug–Disease Network

We imported the aforementioned intersecting targets into the STRING database
(https://cn.string-db.org/, accessed on 14 November 2023), an online bioinformatics
database designed to provide information on gene and protein interactions, in order to
obtain a PPI network in the context of LWMX pill–CRC interactions [51]. Furthermore, we
selected interaction scores ≥ 0.4 as a criterion to obtain a simplified PPI network diagram.
Subsequently, we adopted Cytoscape 3.9.0 to visualize the PPI diagram and constructed
the LWMX pill–CRC network diagram [52].

4.5. Functional Enrichment Analysis and Construction of Ingredient–Target–Pathway Network

To explore the possible biological functions and main signaling pathways in CRC
treatment with LWMX pills, we conducted GO and KEGG pathway enrichment analyses on
the intersecting targets using the ClusterProfiler package in R software 4.1.2 [53,54]. After
filtering with the criterion of q-value <0.05, we ranked the qualifying terms in descending
order according to their enrichment scores. The bar plot and bubble plot of our data were
thus created. In addition, based on the LWMX pill–CRC network and the outcomes of the
functional enrichment analysis, an ingredient–target–pathway network diagram of CRC
treatment with LWMX pills was delineated using Cytoscape 3.9.0 (Institute for Systems
Biology, Seattle, WA, USA).

4.6. Determination of Hub Genes with Machine Learning

Three machine learning algorithms, LASSO, SVM-RFE, and RF, were used to further
identify the hub genes among the intersecting target genes [55–57]. With these machine
learning methods, specific genes that could allow for distinguishing patients with CRC
from healthy control subjects were identified among the intersecting targets. The specific
targets that were selected by all three algorithms were deemed to be the hub genes in CRC
treatment with LWMX pills. In the LASSO analysis, the glmnet package from R 4.1.2 was
applied for the 10-fold cross-validation. In the SVM-RFE analysis, the e1071 and svmRadial
packages were employed for feature classification. Furthermore, the randomForest package
was used to establish an RF classification model, and feature genes were sorted according to
their VIP values. Finally, we determined the hub genes by computing the intersection of the
genes identified with the machine learning algorithms in the LWMX pill–CRC interaction,
which was followed by gene correlation analysis and differential expression analysis.

4.7. Immune Infiltration Analysis

We utilized the CIBERSORT algorithm (https://cibersortx.stanford.edu/, accessed on
15 November 2023) for immune infiltration analysis, with the aim of evaluating the potential
link between the target hub genes and changes in the immune microenvironment of patients
with CRC [58]. After estimating the relative proportion of 22 types of immune cells in
each sample from the GSE44076 dataset, the immunological scores of these samples were

https://cn.string-db.org/
https://cibersortx.stanford.edu/
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calculated using the ESTIMATE algorithm. In addition, the correlation between the hub
genes and the immune cells was determined by performing Spearman correlation analysis.

4.8. Molecular Docking

At first, we extracted the target hub proteins’ structures from the PDB database
(https://www.rcsb.org/, accessed on 17 November 2023) and acquired the identified
active ingredients’ structures from the PubChem database [59]. These structural files were
then preprocessed with Auto Dock 4.2.6 (Scripps Research, La Jolla, CA, USA) (i.e., we
removed water and added hydrogen) and converted them into PDBQT format [60]. Next,
the binding sites of the target hub proteins were analyzed, and the corresponding docking
active pockets were determined. After importing the structural files of the proteins and
vital active ingredients into Auto Dock Vina 1.1.2 (Scripps Research, La Jolla, CA, USA), we
performed the docking verification. Subsequently, the output results were plotted into a
heat map to visualize the potential binding affinity of these crucial bioactive compounds
and the target hub proteins. Finally, several emblematic docking maps were depicted using
Discovery Studio Visualizer v2021 (BIOVIA, Paris, France).

5. Conclusions

In this study, we identified the vital active ingredients and potential targets of LWMX
pills in CRC treatment. LWMX pill–CRC interaction networks and the outcomes of the
functional enrichment analysis indicated that multitarget CRC treatment using LWMX
pills involves multiple biological processes, such as the inflammatory response and cell
cycle regulation. We identified five target hub genes (TUBB3, JUN, EPHA2, FOS, and
CDKN1C) using machine learning tools. The findings of the immune infiltration analysis
suggested that LWMX pills can affect the immune microenvironment in CRC by regulating
the expression levels of the target hub genes. The molecular docking outcomes revealed
promising binding affinity among all target hub proteins and the primary active ingredients
of LWMX pills, such as quercetin, (-)-epigallocatechin-3-gallate, luteolin, and palmitoleic
acid. Our findings illustrate the anti-CRC potential and mechanisms of LWMX pills at the
molecular and pathway levels and provide novel insights into multitarget medication for
CRC treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph17040429/s1. Figure S1: Normalization of the GSE44076 dataset;
Table S1: Information of the active ingredients from Liuwei Muxiang pills; Table S2: Information of
the Liuwei Muxiang pills’ targets, differentially expressed genes, module genes in WGCNA and the
intersecting targets.
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Abbreviations

LWMX pills Liuwei Muxiang pills
CRC colorectal cancer
TTM traditional Tibetan medicine

TCMSP
Traditional Chinese Medicine Systems Pharmacology Database and
Analysis Platform

DEGs differentially expressed genes
WGCNA weighted gene correlation network analysis
PPI Protein–protein interaction
STRING Search Tool for the Retrieval of Interacting Genes/Proteins
GO Gene Ontology
BP biological process
CC cellular component
MF molecular function
KEGG Kyoto Encyclopedia of Genes and Genomes
LASSO least absolute shrinkage and selection operator
SVM-RFE support vector machine-recursive feature elimination
RF random forest
VIP variable importance
GEO Gene Expression Omnibus
TOM topological overlap matrix
MM module membership
GS gene significance
CIBERSORT cell-type identification by estimating relative subsets of RNA transcripts
PDB Protein Data Bank
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