A New and Rapid LC-MS/MS Method for the Determination of Cysteamine Plasma Levels in Cystinosis Patients
Abstract
:1. Introduction
2. Results
2.1. Linearity
2.2. Accuracy and Precision
2.3. Selectivity and Specificity
2.4. Measurement of Cysteamine Plasma Levels in Patients with Infantile Nephropathic Cystinosis
2.5. Evaluation of Short- and Long-Term Autosampler Stability
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Stock and Working Solutions
4.3. Calibration Standards and Quality Control Samples
4.4. Human Samples
4.5. Determination of Cysteamine Plasma Levels by LC-MS/MS
4.6. Sample Preparation
4.7. Bioanalytical Method Validation
4.7.1. Accuracy and Precision
4.7.2. Selectivity and Specificity
4.7.3. Carry-Over
4.7.4. Matrix Effect and Extraction Recovery
4.7.5. Stability
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Besouw, M.T.; Levtchenko, E.N. Improving the prognosis of nephropathic cystinosis. Int. J. Nephrol. Renovasc. Dis. 2014, 7, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Veys, K.R.; Elmonem, M.A.; Arcolino, F.O.; van den Heuvel, L.; Levtchenko, E. Nephropathic cystinosis: An update. Curr. Opin. Pediatr. 2017, 29, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Emma, F.; Montini, G.; Pennesi, M.; Peruzzi, L.; Verrina, E.; Goffredo, B.M.; Canalini, F.; Cassiman, D.; Rossi, S.; Levtchenko, E. Biomarkers in Nephropathic Cystinosis: Current and Future Perspectives. Cells 2022, 11, 1839. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.A.; Chen, Z.; Gaponova, A.; Korzinkin, M.; Berquez, M.; Luciani, A. Drug discovery and therapeutic perspectives for proximal tubulopathies. Kidney Int. 2023, 104, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Emma, F.; Hoff, W.V.; Hohenfellner, K.; Topaloglu, R.; Greco, M.; Ariceta, G.; Bettini, C.; Bockenhauer, D.; Veys, K.; Pape, L.; et al. An international cohort study spanning five decades assessed outcomes of nephropathic cystinosis. Kidney Int. 2021, 100, 1112–1123. [Google Scholar] [CrossRef] [PubMed]
- Levtchenko, E.; van den Heuvel, L.; Emma, F.; Antignac, C. Clinical utility gene card for: Cystinosis. Eur. J. Hum. Genet. 2014, 22, 713. [Google Scholar] [CrossRef] [PubMed]
- Thoene, J.G.; Oshima, R.G.; Crawhall, J.C.; Olson, D.L.; Schneider, J.A. Cystinosis. Intracellular cystine depletion by aminothiols in vitro and in vivo. J. Clin. Investig. 1976, 58, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Thoene, J.G.; Lemons, R. Cystine depletion of cystinotic tissues by phosphocysteamine (WR638). J. Pediatr. 1980, 96, 1043–1044. [Google Scholar] [CrossRef] [PubMed]
- Klank, S.; van Stein, C.; Gruneberg, M.; Ottolenghi, C.; Rauwolf, K.K.; Grebe, J.; Reunert, J.; Harms, E.; Marquardt, T. Enteric-Coated Cysteamine Bitartrate in Cystinosis Patients. Pharmaceutics 2023, 15, 1851. [Google Scholar] [CrossRef]
- Pisoni, R.L.; Park, G.Y.; Velilla, V.Q.; Thoene, J.G. Detection and characterization of a transport system mediating cysteamine entry into human fibroblast lysosomes. Specificity for aminoethylthiol and aminoethylsulfide derivatives. J. Biol. Chem. 1995, 270, 1179–1184. [Google Scholar] [CrossRef]
- Dohil, R.; Newbury, R.O.; Sellers, Z.M.; Deutsch, R.; Schneider, J.A. The evaluation and treatment of gastrointestinal disease in children with cystinosis receiving cysteamine. J. Pediatr. 2003, 143, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Belldina, E.B.; Huang, M.Y.; Schneider, J.A.; Brundage, R.C.; Tracy, T.S. Steady-state pharmacokinetics and pharmacodynamics of cysteamine bitartrate in paediatric nephropathic cystinosis patients. Br. J. Clin. Pharmacol. 2003, 56, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Langman, C.B.; Greenbaum, L.A.; Sarwal, M.; Grimm, P.; Niaudet, P.; Deschenes, G.; Cornelissen, E.; Morin, D.; Cochat, P.; Matossian, D.; et al. A randomized controlled crossover trial with delayed-release cysteamine bitartrate in nephropathic cystinosis: Effectiveness on white blood cell cystine levels and comparison of safety. Clin. J. Am. Soc. Nephrol. 2012, 7, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Franzin, M.; Rossetto, S.; Ruoso, R.; Del Savio, R.; Stocco, G.; Decorti, G.; Addobbati, R. A new proof of evidence of cysteamine quantification for therapeutic drug monitoring in patients with cystinosis. Orphanet J. Rare Dis. 2022, 17, 400. [Google Scholar] [CrossRef] [PubMed]
- Bouazza, N.; Treluyer, J.M.; Ottolenghi, C.; Urien, S.; Deschenes, G.; Ricquier, D.; Niaudet, P.; Chadefaux-Vekemans, B. Population pharmacokinetics and pharmacodynamics of cysteamine in nephropathic cystinosis patients. Orphanet J. Rare Dis. 2011, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Dohil, R.; Fidler, M.; Barshop, B.A.; Gangoiti, J.; Deutsch, R.; Martin, M.; Schneider, J.A. Understanding intestinal cysteamine bitartrate absorption. J. Pediatr. 2006, 148, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.M.; Wang, X.; Liao, Q.L.; Zhao, S.; Huang, W.H.; Feng, Y.Q. Sensitive analysis of multiple low-molecular-weight thiols in a single human cervical cancer cell by chemical derivatization-liquid chromatography-mass spectrometry. Analyst 2019, 144, 6578–6585. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, L.; Lei, H.; Hao, F.; Liu, X.; Wang, Y.; Tang, H. Simultaneous Quantification of Amino Metabolites in Multiple Metabolic Pathways Using Ultra-High Performance Liquid Chromatography with Tandem-mass Spectrometry. Sci. Rep. 2017, 7, 1423. [Google Scholar] [CrossRef] [PubMed]
- Dohil, R.; Fidler, M.; Barshop, B.; Newbury, R.; Sellers, Z.; Deutsch, R.; Schneider, J. Esomeprazole therapy for gastric acid hypersecretion in children with cystinosis. Pediatr. Nephrol. 2005, 20, 1786–1793. [Google Scholar] [CrossRef]
- Jezegou, A.; Llinares, E.; Anne, C.; Kieffer-Jaquinod, S.; O’Regan, S.; Aupetit, J.; Chabli, A.; Sagne, C.; Debacker, C.; Chadefaux-Vekemans, B.; et al. Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc. Natl. Acad. Sci. USA 2012, 109, E3434–E3443. [Google Scholar] [CrossRef]
- Singh, G.; Bains, D.; Singh, H.; Kaur, N.; Singh, N. Polydentate Aromatic Nanoparticles Complexed with Cu for the Detection of Cysteamine Using a Smartphone as a Portable Diagnostic Tool. ACS Appl. Nano Mater. 2019, 2, 5841–5849. [Google Scholar] [CrossRef]
- Soriano, B.D.; Tam, L.T.; Lu, H.S.; Valladares, V.G. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 880, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Al-Kassawneh, M.; Sadiq, Z.; Jahanshahi-Anbuhi, S. User-friendly and ultra-stable all-inclusive gold tablets for cysteamine detection. RSC Adv. 2023, 13, 19638–19650. [Google Scholar] [CrossRef] [PubMed]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. The ICH Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis; ICH: Geneva, Switzerland, 2022. [Google Scholar]
- Schulman, J.D.; Wong, V.G.; Kuwabara, T.; Bradley, K.H.; Seegmiller, J.E. Intracellular cystine content of leukocyte populations in cystinosis. Arch. Intern Med. 1970, 125, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, F.; Hesselink, D.A. TDM Is Alive and Kicking! Ther. Drug Monit. 2023, 45, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Atallah, C.; Charcosset, C.; Greige-Gerges, H. Challenges for cysteamine stabilization, quantification, and biological effects improvement. J. Pharm. Anal. 2020, 10, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Turell, L.; Radi, R.; Alvarez, B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic. Biol. Med. 2013, 65, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Villar, L.; Hannibal, L.; Haberle, J.; Thony, B.; Ben-Omran, T.; Nasrallah, G.K.; Dewik, A.N.; Kruger, W.D.; Blom, H.J. Cysteamine revisited: Repair of arginine to cysteine mutations. J. Inherit. Metab. Dis. 2017, 40, 555–567. [Google Scholar] [CrossRef]
- Chang, C.; Isokawa, M.; Funatsu, T.; Tsunoda, M. Optimization of tris(2-carboxyethyl) phosphine reduction conditions for fast analysis of total biothiols in mouse serum samples. Heliyon 2019, 5, e01598. [Google Scholar] [CrossRef]
- Dohil, R.; Cabrera, B.L.; Gangoiti, J.A.; Barshop, B.A.; Rioux, P. Pharmacokinetics of cysteamine bitartrate following intraduodenal delivery. Fundam. Clin. Pharmacol. 2014, 28, 136–143. [Google Scholar] [CrossRef]
- Winther, J.R.; Thorpe, C. Quantification of thiols and disulfides. Biochim Biophys Acta 2014, 1840, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Kusmierek, K.; Chwatko, G.; Glowacki, R.; Bald, E. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3300–3308. [Google Scholar] [CrossRef] [PubMed]
- Pescina, S.; Carra, F.; Padula, C.; Santi, P.; Nicoli, S. Effect of pH and penetration enhancers on cysteamine stability and trans-corneal transport. Eur. J. Pharm. Biopharm. 2016, 107, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Armas, D.; Holt, R.J.; Confer, N.F.; Checani, G.C.; Obaidi, M.; Xie, Y.; Brannagan, M. A Phase 1 Pharmacokinetic Study of Cysteamine Bitartrate Delayed-Release Capsules Following Oral Administration with Orange Juice, Water, or Omeprazole in Cystinosis. Adv. Ther. 2018, 35, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Devereux, G.; Steele, S.; Griffiths, K.; Devlin, E.; Fraser-Pitt, D.; Cotton, S.; