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Abstract: SARS-CoV-2 infections, commonly referred to as COVID-19, remain a critical risk to
both human life and global economies. Particularly, COVID-19 patients with weak immunity may
suffer from different complications due to the bacterial co-infections/super-infections/secondary
infections. Therefore, different variants of alternative antibacterial therapeutic agents are required to
inhibit those infection-causing drug-resistant pathogenic bacteria. This study attempted to explore
these bacterial pathogens and their inhibitors by using integrated statistical and bioinformatics
approaches. By analyzing bacterial 16S rRNA sequence profiles, at first, we detected five bacterial
genera and taxa (Bacteroides, Parabacteroides, Prevotella Clostridium, Atopobium, and Peptostreptococcus)
based on differentially abundant bacteria between SARS-CoV-2 infection and control samples that
are significantly enriched in 23 metabolic pathways. A total of 183 bacterial genes were found in
the enriched pathways. Then, the top-ranked 10 bacterial genes (accB, ftsB, glyQ, hldD, lpxC, lptD,
mlaA, ppsA, ppc, and tamB) were selected as the pathogenic bacterial key genes (bKGs) by their
protein–protein interaction (PPI) network analysis. Then, we detected bKG-guided top-ranked
eight drug molecules (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin, Entreatinib,
Digitoxin, and Elbasvir) by molecular docking. Finally, the binding stability of the top-ranked three
drug molecules (Bemcentinib, Ledipasvir, and Velpatasvir) against three receptors (hldD, mlaA, and
lptD) was investigated by computing their binding free energies with molecular dynamic (MD)
simulation-based MM-PBSA techniques, respectively, and was found to be stable. Therefore, the
findings of this study could be useful resources for developing a proper treatment plan against
bacterial co-/super-/secondary-infection in SARS-CoV-2 infections.

Keywords: SARS-CoV-2 infections; bacterial co-infections; 16S rRNA-seq profiles; bacterial key genes
(bKGs); drug repurposing; bioinformatics analysis

1. Introduction

The novel coronavirus disease 2019 (COVID-19), one of the most severe respiratory
infections caused by the Severe Acute Respiratory Syndrome CoronaVirus-2 virus (SARS-
CoV-2), remains a risk factor for human life. As of 7 January 2024, there have been over
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774 million cases and over seven million deaths worldwide [1]. Though different vaccina-
tion programs have been reducing the rate of infection, a significant number of people are
still being infected around the globe due to the random mutation in the RNA sequence of
SARS-CoV-2 [2], which demands effective drugs as supplementary treatment for COVID-19.
The spike (S) protein of SARS-CoV-2 interacts with the host ACE2 (angiotensin-converting
enzyme 2) protein to initiate the infection [3,4]. Inhibition of this protein is essential to
neutralize SARS-CoV-2 before the start of a cytokine storm, for which the immune system
generates a number of inflammatory signals that can cause organ failure and patient death.
The major protease (MPro/3ClPro), the papain-like protease (PLpro) [5,6] and the RNA-
dependent RNA polymerase (RdRp) [7,8] of SARS-CoV-2 are associated with the infections
by catalyzing the replication of RNA from an RNA template. Therefore, these proteins were
used as targets/receptors to explore candidate drugs against SARS-CoV-2 infections [6,9].
However, COVID-19 patients with weak immunity may suffer from different complications
due to microbial co-infections/super-infections/secondary-infections [10–16]. It should
be noted here that co-infections refer to the simultaneous infection with two or more
different microbial pathogens [14,17]. Super-infection occurs when already infected pa-
tients are re-infected with other microbial pathogens [15,16]. Secondary infections occur
when already infected patients are re-infected, depending on the outcomes of the first
infection [14,17,18]. COVID-19 patients often suffer from different symptoms, including
fever [19], cough [20], sore throat [21], congestion or runny nose [22], difficulty breath-
ing [23], loss of smell or taste [24], fatigue [21], muscle pain [25], headache [26], nausea
or vomiting [27], diarrhea [28], meningitis [29], pneumonia [29] that are associated with
different microbial pathogens [30–33]. Therefore, microbial pathogens may be considered
the critical risk factors for different complications and the increasing mortality rates of
COVID-19 patients [14–17,34]. In order to inhibit microbial pathogens, it is required to
identify pathogenic genes that may lead to exploring potential inhibitors. It may be men-
tioned here that either disease-causing microbial proteins or host-proteins are considered
the receptor proteins for exploring candidate drug molecules in order to inhabit microbial
infections [6,9,35–40], since pathogenic proteins interact with host-proteins to develop
infections [39,41,42].

There are some studies based on 16S rRNA-Seq profiles that have explored the associ-
ation of microbial compositions with the complications of SARS-CoV-2 infections [43–55].
For instance, the bacterial composition of the respiratory tract and gut is associated with the
occurrence and severity of disease in numerous respiratory viral infections (RVs) affecting
the eventual respiratory health of COVID-19 [43]. The bacterial phyla groups Firmicutes
and Bacteroidetes, as well as commensals of the phyla, are directly associated with the
pathogenesis and severity of SARS-CoV-2 infections due to their regulatory function with
the ACE2 host gene [53]. The Bacteroidetes phylum is associated with the downregulation of
the ACE2 gene, while the Firmicutes phylum is associated with the upregulation, resulting
in lower and higher infection rates, respectively [54]. A study has analyzed the oral and
gut microbiome data and found that Rothia mucilaginosa and Granulicatella bacterial taxa
are related to SARS-CoV-2 infections [55]. Thus, we observed that previous studies based
on 16S rRNA-Seq profiles have explored only the bacterial taxa that are associated with
co-/super-/secondary infections. They did not explore such infection-causing bacterial
genes and their inhibitors. Two studies recommended antimicrobial agents in order to in-
hibit microbial pathogens. However, some microbial pathogens may progressively develop
resistance to antimicrobial drugs due to environmental changes. This type of drug-resistant
microbial pathogens is gradually increasing due to the availability of a small number of
antimicrobial agents [56,57]. In this case, multi-targeted different variants of alternative
antimicrobial drugs may be essential for effective treatment against co-/super-/secondary
infections. Therefore, this study attempted to explore such infection-causing bacterial key
genes (bKGs) based on 16S rRNA-Seq profiles and associated drug molecules in order to
inhibit those infection-causing pathogenic bacteria, since 16S rRNA-Seq profile analysis
performs better in order to identify novel pathogens and non-cultured bacteria [58,59].
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2. Results
2.1. Diversity Analysis

