Functionalization of 68Ga-Radiolabeled Nanodiamonds with Octreotide Does Not Improve Tumor-Targeting Capabilities
Abstract
:1. Introduction
2. Results
2.1. Radiolabeling of NDs
2.2. Biodistribution and PET Imaging of Radiolabeled Targeting NDs
3. Discussion
4. Materials and Methods
4.1. Chemicals and Radiotracer
4.2. Radiolabelling of NDs
4.3. Animal Model
4.4. PET/MR Imaging and Biodistribution
4.5. Ex Vivo Analysis of Samples
4.6. PET/MR Image Data Analysis
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Goos, J.A.C.M.; Davydova, M.; Dilling, T.R.; Cho, A.; Cornejo, M.A.; Gupta, A.; Price, W.S.; Puttick, S.; Whittaker, M.R.; Quinn, J.F.; et al. Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nucl. Med. Biol. 2020, 84–85, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010, 624, 25–37. [Google Scholar]
- Golombek, S.K.; May, J.N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Perevedentseva, E.; Lin, Y.C.; Jani, M.; Cheng, C.L. Biomedical applications of nanodiamonds in imaging and therapy. Nanomedicine 2013, 8, 2041–2060. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Chang, B.-M.; Chang, H.-C. Nanodiamond-enabled biomedical imaging. Nanomedicine 2020, 15, 1599–1616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, W.; Li, J.; Tao, L.; Wei, Y. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res. 2012, 1, 62–68. [Google Scholar] [CrossRef]
- Zhang, T.; Cui, H.; Fang, C.Y.; Cheng, K.; Yang, X.; Chang, H.C.; Forrest, M.L. Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer. Nanomedicine 2015, 10, 573–587. [Google Scholar] [CrossRef]
- Wang, X.; Sang, D.; Zou, L.; Ge, S.; Yao, Y.; Fan, J.; Wang, Q. Multiple Bioimaging Applications Based on the Excellent Properties of Nanodiamond: A Review. Molecules 2023, 28, 4063. [Google Scholar] [CrossRef] [PubMed]
- Winter, G.; Eberhardt, N.; Loffler, J.; Raabe, M.; Alam, M.N.A.; Hao, L.; Abaei, A.; Herrmann, H.; Kuntner, C.; Glatting, G.; et al. Preclinical PET and MR Evaluation of (89)Zr- and (68)Ga-Labeled Nanodiamonds in Mice over Different Time Scales. Nanomaterials 2022, 12, 4471. [Google Scholar] [CrossRef] [PubMed]
- Lazovic, J.; Goering, E.; Wild, A.M.; Schutzendube, P.; Shiva, A.; Loffler, J.; Winter, G.; Sitti, M. Nanodiamond-Enhanced Magnetic Resonance Imaging. Adv. Mater. 2023, 36, e2310109. [Google Scholar] [CrossRef] [PubMed]
- Neburkova, J.; Vavra, J.; Cigler, P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr. Opin. Solid State Mater. Sci. 2017, 21, 43–53. [Google Scholar] [CrossRef]
- Rai, R.; Alwani, S.; Khan, B.; Viswas Solomon, R.; Vuong, S.; Krol, E.S.; Fonge, H.; Badea, I. Biodistribution of nanodiamonds is determined by surface functionalization. Diamond Relat. Mater. 2023, 137, 110071. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Tian, Z.; Cao, R.; Yang, B. Transferrin-conjugated nanodiamond as an intracellular transporter of chemotherapeutic drug and targeting therapy for cancer cells. Ther. Deliv. 2014, 5, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Badea, I. Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems. Int. J. Nanomed. 2013, 8, 203–220. [Google Scholar] [CrossRef]
- Ehlerding, E.B.; Grodzinski, P.; Cai, W.; Liu, C.H. Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano 2018, 12, 2106–2121. [Google Scholar] [CrossRef] [PubMed]
- Wanek, T.; Mairinger, S.; Raabe, M.; Alam, M.N.A.; Filip, T.; Stanek, J.; Winter, G.; Xu, L.; Laube, C.; Weil, T.; et al. Synthesis, radiolabeling, and preclinical in vivo evaluation of (68)Ga-radiolabelled nanodiamonds. Nucl. Med. Biol. 2023, 116–117, 108310. [Google Scholar] [CrossRef]
