(-)-Fenchone Prevents Cysteamine-Induced Duodenal Ulcers and Accelerates Healing Promoting Re-Epithelialization of Gastric Ulcers in Rats via Antioxidant and Immunomodulatory Mechanisms
Abstract
:1. Introduction
2. Results
2.1. Effect of (-)-Fenchone Oral Pretreatment on Duodenal Ulcer Formation
Histological Analysis of Duodenal Ulcer Formation
2.2. Effect of (-)-Fenchone on Gastric Healing after 14 Days of Oral Treatment
2.2.1. Histological Analysis of Gastric Healing
2.2.2. Effect of (-)-Fenchone on the Modulation of Antioxidant and Anti-Inflammatory Properties during Gastric Healing
GSH
SOD
MDA
MPO
Levels of IL-1β, TNF-α, and IL-10 Cytokines
Immunohistochemical Analysis for NF-kB and TGF-β in Gastric Samples Submitted to Acetic Acid-Induced Gastric Ulcer Model
2.2.3. Effect of (-)-Fenchone on Low Toxicity after Repeated Doses
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Reagents
4.3. Preventive Antiulcer Activity Evaluation on Cysteamine-Induced Duodenal Ulcer Model
4.4. Healing Assessment on Acetic Acid-Induced Gastric Ulcer Model
4.4.1. Histological and Morphometric Analysis
4.4.2. Determination of GSH, MDA, MPO, and SOD
GSH Determination
MDA Determination
MPO Determination
SOD Determination
4.4.3. Immunomodulatory Activity
Cytokine Determination
4.4.4. Immunohistochemical Analysis
4.5. Evaluation of Toxicity after Repeated Doses
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lanas, A.; Chan, F.K.L. Peptic ulcer disease. Lancet 2017, 390, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Woods, Y.L.; Carey, F.A. Pathology and histology of the esophagus and stomach. Surg.-Oxf. Int. Ed. 2017, 35, 612–618. [Google Scholar] [CrossRef]
- Aragão, T.P.; Prazeres, L.D.K.T.D.; Brito, S.A.; Neto, P.J.R.; Rolim, L.A.; Almeida, J.R.G.d.S.; Caldas, G.F.R.; Wanderley, A.G. Contribution of Secondary Metabolites to the Gastroprotective Effect of Aqueous Extract of Ximenia americana L. (Olacaceae) Stem Bark in Rats. Molecules 2018, 23, 112. [Google Scholar] [CrossRef] [PubMed]
- Kangwan, N.; Park, J.M.; Kim, E.H.; Hahm, K.B. Quality of healing of gastric ulcers: Natural products beyond acid suppression. World J. Gastrointest. Pathophysiol. 2014, 5, 40–47. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, C.L.F.; Brito, S.A.; de Santana, T.I.; Costa, H.B.A.; Júnior, C.H.R.d.C.; da Silva, M.V.; de Almeida, L.L.; Rolim, L.A.; dos Santos, V.L.; Wanderley, A.G.; et al. Spondias purpurea L. (Anacardiaceae): Antioxidant and Antiulcer Activities of the Leaf Hexane Extract. Oxidative Med. Cell. Longev. 2017, 478, 6593073. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef]
- Banihani, S.A. Histamine-2 Receptor Antagonists and Semen Quality. Basic Clin. Pharmacol. Toxicol. 2016, 118, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, B.B.; Sahoo, S.P. Updates in Drug Development Strategies against Peptic ulcer. J. Gastrointest. Dig. Syst. 2016, 6, 398. [Google Scholar] [CrossRef]
- Harbord, M.; Eliakim, R.; Bettenworth, D.; Karmiris, K.; Katsanos, K.; Kopylov, U.; Kucharzik, T.; Molnár, T.; Raine, T.; Sebastian, S.; et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. J. Crohn’s Colitis 2017, 11, 769–784. [Google Scholar] [CrossRef]
- Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The Bioactivity and Toxicological Actions of Carvacrol. Crit. Rev. Food Sci. Nutr. 2015, 55, 304–318. [Google Scholar] [CrossRef] [PubMed]
- Venzon, L.; Mariano, L.N.B.; Somensi, L.B.; Boeing, T.; de Souza, P.; Wagner, T.M.; de Andrade, S.F.; Nesello, L.A.N.; da Silva, L.M. Essential oil of Cymbopogon citratus (lemongrass) and geraniol, but not citral, promote gastric healing activity in mice. Biomed. Pharmacother. 2018, 98, 118–124. [Google Scholar] [CrossRef]
- Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of Terpenes and Recent Advances in Plant Protection. Int. J. Mol. Sci. 2021, 22, 5710. [Google Scholar] [CrossRef]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and Medicinal Uses of Terpenes. In Medicinal Plants: From Farm to Pharmacy; Joshee, N., Dhekney, S.A., Parajuli, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 333–359. [Google Scholar]
- Baptista, R.; Madureira, A.M.; Jorge, R.; Adão, R.; Duarte, A.; Duarte, N.; Lopes, M.M.; Teixeira, G. Antioxidant and Antimycotic Activities of Two Native Lavandula Species from Portugal. Evid. Based Complement. Altern. Med. 2015, 2015, 570521. [Google Scholar] [CrossRef]
- Miyazawa, M.; Miyamoto, Y. Biotransformation of (1R)-(+)- and (1S)-(−)-camphor by the larvae of common cutworm (Spodoptera litura). J. Mol. Catal. B Enzym. 2004, 27, 83–89. [Google Scholar] [CrossRef]
- Jäger, W.; Höferl, M. Metabolism of Terpenoids in Animal Models and Humans. In Handbook of Essential Oils: Science, Technology, and Applications, 3rd ed.; Başer, K.H.C., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 209–234. [Google Scholar]
- Rolim, T.L.; Meireles, D.R.P.; Batista, T.M.; de Sousa, T.K.G.; Mangueira, V.M.; de Abrantes, R.A.; Pita, J.C.L.R.; Xavier, A.L.; Costa, V.C.O.; Batista, L.M.; et al. Toxicity and antitumor potential of Mesosphaerum sidifolium (Lamiaceae) oil and fenchone, its major component. BMC Complement. Altern. Med. 2017, 17, 347. [Google Scholar] [CrossRef]
- Him, A.; Ozbek, H.; Turel, I.; Oner, A.C. Antinociceptive Activity of Alpha-Pinene and Fenchone. Pharmacologyonline 2008, 3, 363–369. [Google Scholar]
- Slavchev, I.; Dobrikov, G.M.; Valcheva, V.; Ugrinova, I.; Pasheva, E.; Dimitrov, V. Antimycobacterial activity generated by the amide coupling of (−)-fenchone derived aminoalcohol with cinnamic acids and analogues. Bioorg. Med. Chem. Lett. 2014, 24, 5030–5033. [Google Scholar] [CrossRef]
- Pessoa, M.L.d.S.; Silva, L.M.O.; Araruna, M.E.C.; Serafim, C.A.d.L.; Júnior, E.B.A.; Silva, A.O.; Pessoa, M.M.B.; Neto, H.D.; Lima, E.d.O.; Batista, L.M. Antifungal activity and antidiarrheal activity via antimotility mechanisms of (-)-fenchone in experimental models. World J. Gastroenterol. 2020, 26, 6795–6809. [Google Scholar] [CrossRef]
- Akkol, E.K.; İlhan, M.; Ayşe Demirel, M.; Keleş, H.; Tümen, I.; Süntar, İ. Thuja occidentalis L. and its active compound, α-thujone: Promising effects in the treatment of polycystic ovary syndrome without inducing osteoporosis. J. Ethnopharmacol. 2015, 168, 25–30. [Google Scholar] [CrossRef]
- Algieri, F.; Rodriguez-Nogales, A.; Vezza, T.; Garrido-Mesa, J.; Garrido-Mesa, N.; Utrilla, M.P.; González-Tejero, M.R.; Casares-Porcel, M.; Molero-Mesa, J.; Contreras, M.d.M.; et al. Anti-inflammatory activity of hydroalcoholic extracts of Lavandula dentata L. and Lavandula stoechas L. J. Ethnopharmacol. 2016, 190, 142–158. [Google Scholar] [CrossRef]
- Khomenko, T.; Szabo, S.; Deng, X.; Ishikawa, H.; Anderson, G.J.; McLaren, G.D. Role of iron in the pathogenesis of cysteamine-induced duodenal ulceration in rats. Am. J. Physiol.-Gastrointest. Liver Physiol. 2009, 296, G1277–G1286. [Google Scholar] [CrossRef]
- Choi, K.-S.; Kim, E.-H.; Hong, H.; Ock, C.Y.; Lee, J.S.; Kim, J.-H.; Hahm, K.-B. Attenuation of cysteamine-induced duodenal ulcer with Cochinchina momordica seed extract through inhibiting cytoplasmic phospholipase A2/5-lipoxygenase and activating γ-glutamylcysteine synthetase. J. Gastroenterol. Hepatol. 2012, 27, 13–22. [Google Scholar] [CrossRef]
- Adinortey, M.B.; Ansah, C.; Galyuon, I.; Nyarko, A. In Vivo Models Used for Evaluation of Potential Antigastroduodenal Ulcer Agents. Ulcers 2013, 2013, 796405. [Google Scholar] [CrossRef]
- Szabo, S. Duodenal ulcer disease. Animal model: Cysteamine-induced acute and chronic duodenal ulcer in the rat. Am. J. Pathol. 1978, 93, 273. [Google Scholar]
- Lichtenberger, L.M.; Szabo, S.; Reynolds, E.S. Gastric emptying in the rat is inhibited by the duodenal ulcerogens, cysteamine and propionitrile. Gastroenterology 1977, 73, 1072–1076. [Google Scholar] [CrossRef]
- Besouw, M.; Masereeuw, R.; van den Heuvel, L.; Levtchenko, E. Cysteamine: An old drug with new potential. Drug Discov. Today 2013, 18, 785–792. [Google Scholar] [CrossRef]
- Mishra, A.P.; Bajpai, A.; Chandra, S. A Comprehensive Review on the Screening Models for the Pharmacological Assessment of Antiulcer Drugs. Curr. Clin. Pharmacol. 2019, 14, 175–196. [Google Scholar] [CrossRef]
- De Carvalho, K.I.M.; Bonamin, F.; dos Santos, R.C.; Périco, L.L.; Beserra, F.P.; de Sousa, D.P.; Filho, J.M.B.; da Rocha, L.R.M.; Hiruma-Lima, C.A. Geraniol—A flavoring agent with multifunctional effects in protecting the gastric and duodenal mucosa. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2014, 387, 355–365. [Google Scholar] [CrossRef]
- Bonamin, F.; Moraes, T.M.; dos Santos, R.C.; Kushima, H.; de Faria, F.; Silva, M.A.; Junior, I.V.; Nogueira, L.; Bauab, T.M.; Souza Brito, A.R.; et al. The effect of a minor constituent of essential oil from Citrus aurantium: The role of β497 myrcene in preventing peptic ulcer disease. Chem.-Biol. Interact. 2014, 212, 11–19. [Google Scholar] [CrossRef]
- Formiga, R.d.O.; Júnior, E.B.A.; Vasconcelos, R.C.; Araújo, A.A.; de Carvalho, T.G.; Junior, R.F.d.A.; Guerra, G.B.C.; Vieira, G.C.; de Oliveira, K.M.; Diniz, M.d.F.F.M.; et al. Effect of p-cymene and rosmarinic acid on gastric ulcer healing—Involvement of multiple endogenous curative mechanisms. Phytomedicine 2021, 86, 153497. [Google Scholar] [CrossRef]
- Takagi, K.; Okabe, S.; Saziki, R. A New Method for The Production of Chronic Gastric Ulcer in Rats and the Effect of Several Drugs on Its Healing. Jpn. J. Pharmacol. 1969, 19, 418–424. [Google Scholar] [CrossRef]
- Viana, A.F.S.; Lopes, M.T.P.; Oliveira, F.T.B.; Nunes, P.I.G.; Santos, V.G.; Braga, A.D.; Silva, A.C.A.; Sousa, D.P.; Viana, D.A.; Rao, V.S.; et al. (−)-Myrtenol accelerates healing of acetic acid-induced gastric ulcers in rats and in human gastric adenocarcinoma cells. Eur. J. Pharmacol. 2019, 854, 139–148. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Diniz, P.B.; Pinheiro, M.S.; Albuquerque-Júnior, R.L.; Thomazzi, S.M. Gastroprotective effects of thymol on acute and chronic ulcers in rats: The role of prostaglandins, ATP-sensitive K+ channels, and gastric mucus secretion. Chem. Biol. Interact. 2016, 244, 121–128. [Google Scholar] [CrossRef]
- Caldas, G.F.R.; Oliveira, A.R.d.S.; Araújo, A.V.; Lafayette, S.S.L.; Albuquerque, G.S.; Silva-Neto, J.d.C.; Costa-Silva, J.H.; Ferreira, F.; da Costa, J.G.M.; Wanderley, A.G. Gastroprotective Mechanisms of the Monoterpene 1,8-Cineole (Eucalyptol). PLoS ONE 2015, 10, e0134558. [Google Scholar] [CrossRef]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef]
- Dudzińska, E.; Gryzinska, M.; Ognik, K.; Gil-Kulik, P.; Kocki, J. Oxidative Stress and Effect of Treatment on the Oxidation Product Decomposition Processes in IBD. Oxid. Med. Cell. Longev. 2018, 2018, 7918261. [Google Scholar] [CrossRef]
- Do Carmo, T.L.L.; Azevedo, V.C.; de Siqueira, P.R.; Galvão, T.D.; dos Santos, F.A.; Martinez, C.B.d.R.; Appoloni, C.R.; Fernandes, M.N. Reactive oxygen species and other biochemical and morphological biomarkers in the gills and kidneys of the Neotropical freshwater fish, Prochilodus lineatus, exposed to titanium dioxide (TiO2) nanoparticles. Environ. Sci. Pollut. Res. Int. 2018, 25, 22963–22976. [Google Scholar] [CrossRef]
- De Souza, M.C.; Vieira, A.J.; Beserra, F.P.; Pellizzon, C.H.; Nóbrega, R.H.; Rozza, A.L. Gastroprotective effect of limonene in rats: Influence on oxidative stress, inflammation and gene expression. Phytomedicine 2019, 53, 37–42. [Google Scholar] [CrossRef]
- Tarnawski, A.S. Cellular and molecular mechanisms of gastrointestinal ulcer healing. Dig. Dis. Sci. 2005, 50 (Suppl. S1), S24–S33. [Google Scholar] [CrossRef] [PubMed]
- Tarnawski, A.S.; Ahluwalia, A. Molecular mechanisms of epithelial regeneration and neovascularization during healing of gastric and esophageal ulcers. Curr. Med. Chem. 2012, 19, 16–27. [Google Scholar] [CrossRef]
- Magierowski, M.; Magierowska, K.; Hubalewska-Mazgaj, M.; Sliwowski, Z.; Ginter, G.; Pajdo, R.; Chmura, A.; Kwiecien, S.; Brzozowski, T. Carbon monoxide released from its pharmacological donor, tricarbonyldichlororuthenium (II) dimer, accelerates the healing of pre-existing gastric ulcers. Br. J. Pharmacol. 2017, 174, 3654–3668. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Luo, H.; Liu, A.; Li, K.; Li, C.; Jiang, Y. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms. Int. Immunopharmacol. 2016, 30, 179–187. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yin, J.Y.; Zhao, M.M.; Liu, S.Y.; Nie, S.P.; Xie, M.Y. Gastroprotective activity of polysaccharide from Hericium erinaceus against ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer, and its antioxidant activities. Carbohydr. Polym. 2018, 186, 100–109. [Google Scholar] [CrossRef]
- Boshtam, M.; Asgary, S.; Kouhpayeh, S.; Shariati, L.; Khanahmad, H. Aptamers against Pro- and Anti-Inflammatory Cytokines: A Review. Inflammation 2017, 40, 340–349. [Google Scholar] [CrossRef]
- Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr. 2019, 59, 89–101. [Google Scholar] [CrossRef]
- Souza, M.T.d.S.; Teixeira, D.F.; de Oliveira, J.P.; Oliveira, A.S.; Quintans-Júnior, L.J.; Correa, C.B.; Camargo, E.A. Protective effect of carvacrol on acetic acid-induced colitis. Biomed. Pharmacother. 2017, 96, 313–319. [Google Scholar] [CrossRef]
- Akanda, R.; Kim, I.-S.; Ahn, D.; Tae, H.-J.; Nam, H.-H.; Choo, B.-K.; Kim, K.; Park, B.-Y. Anti Inflammatory and Gastroprotective Roles of Rabdosia inflexa through Downregulation of Pro-Inflammatory Cytokines and MAPK/NF-κB Signaling Pathways. Int. J. Mol. Sci. 2018, 19, 584. [Google Scholar] [CrossRef]
- Aziz, R.S.; Siddiqua, A.; Shahzad, M.; Shabbir, A.; Naseem, N. Oxyresveratrol ameliorates ethanol-induced gastric ulcer via downregulation of IL-6, TNF-α, NF-ĸB, and COX-2 levels, and upregulation of TFF-2 levels. Biomed. Pharmacother. 2019, 110, 554–560. [Google Scholar] [CrossRef]
- Tarnawski, A.S. Cellular and molecular mechanisms of gastrointestinal ulcer healing: State of the art 2010. Gastroenterologia Polska/Gastroenterology 2010, 17, 171. [Google Scholar]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Moraes, T.M.; Rozza, A.L.; Kushima, H.; Pellizzon, C.H.; Rocha, L.R.; Hiruma-Lima, C.A. Healing actions of essential oils from Citrus aurantium and d-limonene in the gastric mucosa: The roles of VEGF, PCNA, and COX-2 in cell proliferation. J. Med. Food 2013, 16, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Faure, P.; Lafond, J.L. Measurement of plasma sulfhydryl and carbonyl groups as a possible indicator of protein oxidation. In Analysis of Free Radicals in Biological Systems; Favier, A.E., Cadet, J., Kalyanaraman, B., Fontecave, M., Pierre, J.L., Eds.; Birkhäuser: Basel, Switzerland, 1995; pp. 237–248. [Google Scholar]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Krawisz, J.E.; Sharon, P.; Stenson, W.F. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 1984, 87, 1344–1350. [Google Scholar] [CrossRef]
- Sun, Y.; Oberley, L.W.; Li, Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988, 34, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Kendall, A.C.; Keys, A.J.; Turner, J.C.; Lea, P.J.; Miflin, B.J. The isolation and characterisation of a catalase-deficient mutant of barley (Hordeum vulgare L.). Planta 1983, 159, 505–511. [Google Scholar] [CrossRef] [PubMed]
Parameters | Treatments | |||
---|---|---|---|---|
Sham | 5% Tween 80 | Lansoprazole (30 mg/kg) | (-)-Fenchone (150 mg/kg) | |
Water intake (mL) | 248.2 ± 15.7 | 207.6 ± 21.7 ### | 223.8 ± 12.8 * | 243.9 ±11.3 *** |
Feed intake (g) | 182.7 ± 9.5 | 150.7 ± 5.4 ### | 165.6 ± 24.2 * | 193.0 ± 14.8 *** |
Weight evolution (g) | 52.3 ± 3.9 | 35.6 ± 2.6 ### | 54.8 ± 3.6 *** | 42,3 ± 2.1 ** |
Organ index | ||||
Liver | 34.9 ± 1.8 | 33.5 ± 2.2 | 33.6 ± 2.6 | 33.1 ± 1.7 |
Heart | 4.3 ± 0.1 | 4.1 ± 0.3 | 4.2 ± 0.2 | 4.3 ± 0.5 |
Kidneys | 8.2 ± 0.2 | 8.5 ± 0.6 | 4.8 ± 0.2 | 8.3 ± 0.6 |
Spleen | 2.8 ± 0.2 | 2.7 ± 0.1 | 3.0 ± 0.1 | 2.9 ± 0.2 |
Parameters | Treatments | |||
---|---|---|---|---|
Sham | 5% Tween 80 | Lansoprazole (30 mg/kg) | (-)-Fenchone (150 mg/kg) | |
Hematological | ||||
Red blood cells (106/mm3) | 7.7 ± 0.4 | 7.3 ± 0.4 | 7.1 ± 0.4 | 7.6 ± 0.4 |
Hemoglobin (g/dL) | 14.8 ± 0.4 | 14.3 ± 1.0 | 14.0 ± 1.0 | 14.9 ± 1.2 |
Hematocrit (%) | 39.7± 1.5 | 39.6 ± 2.9 | 38.3 ± 2.6 | 40.9 ± 3.8 |
MCV (μ3) | 52.1 ± 2.0 | 55.4 ± 2.1 | 52.3 ± 3.9 | 52.4 ± 3.0 |
HCM (μg) | 19.5 ± 0.7 | 19.9 ± 0.7 | 19.1 ± 1.3 | 19.1 ± 1.0 |
CHCM (%) | 36.6 ± 1.0 | 36.0 ± 0.8 | 36.2 ± 1.1 | 36.7 ± 0.4 |
Leukocytes (103/mm3) | 8.2 ± 2.9 | 9.3 ± 4.2 | 11.6 ± 5.0 | 10.7 ± 4.6 |
Neutrophils (%) | 6.1 ± 2.8 | 8.3 ± 1.5 | 8.8 ± 3.4 | 8.9 ± 3.7 |
Lymphocytes (%) | 78.9 ± 5.5 | 77.1 ± 4.9 | 75.0 ± 5.9 | 75.0 ± 6.1 |
Monocytes (%) | 14.8 ± 1.6 | 13.1 ± 2.1 | 13.3 ± 2.1 | 14.9 ± 1.6 |
Biochemicals | ||||
Glucose (mg/dL) | 150.7 ± 15.5 | 147.0 ± 15.3 | 165.7 ± 23.1 | 163.6 ± 18.2 |
Cholesterol (mg/dL) | 67.2 ± 6.1 | 75.0 ± 6.3 | 71.1 ± 3.9 | 72.4 ± 6.6 |
Urea (mg/dL) | 47.8 ± 5.6 | 47.0 ± 4.0 | 49.1 ± 5.1 | 49.5 ± 5.5 |
Creatinine (mg/dL) | 0.6 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.0 |
FAL (mg/dL) | 269.2 ± 17.4 | 313.2± 44.3 | 302.1 ± 35.9 | 315.3 ± 41.7 |
AST (U/I) | 138.8 ± 6.3 | 124.2 ± 10.8 | 129.0 ± 12.8 | 131.4 ± 8.2 |
ALT (U/I) | 58.7 ± 7.4 | 56.3 ± 13.8 | 54.6 ± 11.0 | 57.5 ± 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araruna, M.E.C.; Júnior, E.B.A.; Serafim, C.A.d.L.; Pessoa, M.M.B.; Pessôa, M.L.d.S.; Alves, V.P.; Silva, M.S.d.; Sobral, M.V.; Alves, A.F.; Nunes, M.K.d.S.; et al. (-)-Fenchone Prevents Cysteamine-Induced Duodenal Ulcers and Accelerates Healing Promoting Re-Epithelialization of Gastric Ulcers in Rats via Antioxidant and Immunomodulatory Mechanisms. Pharmaceuticals 2024, 17, 641. https://doi.org/10.3390/ph17050641
Araruna MEC, Júnior EBA, Serafim CAdL, Pessoa MMB, Pessôa MLdS, Alves VP, Silva MSd, Sobral MV, Alves AF, Nunes MKdS, et al. (-)-Fenchone Prevents Cysteamine-Induced Duodenal Ulcers and Accelerates Healing Promoting Re-Epithelialization of Gastric Ulcers in Rats via Antioxidant and Immunomodulatory Mechanisms. Pharmaceuticals. 2024; 17(5):641. https://doi.org/10.3390/ph17050641
Chicago/Turabian StyleAraruna, Maria Elaine Cristina, Edvaldo Balbino Alves Júnior, Catarina Alves de Lima Serafim, Matheus Marley Bezerra Pessoa, Michelle Liz de Souza Pessôa, Vitória Pereira Alves, Marcelo Sobral da Silva, Marianna Vieira Sobral, Adriano Francisco Alves, Mayara Karla dos Santos Nunes, and et al. 2024. "(-)-Fenchone Prevents Cysteamine-Induced Duodenal Ulcers and Accelerates Healing Promoting Re-Epithelialization of Gastric Ulcers in Rats via Antioxidant and Immunomodulatory Mechanisms" Pharmaceuticals 17, no. 5: 641. https://doi.org/10.3390/ph17050641
APA StyleAraruna, M. E. C., Júnior, E. B. A., Serafim, C. A. d. L., Pessoa, M. M. B., Pessôa, M. L. d. S., Alves, V. P., Silva, M. S. d., Sobral, M. V., Alves, A. F., Nunes, M. K. d. S., Araújo, A. A., & Batista, L. M. (2024). (-)-Fenchone Prevents Cysteamine-Induced Duodenal Ulcers and Accelerates Healing Promoting Re-Epithelialization of Gastric Ulcers in Rats via Antioxidant and Immunomodulatory Mechanisms. Pharmaceuticals, 17(5), 641. https://doi.org/10.3390/ph17050641