All alpha diversity indices (richness measure: observed and Chao1, and evenness
measure: Shannon and Simpson) of the oral and gut microbiota showed a significant differ-
ence (p < 0.01) between the COVID-19 patients and healthy group (Figure 1). The median
observed index was 2941.5 (IQR: 2502, 3874) for the healthy group and 937.5 (IQR: 717.25,
1199.75) for the COVID-19 patients, indicating a significant decrease in observed species.
Similarly, the median of Chao1 index was 4852.912 (IQR: 4250.33, 6318.36) for healthy
patients and 1729.328 (IQR: 1303.84, 2200.93) for COVID-19 patients. The Shannon index
was 4.875 (IQR: 4.455, 5.263) and 4.145 (IQR: 3.605, 4.556), and the Simpson index was
0.969 (IQR: 0.954, 0.977) for healthy and 0.953 (IQR: 0.919, 0.971) for COVID-19 patients,
respectively (see Table S1 in Supplementary Materials). The findings indicate a significant
decrease in four alpha diversity species among COVID-19 patients compared to healthy
individuals, with a substantial effect size observed in Cliff’s Delta statistics for observed,
Chao1, and Shannon indices, highlighting a significant distinction between the COVID-19
and healthy groups (see Table S1 in Supplementary Materials).
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Figure 1. Violin plot for alpha-diversity results. These results demonstrate the differences in bacterial
community between COVID-19 patients and healthy samples based on the (a) Chao1, (b) observed,
(c) Shannon, and (d) Simpson index. The Wilcoxon signed-rank test was used to test the significance
(p-value < 0.05) difference between patients and healthy individuals.
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In addition to alpha diversity indices, beta diversity was employed to evaluate com-
positional changes in the microbial communities. Principle Coordinate Analysis (PCoA)
based on Bray–Curtis distance revealed distinct clustering patterns among samples with
varied distributions (see Figure 2a). Permutational Multivariate Analysis of Variance (PER-
MANOVA) on Bray–Curtis distance (F = 22.575, p-value: 0.001) indicated a significant
difference between COVID-19 patients and healthy individuals.
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Figure 2. (a) Bacterial genetic diversity between COVID-19 and control samples was investigated
by principal coordinates analysis (PCoA) with the beta diversity indices, where healthy and patient
samples were represented by dot and a triangle symbols, respectively. (b) Venn diagrams showed the
percentage of shared OTUs between COVID-19 patients and healthy controls.

A total of 2802 OTUs were found to be shared between COVID-19 patients and healthy
controls, accounting for 37.71% and 32.60% of the total OTUs in healthy controls and
COVID-19 patients, respectively (see Figure 2b). These results suggest that compositional
differences were associated with the presence or absence of specific taxa and their relative
abundances in the samples.

2.2. Taxonomy Analysis and Identification of Differentially Abundant Bacterial
Compositions (DABCs)

The oral and gut microbiota profiles at the phylum and genus levels consisted of
approximately 22 phyla and 210 genera, respectively. Among them, the top 10 most
abundant phyla and the top 12 most abundant genera are shown in Figure 3. The results
indicate that the abundance of the Bacteroidetes phylum was relatively higher in COVID-19
patients than in healthy subjects (26.9% vs. 19.6%), followed by Actinobacteria (13.941%
vs. 7.703%), Fusobacteria (10.66% vs. 6.92%), TM7 (1.037% vs. 0.011%), and SR1 (0.382%
vs. 0.122%). On the other hand, the relative abundances of Firmicutes, Proteobacteria,
Cyanobacteria, and Verrucomicrobia phyla decreased in COVID-19 patients compared to
healthy subjects. However, Thermi exhibited less significant changes in patients and healthy
individuals at the phylum level (Figure 3a and Table S2 in Supplementary Materials). Also,
among the 12 most abundant genera in the oral and gut microbiota in COVID-19 patients,
Prevotella (37.21% vs. 27.85%), Rothia (5.49% vs. 1.84%), Actinomyces (5.17% vs. 2.95%),
Clostridium (3.15% vs. 1.59%), Streptobacillus (3.06% vs. 0.68%), and Campylobacter (3.70%
vs. 0.51%) showed increased relative abindances in COVID-19 patients compared to healthy
subjects. Conversely, Bacteroides (25.73% vs. 34.08%), Corynebacterium (4.89% vs. 9.62%),
Fusobacterium (4.02% vs. 8.82%), and Faecalibacterium (2.48% vs. 7.05%) were comparatively
less abundant in COVID-19 patients than in healthy individuals (Figure 3b and Table S2 in
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Supplementary Materials). Alternatively, insignificant changes were observed in the cases
of Porphyromonas and Bifidobacterium.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 6 of 27 
 

 

 

Figure 3. Composition of bacterial abundances at the phylum and genus levels across COVID-19 

and control samples. (a) Histograms of relative abundances of bacteria for the 10 most abundant 

bacterial phyla across COVID-19 and control samples. (b) Histogram of relative abundance of 

bacteria for the 12 most abundant bacterial genera across COVID-19 and control samples. 

Based on their relative abundances, it is possible to identify which phyla and genera 

were more abundant, but it remains unclear which taxa were significantly differentially 

abundant in the SARS-CoV-2 infected group. LEfSe analysis was used to identify 

significantly abundant phyla and genera between groups (LDA score > 3.5, p < 0.05). The 

results reveal that five phyla were significantly different between the groups. Among 

them, Bacteroidetes, Actinobacteria, and Fusobacteria phyla were significantly enriched in 

COVID-19 patients, while Proteobacteria and Firmicutes were significantly decreased (see 

Figure 4). On the other hand, 25 genera showed different abundance between the 

groups, whereas the Bacteroides, Campylobacter, Actinomyces, and Rothia genera were 

highly enriched in COVID-19 patients, while Streptococcus, Neisseria Veillonella, Blautia, 

Megamonas Escherichia, and Megasphaera were less enriched compared to healthy 

patients. The LDA scores revealed a significant abundance of Bacteroides and 

Streptococcus as microbiological biomarkers in the treatment group and healthy group 

(see Figure 4). These results demonstrate a notable difference in gut microbiota 

composition between healthy and COVID-19 patients. 

Figure 3. Composition of bacterial abundances at the phylum and genus levels across COVID-19 and
control samples. (a) Histograms of relative abundances of bacteria for the 10 most abundant bacterial
phyla across COVID-19 and control samples. (b) Histogram of relative abundance of bacteria for the
12 most abundant bacterial genera across COVID-19 and control samples.

Based on their relative abundances, it is possible to identify which phyla and genera
were more abundant, but it remains unclear which taxa were significantly differentially
abundant in the SARS-CoV-2 infected group. LEfSe analysis was used to identify sig-
nificantly abundant phyla and genera between groups (LDA score > 3.5, p < 0.05). The
results reveal that five phyla were significantly different between the groups. Among them,
Bacteroidetes, Actinobacteria, and Fusobacteria phyla were significantly enriched in COVID-19
patients, while Proteobacteria and Firmicutes were significantly decreased (see Figure 4). On
the other hand, 25 genera showed different abundance between the groups, whereas the
Bacteroides, Campylobacter, Actinomyces, and Rothia genera were highly enriched in COVID-
19 patients, while Streptococcus, Neisseria Veillonella, Blautia, Megamonas Escherichia, and
Megasphaera were less enriched compared to healthy patients. The LDA scores revealed
a significant abundance of Bacteroides and Streptococcus as microbiological biomarkers in
the treatment group and healthy group (see Figure 4). These results demonstrate a notable
difference in gut microbiota composition between healthy and COVID-19 patients.

Further, the zero-inflated Gaussian (ZIG) model was employed using the metagenome-
Seq R package to identify significantly differential bacterial genera based on the adjusted
p-value and log2FC values. Almost 111 bacterial genera showed significant differences be-
tween the groups at p < 0.05, which were used for further analysis. All the genera identified
as differential in the LEfSe analysis were included among the 111 differentially abundant
genera identified in the ZIG model analysis. We represented the top 20 highly differential
genera based on the adjusted p-value and log2FC in Table 1, noting that nine bacterial gen-
era were upregulated while the remaining 11 were downregulated in COVID-19 patients.
Particularly, genera such as, Neisseria, Streptococcus, Leptotrichia, and Veillonella were signifi-
cantly decreased in COVID-19 patients, whereas Bacteroides, Parabacteroides, Prevotella, and
Clostridium were significantly increased compared to healthy individuals. Consequently, in
COVID-19 infections, the abundances of genera such as Bacteroides, Parabacteroides, Prevotella
Clostridium, Atopobium, and Peptostreptococcus showed significant increases.
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Figure 4. Identify differentially abundant bacteria between COVID-19 and control samples at the
phylum and genus levels. (a) Histogram of LDA scores to display the significantly differentially
abundant phyla between two groups (LDA score > 3.5 and p < 0.05). (b) Histogram of LDA scores
to display the significantly differentially abundant genus between two groups (LDA score > 3.5
and p < 0.05). (c,e) The relative bacterial abundance for two groups of two significant phyla levels
at Bacteroidetes and Bacteroides was displayed by using a Box plot. (d,f) The relative bacterial
abundance of two significant genus levels at Proteobacteria and Streptococcus for two groups was
displayed by using a box plot.
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Table 1. The top 20 differentially abundant gut microbiomes between COVID-19 and healthy patients
were taken based on the adjusted p-value and log2FC value. The MetagenomeSeq R package was
used to perform the analysis based on the zero-inflated Gaussian method. Among them, nine bacterial
genera were upregulated, and the remaining eleven genera were downregulated.

Phylum Family Genus Species log2FC Adj. p-Value

Proteobacteria Neisseriaceae Neisseria oralis −4.42 0.000
Firmicutes Streptococcaceae Streptococcus infantis −4.32 0.000
Firmicutes Gemellaceae Unclassified Unclassified −4.29 0.000
Firmicutes Streptococcaceae Streptococcus Unclassified −4.15 0.000

Fusobacteria Leptotrichiaceae Leptotrichia Unclassified −4 0.000
Proteobacteria Oxalobacteraceae Cupriavidus Unclassified −3.8 0.000

Firmicutes Veillonellaceae Veillonella parvula −3.69 0.000
Proteobacteria Pasteurellaceae Unclassified Unclassified −3.63 0.000

Firmicutes Unclassified Unclassified Unclassified −3.52 0.000
Proteobacteria Burkholderiaceae Lautropia Unclassified −3.49 0.000
Proteobacteria Pasteurellaceae Haemophilus influenzae −3.01 0.000

Firmicutes Unclassified Unclassified Unclassified 3.08 0.000
Bacteroidetes Porphyromonadaceae Parabacteroides gordonii 3.18 0.000

Actinobacteria Actinomycetaceae Actinomyces hyovaginalis 3.24 0.000
Proteobacteria Campylobacteraceae Campylobacter fetus 3.26 0.000

Firmicutes Lachnospiraceae Clostridium difficile 3.49 0.000
Bacteroidetes Prevotellaceae Prevotella melaninogenica 3.62 0.000

Actinobacteria Coriobacteriaceae Atopobium Rimae 3.87 0.000
Firmicutes Peptostreptococcaceae Peptostreptococcus Anaerobius 3.95 0.000

Bacteroidetes Bacteroidaceae Bacteroides Acidifaciens 5.1 0.000

2.3. Identification of Pathway-Based Bacterial Key Genes (bKGs) from DABCs

To comprehend the functional role of COVID-19-related bacteria, PICRUSt2 analysis
was conducted to predict gut microbiota metagenomes from the 111 differentially abundant
genera identified in the ZIG model. Furthermore, the results of this functional analysis
were compared to the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs
to assess differences in predicted functional gene abundances. As a result, 23 MetaCyc
signaling pathways differed significantly in the mean proportions between the COVID-19
and healthy groups (see Figure 5a). Of these, 14 MetaCyc pathways showed significant
increases, including incomplete reductive TCA and pyruvate fermentation to acetate and
lactate II, while 9 pathways, including palmitate biosynthesis II, palmitoleate biosynthesis
I, and oleate biosynthesis IV, were significantly decreased in the COVID-19 patients group.
Furthermore, we identified 183 KEGG genes corresponding to 23 differentially abundant
pathways and hence explored the 10 most functional bKGs (accB, ftsB, glyQ, hldD, lpxC, lptD,
mlaA, ppsA, ppc, and tamB) through protein–protein interaction network analysis. These
identified bKGs may represent possible functional gene contents altered due to secondary
infection with SARS-CoV-2, and the findings were used for further molecular docking
analyses (see Figure 5b).
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Figure 5. Identifying metabolic pathways and associated functional key genes that were associated
with SARS-CoV-2 infection. (a) Prediction of metabolic pathway contents correlated with COVID-19
(patients) and control (healthy) groups. Extended error bar-plot representing the differences in mean
proportions for each pair of groups with each pathway. Welch’s t statistic produced q-values for the
two-tailed test, which were adjusted by controlling FDR at 0.05 with the Benjamini–Hochberg method.
(b) Protein–protein interaction networking to select bKGs, where the orange color indicates bKGs.
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2.4. bKGs-Guided Drug Repurposing by Molecular Docking

To select the top-ranked potential candidate drug molecules for COVID-19 treatment
from the pools of 786 published molecules using molecular docking, we considered our
proposed top-ranked 10 bKG-mediated proteins as receptors. Subsequently, we down-
loaded the 3D structures of our key proteins accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA,
ppc, and tamB from the Protein Data Bank (PDB), corresponding to the source codes 4hr7,
6h9o, 7qcf, 4ej0, 4isa, 4rhb, 5nuq, 7akc, 1fiy, and 5vtg, respectively. Heteroatoms, water
molecules, and unused ligands were then removed using BIOVIA Discovery Studio and
PyMOL. Subsequently, protein energy minimization was conducted using the GROMOS
43B1 force field. Finally, each protein was converted into an acceptable PDBQT format
using AutoDock Tools. Molecular docking analyses were performed between the pro-
posed 10 receptors and the 786 meta-drug agents to calculate the binding affinity scores
(kcal/mol) for each receptor–ligand pair. These binding affinity scores were arranged
in a matrix A = (Aij) in descending order, with receptor proteins in rows and ligands in
columns (see Figure 6a). Consequently, we selected the top ranked 10 drugs (Bemcentinib,
Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin, Theaflavin digallate, Telcagepant, En-
treatinib, Digitoxin, and Elbasvir) as candidate drug molecules, with an average binding
affinity score of −9.618 kcal/mol against the proposed 10 receptors. To evaluate the binding
performance of our proposed 10 candidate drug molecules against the top-ranked inde-
pendent receptors, we reviewed 98 published articles identifying hub proteases/proteins
with SARS-CoV-2 infections. This review yielded a total of 215 hub proteins (see Table S4
in Supplementary Materials).

Out of 215, only 9 hub proteins (ACE2, RdRp, 3CLpro, S, TMPRSS2, PLpro, IL6, TNF,
and N) were found in at least six articles. These hub proteins were considered independent
receptors to investigate their binding capacity with our proposed drug molecules. We
downloaded those independent receptor proteins from the Protein Data Bank (PDB) with
source codes 2ajf, 7bv2, 6lu7, 6vsb, 7meq, 6w9c, 1alu, 1a8m, and 6m3m, respectively. Then,
molecular docking analysis was performed with these nine independent hub proteins
against the same set of published 786 ligands. Then, their binding affinities were arranged
in descending order and visualized in a matrix plot (see Figure 6b).

The top-ranked 10 drug molecules produced a binding affinity score lower than
−7.0 kcal/mol against the top-ranked 9 independent receptors. Among the top 10 ligands
(according to the binding affinity), 8 of them (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad,
Acetyldigitoxin, Telcagepant, Digitoxin, and Elbasvir) were common with our proposed
10 lead compounds (see Figure 6). Therefore, we considered these 8 drug molecules as the
proposed candidates. Interestingly, three ligands (Bemcentinib, Ledipasvir, and Velpatasvir)
were ranked highest against both proposed and independent receptors, suggesting their
potential effectiveness against COVID-19. To assess the binding performance of our pro-
posed drug molecules compared to the FDA approved two COVID-19 drugs (Molnupiravir
and Nirmatrelvir) [60,61], we analyzed their overall docking scores against both proposed
and independent receptors (see Table S5 in Supplementary Materials). Interestingly, neither
Molnupiravir nor Nirmatrelvir ranked among the top 30 drug molecules based on their
average binding affinity scores in both scenarios (see Figure 6). The interacting properties
of these five target-ligand complexes are displayed in Figure 7 and also given in Table S6.
The interacting complex (3D) surface view, pose view, and protein–ligand interactions
are shown in Figure 7. The hldD-Bemcentinib complex was formed with one Pi-donor
hydrogen bond at ARG213, one Pi-sigma bond at PHE200, two Pi-Pi T-shaped bonds at
HIS186 and TYR292, an alkyl bond at VAL168, and a Pi-Alkyl bond at LYS198. Similarly,
the other 4 target-ligand complexes were formed as given by their data in Table S6.
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Figure 6. The protein–ligand binding affinity score matrices were displayed, where the X-axis
represents the top-ranked 30 drug molecules and the y-axis represents the corresponding ordered
bKGs. (a) The image of the score matrix indicates the binding affinities between the proposed
10 bKGs/ receptors and the 30 top-ranked drug molecules. The top 10 drug molecules, determined by
their binding affinity scores, are highlighted in purple, and (b) the score matrix indicates the binding
affinities between the COVID-19-causing top-ranked 9 published key receptors and the 30 top-ranked
drug molecules with 8 drugs are being common with the proposed top 10 drug indicated by the
purple color.

Additionally, the effectiveness and indemnity level of the top three lead compounds
were assessed by evaluating their toxicological and pharmacokinetic properties (see Table S3
in Supplementary Materials). Central nervous system (CNS) permeability is less than −2,
which indicates an inability to permeate the blood–brain barrier. Moreover, the number
of H-bond acceptors and donors for the three compounds was less than ten and five,
respectively, suggesting that the compounds are plausible drug candidates. Finally, no
toxicity or carcinogenic profiles were observed for our three lead compounds (see Table S3
in Supplementary Materials).
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Figure 7. Visualization of top-scorer target-ligand complexes, with lightseagreen color representing
the protein and gold indicating the ligand. The interacting complex (3D) surface view, pose view,
and interactions were shown in the 1st, 2nd, and 3rd columns, respectively. (a) Overall top-ranked
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complex between Bemcentinib and hldD. (b) Overall 2nd top-ranked complex between Ledipasvir
and mlaA. (c) Overall 3rd top-ranked complex Velpatasvir and lptD. (d) Complex between lptD and
Molnupiravir, which is the highest scorer complex with Molnupiravir only. (e) Complex between
mlaA and the Nirmatrelvir drug, which is the highest scorer complex with Nirmatrelvir only. Here,
Ledipasvir, Molnupiravir, and Nirmatrelvir are three FDA-approved COVID-19 drugs. The last
two complexes are displayed here to compare them with the overall top-scoring three proposed
complexes (the first three).

A molecular dynamics (MD) simulation was conducted to verify the structural stability
of the top three target-ligand complexes obtained from docking. The root mean square
deviations (RMSD) of C-alpha atoms for the docked complexes are shown in Figure 8a. At
the beginning of the simulation, all three complexes, hldD-Bemcentinib, mlaA-Ledipasvir,
and lptD-Velpatasvir showed the same trend. However, the hldD-Bemcentinib complex
exhibited a higher flexibility at 20–40 ns, while the mlaA-Ledipasivir complex showed a
lower trend after 20 ns until 30 ns. Eventually, all three complexes reached a steady state
after 60 ns throughout the simulation period. The RMSD value of the three complexes
was less than 2.5 Å, indicating their stable and rigid structure. Furthermore, the stable
and steady nature of the three complexes was assessed using the radius of gyration (Rg)
and the solvent accessible surface area (SASA) (see Figure 8c,d). The lptD-velpatasvir
complex exhibited a higher Rg, suggesting greater flexibility, while the mlaA-ledipasvir
complex showed a lower Rg, indicating a more stable profile. On the other hand, the SASA
analysis revealed changes in protein volume over time (see Figure 8d), with a lower SASA
value indicating a condensed complex and a higher SASA value indicating an extended
surface area.
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Figure 8. The molecular dynamic simulation of the proposed three docked complexes. (a) root
mean square deviation of the alpha carbon atoms, (b) binding free energy of the complexes, where a
more positive value indicates better binding, (c) degree of rigidity and compactness analysis of the
complexes, and (d) protein volume with expansion analysis.

The SASA values for the hldD-bemcentinib complex peaked at 25–50 ns, suggesting an
expanded surface area, whereas the mlaA-ledipasvir complex exhibited lower SASA values
at 15–45 ns, indicating a condensed surface. Conversely, the lptD-velpatasvir complex
maintained a consistent profile throughout the simulation period. By 70 ns, all three
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complexes demonstrated stable and steady behavior. The binding energy of the three
complexes was also calculated using the MM-PBSA method, with the more positive energy
of the complexes indicating better binding (see Figure 8b). The mean binding energies
of the hldD-bemcentinib, mlaA-ledipasvir, and lptD-velpatasvir complexes were 79.395,
148.595, and 12.078 kJ/mol, respectively. The mlaA-ledipasvir complex exhibited higher
binding energy than the other two, suggesting better binding of the ligand molecules. The
other two complexes had similar positive free energies, indicating better binding with these
ligand molecules.

3. Discussion

Although SARS-CoV-2 is the main cause of COVID-19, there are some microbial com-
positions that are associated with the complications of COVID-19 by their co-infections,
super-infections and secondary infections [14–17,34]. This study aims to explore co-/super-
/secondary infections causing bacterial key genes (bKGs) and associated drug molecules
through bioinformatics analysis. Alpha and beta diversity analyses showed that there are
some bacterial compositions that are able to differentiate COVID-19 patients from healthy
individuals (see Figures 3 and 4). Bacterial compositions were observed at the phylum
and genus level, revealing that at the phylum level, Bacteroidetes had a higher abundance
in COVID-19 patients compared to healthy individuals. On the other hand, Firmicutes,
Proteobacteria, and Cyanobacteria showed lower abundances in the gut microbiota of COVID
patients than healthy patients. The ratio of Firmicutes to Bacteroidetes is known to influence
health status [62], and an abundance of Bacteroidetes is also associated with acute diarrheal
disease [63]. Also, the most abundant genera in COVID-19 patients compared to healthy in-
dividuals were Prevotella, othia, Bacteroides, and Campylobacter indicating higher abundances
of these genera in infected individuals. While Prevotella has been associated with HIV in
children and chronic obstructive pulmonary disease [64,65], Prevotella melaninogenica
pathogen infection is also associated with meningitis diseases [66]. Bacteroidetes is also
associated with gastric carcinogenesis [67,68] as well as colorectal cancer [69], whereas
Bacteroides Acidifaciens, another differentially abundant bacterium, is implicated in liver
damage [33]. Campylobacter enrichment in the gut microbiome of the patients is associated
with diarrhea [28], gastrointestinal issues [70], and inflammatory bowel disease [71], while
Campylobacter fetus pathogens can cause liver disease and diabetes mellitus [32]. Another
upregulated genera identified in this study is Clostridium difficile, which is associated with
diarrheal disease, another symptom of COVID-19 [72]. Alternatively, the genera Neisseria,
Streptococcus, Fusobacterium, Faecalibacterium, Corynebacterium, and Staphylococcus were com-
paratively less abundant in COVID patients, suggesting that their reduced abundance may
indicate COVID-19 infection. Among them, Neisseria contains two pathogens, Neisseria gon-
orrhoeae and Neisseria meningitides, which are associated with the meningococcal disease [73].
In another study, Streptococcus and Fusobacterium are often highly abundant in the oral cav-
ity [74], and Fusobacterium is also highly associated with periodontal disease [75]. Another
downregulated genus, Haemophilus influenzae, is implicated in meningitis and pneumonia
diseases, which are common co-infections in COVID-19 patients [76]. On the other hand,
the abundance of Faecalibacterium in the gut microbiome produces short-chain fatty acids,
which have been associated with reduced intestinal inflammation [77]. Differentially abun-
dant analysis revealed highly differential genera Neisseria, Streptococcus, Leptotrichia, and
Bacteroides among the groups, belonging to the phyla Proteobacteria, Firmicutes, Fusobacteria,
and Bacteroidetes, respectively.

We identified 23 significantly enriched metabolic pathways, including the incomplete
reductive TCA and pyruvate fermentation to acetate and lactate II pathways, which were
highly increased in COVID-19 patients, consistent with another study [78]. Although the
pyruvate fermentation pathway does not release any ammonia, it does release butyrate,
which can be harmful in conditions like chronic periodontitis [79]. On the other hand,
palmitate biosynthesis II, palmitoleate biosynthesis I, and oleate biosynthesis IV significantly
decreased COVID-19 infections. Some studies have shown that palmitate is essential in
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maintaining gut barrier integrity by controlling MUC2 secretion and function [80]. Another
recent study found that palmitate increases the production of MUC2 in the goblet cells of
the gut, leading to the formation of a thick mucus gel and maintaining the integrity of
the gut barrier [81]. In addition to identifying metabolic pathways, we have identified
the top 10 bacterial genes (accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA, ppc, and tamB) as
bacterial key genes (bKGs) capable of facilitating secondary infection with SARS-CoV-2
through protein–protein interaction network analysis. Previous studies have highlighted
the importance of certain genes in lipid metabolism, such as accB, which is significantly
associated with diabetes and obesity in the Pakistani population [82]. On the other hand,
another study explored that ppc genes are significantly associated with the metabolic
disease hyperproteinemia, which is also associated with COVID-19 and increases the
severity and mortality rate [83,84].

To explore the potential drug molecules, we conducted molecular docking corre-
sponding to the identified bKGs. We selected the eight top-ranked ligands (bemcentinib,
ledipasvir, velpatasvir, tirilazad, acetyldigitoxin, entreatinib, digitoxin, and elbasvir) based
on their binding affinity scores, which were also supported by the independent receptors.
Of the eight proposed drug molecules, only Ledipasvir is FDA-approved for COVID-19 [85].
Bemcentinib is FDA-approved for acute myeloid leukemia and passed clinical phase 2 trials
for COVID-19 [86]. Velpatasvir is FDA-approved for the Hepatitis C virus (HCV) [87] and
is under clinical trial for COVID-19. Tirilazad is an FDA-approved drug for brain cancer
and spinal cord injury [88] and is under clinical trial for COVID-19. Acetyldigitoxin is used
for the treatment of heart failure (HF) and is passing clinical trial phases for COVID-19.
Digitoxin is passing a clinical phase 1 trial for COVID-19 [9]. Telcagepant is in a clinical
phase 3 trial for acute migraine [89], but it is not yet under the clinical phase for COVID-19.
Elbasvir is an FDA-approved drug for the treatment of hepatitis C virus genotype 1b
(HCV GT1b) patients [90], and it is supported for COVID-19 by other studies [91], but
is not yet considered for a clinical trial for COVID-19. To compare our suggested eight
drug molecules against the two FDA-approved drugs (Molnupiravir and Nirmatrelvir) for
COVID-19, we investigated their docking scores (kcal/mol) with our proposed and top-
ranked published target proteins and found that our proposed drug molecules produced
higher binding affinity scores in both cases. Interestingly, the top three drug molecules
were the same against our proposed and published targets, and hence, we can conclude
that these top three drug molecules, bemcentinib, ledipasvir, and velpatasvir, might be the
most effective ligands for the treatment of COVID-19 infections. A study demonstrated
that bemcentinib is efficacious in decreasing viral infection in lung cells, has a significant
impact on SARS-CoV2 infection [92], and is also more effective in cancer treatment [93].
This drug molecule has no toxicity in the human body and is safe for treatment [92]. It
prevents SARS-CoV-2 infections, as shown by viral transcripts in RNAseq studies and viral
load in qRT-PCR studies of human lung epithelium, Vero-E6, and A549-hACE2 cells [94]. It
reduces viral internalization but has no impact on viral binding. Ledipasvir is an approved
drug for both COVID-19 and hepatitis C virus treatment with a good safety profile [95,96].
The antiviral activity of ledipasvir was identified in a cell-based screening assay against
SARS-CoV-2 [97,98]. A study showed that the velpatasvir molecule produced the best
binding affinity score against COVID-19 protease, which is also more effective against the
hepatitis C virus treatment [99]. Furthermore, toxicity testing using the ADMET approach
showed that the three complexes are the least toxic and the safest possible drugs for the
treatment of SARS-CoV-2 infection. In addition, molecular dynamics (MD) simulation
studies confirmed the structural stability of drug–target complexes by the RMSD, binding
free energy, radius of gyration, and SASA parameters. So, our proposed drug molecules
may have potential for the treatment of bacterial co-/super-/secondary infections with
SARS-CoV-2 infections.
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4. Limitations and Commercial Applications

This study was entirely computational-based. Therefore, the outputs of this study,
including co-/secondary infection-causing bacterial key genes (bKGs) and candidate thera-
peutic agents, require experimental validation in a wet lab before going into the commercial
production of effective drugs in order to inhibit bacterial pathogens for COVID-19.

5. Materials and Methods
5.1. Data Source and Description

In this study, we considered bacterial 16S rRNA sequence profiles and metadata on
drug molecules that are associated with COVID-19, as described below.

5.1.1. Collection of 16S rRNA Sequence Data

Bacterial 16S rRNA sequence profiles and associated metadata were downloaded
from the NCBI online database with the bio-project number PRJNA684070. These samples
were collected from the oral and gut microbiome signatures of hospitalized patients with
COVID-19 and healthy individuals in Guangdong, China [55]. The dataset consisted of
297 samples, including 76 healthy and 221 COVID-19 patients. Previously, this dataset
was analyzed to explore the bacterial taxa associated with SARS-CoV-2 infections for oral
and gut samples separately [55]. In this study, we analyzed oral and gut samples jointly to
explore common bacterial taxa/groups and their key genes that are associated with the
severity of SARS-CoV-2 infections.

5.1.2. Collection of Metadata on Drug Molecules

To explore bacterial key genes (bKGs) guided candidate drug molecules by molecular
docking simulation for the treatment against bacterial co-/super-/secondary infections
with SARS-CoV-2 infections, we collected 786 meta-drug agents from different published
articles on COVID-19 (see Table S4 in Supplementary Materials).

5.2. Statistics and Bioinformatics Analysis
5.2.1. Preprocessing of 16S rRNA Sequence Profiles

At first, we checked the quality of the raw sequence reads using FASTQC and then
filtered the poor-quality reads using Trimmomatic-0.39 [100] with default parameters. After
trimming the poor-quality reads, on average, almost 97% of the sequence reads survived for
further study. Then, NGmerge (v0.2) was used to combine the overlapping areas between
the paired-end trimmed reads with a minimum 5 bp overlap and a maximum of 10%
mismatches [101]. Finally, the high-quality integrated reads were clustered into operational
taxonomic units (OTUs), defined at 97% sequence similarity compared to the Greengenes
reference database via Qiime2 software (version: 2023.9). A total of 12,671,011 OTUs with
42,663.33 mean numbers of OTUs per sample were obtained. For a large number of OTUs,
filter the OTUs table with the minimum number of 5 samples that a feature observes. The
filtered table contained 12,288,422 OTUs with a mean number of 41,797.35 (range: 80937-
1778) OTUs per sample. Then, the OTU table was reduced to the lowest value of the total
number of individuals observed in all samples.

5.2.2. Diversity Analysis

The bacterial diversities within samples were investigated by using alpha diversity,
measured by using four alpha diversity indices: observed, Chao1, Shannon, and Simp-
son [102], determined using phyloseq [103] R-package after trimming the minimum counts
of all samples. The Chao1 and observed species are used to measure bacterial richness,
while Shannon and Simpson quantitative indices measure species richness and even-
ness [104]. The significant differences across samples were tested by the nonparametric
Wilcoxon sign rank test and the results were visualized using the ggbox R package [105].
To assess differences in species complexity between samples, beta diversity was used and
measured using the Bray–Curtis distance based on normalization and log10 transformed
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rarefied OTU abundances [106]. In the R package, MicrobiotaProcess was used to perform
principal coordinate analysis (PCoA) to obtain principal coordinates [107]. The variations in
bacterial composition between the COVID-19 and healthy groups were investigated using
PERMANOVA with Bray–Curtis distance through the vegan R-package with permutations
set to 999 [108].

5.2.3. Taxonomy Analysis and Identification of Differentially Abundant Bacterial
Compositions (DABCs)

The Ribosomal Database Project (RDP Version 2.10) classifier was used to assign
each representative sequence of OTU-clusters to the bacterial taxa in the Greengenes
database (version: 13_5) by using Qiime2 (version: 2023.9) [109]. While the RDP classifier
is based on the naïve Bayes model, which assigns a sequence to the closest match using
a posterior score, we used linear discriminant analysis (LDA) effect size (LEfSe) on the
Galaxy platform to identify the intergroup discriminant bacterial features at phylum and
genus level across the patient groups (p < 0.05, LDA score > 3.5) “http://huttenhowersph.
harva rd.edu/galaxy (accessed on 5 September 2023)” [110]. LEfSe uses the two-tailed
nonparametric Kruskal–Wallis test to evaluate the significance of differences in OTUs in
case–control groups. Additionally, a zero-inflated Gaussian mixture (ZIGM) model of mean
group frequencies was applied to normalized count data to detect differentially abundant
features or genera between case–control groups at a fixed p-value (p < 0.05) [111]. Bacterial
count data were aggregated to the genus level, and abundant genera (>30 normalized
counts per sample) were used for the ZIGM model. This analysis was performed using the
R software package, version 4.3.3. The explored differential genera’s were employed as
input for the functional analysis.

5.2.4. Identification of Pathway-Based Bacterial Key Genes (bKGs) from DABCs

The content of functional genes in the gut microbiota was predicted using Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) soft-
ware based on the identified features (differentially abundant bacterial compositions) [112].
PICRUSt2 predictions were based on the enzyme classification numbers and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) orthologs (KO) (v77.1). This functional
analysis was utilized to investigate all of the samples’ metabolic pathways and genes.
After that, we used Statistical Analysis of Metagenomic Profiles (STAMP) software [113]
to identify differentially abundant metabolic pathways between SARS-CoV-2 and control
patients and then collected all genes from these identified pathways. To identify differential
metabolic pathways between the two groups, we utilized Welch’s t statistic to produce
q-values for the two-tailed test, and Welch’s inverted confidence interval method was
applied to calculate the confidence interval. The Benjamini–Hochberg false discovery
rate method was then applied to compute the adjusted p-value (p < 0.05). Then, microbial
protein–protein interaction networking of those pathway genes was performed by using the
STRING database [114], and the result was visualized by using the cytoscape software [115]
to identify the top-ranked bacterial key genes (bKGs) that were used as drug targets for
further molecular docking analysis (see Figure S1).

5.2.5. Bacterial Key Genes Guided Drug Repurposing by Molecular Docking

Molecular docking analysis was performed to repurpose potential drug molecules
by using AutoDock Vina [116] for the treatment against bacterial co-/super-/secondary
infections with SARS-CoV-2 infections. Initially, all receptor protein structures mediated
by bKGs were downloaded from the Protein Data Bank (PDB), and heteroatoms, water
molecules, and attached ligands were removed using BIOVIA Discovery Studio [117] and
PyMOL [118]. Subsequently, protein energies were minimized with SwissPdb Viewer [119]
and finally converted to an acceptable PDBQT format by fixing the grid box center in
AutoDock tools. The ligand structures were energy-minimized using the MMFF94 force
field in the Avogadro software [120] with specific parameters (total steps: 200, update steps:

http://huttenhowersph.harva
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1, energy difference: 0.1) [121]. Minimized ligands were processed and then converted to
the PDBQT format using AutoDock tools, and protein–ligand complexes had their ionizable
group pKa values estimated with PROPKA at physiological pH 7.0 [122]. Docking analysis
was performed using AutoDock Vina (version 1.1.2) with an exhaustiveness parameter
set to 10. We visualized the top-ranked drug–target complexes by arranging ligands and
targets based on descending average binding affinity scores (kcal/mol) using BIOVIA
Discovery Studio (version 3.0) and PyMOL software (version 2.3) to verify non-bond
interactions. Furthermore, we conducted pharmacokinetic and toxicological assessments
of the top-ranked drug molecules using their canonical SMILES as input on three online
web servers: admetSAR [123], SwissADME [124], and pKCSM [125].

To evaluate the overall stability of the top three complexes, molecular dynamic simu-
lations were conducted using YASARA software [126] and the AMBER14 force field [127],
neutralized at 298 K, pH 7.4, and 0.9 percent NaCl. Energy minimization and annealing
methods were applied before simulating for 100 ns, with trajectory snapshots saved every
100 ps. MM-Poisson–Boltzmann Surface Area (MM-PBSA) binding free energy for the
complexes was calculated using captured trajectory snapshots [128].

Binding Energy = EpotRecept + EsolvRecept + EpotLigand + EsolvLigand − EpotComplex − EsolvComplex

In this study, the MM-PBSA binding free energy was calculated for the top-ranked
3 complexes using the YASARA macro, where positive energy signifies better binding [129].
Simulation snapshots were used to calculate the root-mean-square deviation (RMSD), the
radius of gyration, and the surface-accessible surface area (SASA) [130–134]. The entire
workflow of this study is displayed in Figure 9.Pharmaceuticals 2024, 17, x FOR PEER REVIEW 20 of 27 
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6. Conclusions

This study attempted to explore co-/super-/secondary infection-causing bacterial
pathogens and their inhibitors for SARS-CoV-2 infection by using integrated statistical and
bioinformatics approaches. At first, we analyzed the 16S rRNA bacterial sequence profiles
of 297 individuals, of which 221 were COVID-19 patients and 76 were healthy, using Qiime2.
It produced an OTU table of the count data between bacteria and patient samples. The
diversity analysis based on the OTU table showed that SARS-CoV-2-infected samples are
significantly separated from the control samples by the changes in the bacterial community.
Several differentially abundant genus-taxa (Bacteroides, Parabacteroides, Prevotella Clostrid-
ium, Atopobium, and Peptostreptococcus) between SARS-CoV-2 infection and control samples
were identified by using the OUT-table with the taxon-data table in the metagenomeSeq
r-package. Then, we detected 23 significantly differentially abundant metabolic pathways
based on the differentially abundant bacterial genus by using STAMP software. Among
them, ‘incomplete reductive TCA’ and ‘pyruvate fermentation to acetate and lactate II’ path-
ways were significantly upregulated: palmitate biosynthesis II, palmitoleate biosynthesis
I, and oleate biosynthesis IV pathways, were significantly downregulated. We obtained
183 bacterial genes from the identified differentially abundant pathways. Then, we selected
the top-ranked 10 bKGs (accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA, ppc, and tamB) by the
protein–protein interaction (PPI) network analysis of those 183 pathway genes. Then, we
detected the bKGs-guided top-ranked 10 anti-SARS-CoV-2 drug molecules by molecular
docking. Similarly, the SARS-CoV-2 infection-causing top-ranked nine published key gene
(ACE2, RdRp, 3CLpro, S, TMPRSS2, PLpro, IL6, TNF, and N)-guided the top-ranked 10 anti-
SARS-CoV-2 drug molecules were also identified. Then, we considered the top-ranked
eight common molecules (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin,
Entreatinib, Digitoxin, and Elbasvir) out of ten as the candidate anti-SARS-CoV-2 drug
molecules. Finally, the binding stability of the top-ranked three drug–target complexes
was investigated by molecular dynamic (MD) simulation studies and found to be stable.
Our in silico pipeline might be a useful guideline to explore potential targets and ligands
for taking a proper treatment plan against microbial co-/secondary infections with other
diseases as well.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ph17040432/s1. Table S1: Comparison of different alpha diversity indices
of bacterial communities with a significant difference between COVID-19 patients (n = 221) and
healthy subjects (n = 76) based on Wilcoxon-Mann–Whitney test p values; Table S2: Comparative
relative abundances of the oral and gut microbiota at the phylum and genus levels in the COVID-19
and healthy groups. Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria were the most
abundant phyla between the two groups, whereas Bacteroides, Prevotella, Actinomyces, Rothia, and
Fusobacterium were the most dominant genera in the microbiome of the sample; Table S3: Phar-
macological assessment of the top three potential ligand molecules derived from the admetSAR,
SwissADME, and pKCSM web servers; Table S4: Metadata of SARS-CoV-2 infection obtained by
reviewing published articles were used in this study; Table S5: Binding affinity score of two FDA-
approved drugs corresponding to our proposed and published reviewed targets; Table S6: Non-bond
interactions between top-ordered three receptors and ligand compounds based on their binding
affinity; Figure S1: A workflow for exploring potential functional genes and their metabolic pathways
from differentially abundant bacterial genera between SARS-CoV-2 infection and control samples.
All the references in the supplementary materials have been mentioned in this paper.
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