- DaSilva, J.; Decristoforo, C.; Mach, R.H.; Bormans, G.; Carlucci, G.; Al-Qahtani, M.; Duatti, A.; Gee, A.D.; Szymanski, W.; Rubow, S.; et al. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm. Chem. 2023, 8, 35. [Google Scholar] [CrossRef]
- Graham, M.M.; Gu, X.; Ginader, T.; Breheny, P.; Sunderland, J.J. (68)Ga-DOTATOC Imaging of Neuroendocrine Tumors: A Systematic Review and Metaanalysis. J. Nucl. Med. 2017, 58, 1452–1458. [Google Scholar] [CrossRef]
- Hennrich, U.; Benešová, M. [(68)Ga]Ga-DOTA-TOC: The First FDA-Approved (68)Ga-Radiopharmaceutical for PET Imaging. Pharmaceuticals 2020, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Blackman, M.L.; Royzen, M.; Fox, J.M. Tetrazine Ligation: Fast Bioconjugation Based on Inverse-Electron-Demand Diels−Alder Reactivity. JACS 2008, 130, 13518–13519. [Google Scholar] [CrossRef] [PubMed]
- Purtov, K.; Petunin, A.; Inzhevatkin, E.; Burov, A.; Ronzhin, N.; Puzyr, A.; Bondar, V. Biodistribution of Different Sized Nanodiamonds in Mice. J. Nanosci. Nanotechnol. 2015, 15, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schäffler, M.; Takenaka, S.; Möller, W.; Schmid, G.; Simon, U.; et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 2011, 77, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Rawal, M.; Singh, A.; Amiji, M.M. Quality-by-Design Concepts to Improve Nanotechnology-Based Drug Development. Pharm. Res. 2019, 36, 153. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Li, Y.; Luo, J.; Lee, J.S.; Xiao, W.; Gonik, A.M.; Agarwal, R.G.; Lam, K.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011, 32, 3435–3446. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J. Pers. Med. 2021, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Cao, Y.; Cao, M.; Wang, Y.; Cao, Y.; Gong, T. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 293. [Google Scholar] [CrossRef] [PubMed]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Islam, W.; Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020, 157, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Schär, J.C.; Waser, B.; Wenger, S.; Heppeler, A.; Schmitt, J.S.; Mäcke, H.R. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med. 2000, 27, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Henze, M.; Schuhmacher, J.; Hipp, P.; Kowalski, J.; Becker, D.W.; Doll, J.; Mäcke, H.R.; Hofmann, M.; Debus, J.; Haberkorn, U. PET Imaging of Somatostatin Receptors Using [68GA]DOTA-d-Phe1-Tyr3-Octreotide: First Results in Patients with Meningiomas. J. Nucl. Med. 2001, 42, 1053–1056. [Google Scholar] [PubMed]
- Hofmann, M.; Maecke, H.; Börner, A.; Weckesser, E.; Schöffski, P.; Oei, M.; Schumacher, J.; Henze, M.; Heppeler, A.; Meyer, G.; et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: Preliminary data. Eur. J. Nucl. Med. 2001, 28, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Laube, C.; Oeckinghaus, T.; Lehnert, J.; Griebel, J.; Knolle, W.; Denisenko, A.; Kahnt, A.; Meijer, J.; Wrachtrup, J.; Abel, B. Controlling the fluorescence properties of nitrogen vacancy centers in nanodiamonds. Nanoscale 2019, 11, 1770–1783. [Google Scholar] [CrossRef] [PubMed]
- Moscariello, P.; Raabe, M.; Liu, W.; Bernhardt, S.; Qi, H.; Kaiser, U.; Wu, Y.; Weil, T.; Luhmann, H.J.; Hedrich, J. Unraveling In Vivo Brain Transport of Protein-Coated Fluorescent Nanodiamonds. Small 2019, 15, e1902992. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Raabe, M.; Zegota, M.M.; Nogueira, J.C.F.; Chudasama, V.; Kuan, S.L.; Weil, T. Site-selective protein modification via disulfide rebridging for fast tetrazine/trans-cyclooctene bioconjugation. Org. Biomol. Chem. 2020, 18, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Raabe, M.; Hodgson, L.; Mantell, J.; Verkade, P.; Lasser, T.; Landfester, K.; Weil, T.; Lieberwirth, I. High-Contrast Imaging of Nanodiamonds in Cells by Energy Filtered and Correlative Light-Electron Microscopy: Toward a Quantitative Nanoparticle-Cell Analysis. Nano Lett. 2019, 19, 2178–2185. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.E.; Theveniau, M.A.; Bashirzadeh, R.; Reisine, T.; Eden, P.A. Detection of somatostatin receptor subtype 2 (SSTR2) in established tumors and tumor cell lines: Evidence for SSTR2 heterogeneity. Peptides 1994, 15, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.C.; Ruangma, A.; Rowland, D.; Siegel, S.; Newport, D.F.; Chow, P.L.; Laforest, R. Performance evaluation of the microPET focus: A third-generation microPET scanner dedicated to animal imaging. J. Nucl. Med. 2005, 46, 455–463. [Google Scholar] [PubMed]
- Stout, D.; Berr, S.S.; LeBlanc, A.; Kalen, J.D.; Osborne, D.; Price, J.; Schiffer, W.; Kuntner, C.; Wall, J. Guidance for methods descriptions used in preclinical imaging papers. Mol. Imaging 2013, 12, 1–15. [Google Scholar] [CrossRef]
- Loening, A.M.; Gambhir, S.S. AMIDE: A free software tool for multimodality medical image analysis. Mol. Imaging 2003, 2, 131–137. [Google Scholar] [CrossRef]
[68Ga]Ga-DFO-ND-Oct %IA/g | [68Ga]Ga-DOTA-TOC %IA/g | [68Ga]Ga-DFO-ND [17] %IA/g | |
---|---|---|---|
n | 11 | 16 | 11 |
Blood | 0.57 ± 0.26 | 0.78 ± 0.54 | 0.93 ± 0.61 |
Plasma | 1.01 ± 0.49 | 1.46 ± 1.05 | 1.76 ± 1.16 |
Tumor | 0.32 ± 0.12 | 5.38 ± 2.98 | 0.37 ± 0.10 |
Spleen | 40.52 ± 15.36 | 2.00 ± 1.21 | 41.26 ± 13.28 |
Liver | 52.47 ± 7.76 | 2.99 ± 2.01 | 47.75 ± 9.31 |
Kidneys | 1.09 ± 0.28 # | 9.25± 1.95 | 1.45 ± 0.19 # (p = 0.002) |
Lung | 1.94 ± 0.70 | 1.31 ± 0.96 | 1.89 ± 0.38 |
Brain | 0.02 ± 0.01 # | 0.04 ± 0.02 | 0.04 ± 0.02 # (p = 0.027) |
[68Ga]Ga-DFO-ND-Oct | [68Ga]Ga-DOTA-TOC | |
---|---|---|
Body weight [g] | 25.2 ± 1.7 | 27.1 ± 2.4 |
Injected activity [MBq] | 1.6 ± 0.4 | 8.3 ± 1.7 |
Injected mass [µg] | 62.5 ± 0.1 | 1.6 ± 1.1 |
PET imaging, n | 6 | 8 |
Biodistribution, n | 5 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanek, T.; Raabe, M.; Alam, M.N.A.; Filip, T.; Stanek, J.; Loebsch, M.; Laube, C.; Mairinger, S.; Weil, T.; Kuntner, C. Functionalization of 68Ga-Radiolabeled Nanodiamonds with Octreotide Does Not Improve Tumor-Targeting Capabilities. Pharmaceuticals 2024, 17, 514. https://doi.org/10.3390/ph17040514
Wanek T, Raabe M, Alam MNA, Filip T, Stanek J, Loebsch M, Laube C, Mairinger S, Weil T, Kuntner C. Functionalization of 68Ga-Radiolabeled Nanodiamonds with Octreotide Does Not Improve Tumor-Targeting Capabilities. Pharmaceuticals. 2024; 17(4):514. https://doi.org/10.3390/ph17040514
Chicago/Turabian StyleWanek, Thomas, Marco Raabe, Md Noor A Alam, Thomas Filip, Johann Stanek, Mathilde Loebsch, Christian Laube, Severin Mairinger, Tanja Weil, and Claudia Kuntner. 2024. "Functionalization of 68Ga-Radiolabeled Nanodiamonds with Octreotide Does Not Improve Tumor-Targeting Capabilities" Pharmaceuticals 17, no. 4: 514. https://doi.org/10.3390/ph17040514
APA StyleWanek, T., Raabe, M., Alam, M. N. A., Filip, T., Stanek, J., Loebsch, M., Laube, C., Mairinger, S., Weil, T., & Kuntner, C. (2024). Functionalization of 68Ga-Radiolabeled Nanodiamonds with Octreotide Does Not Improve Tumor-Targeting Capabilities. Pharmaceuticals, 17(4), 514. https://doi.org/10.3390/ph17040514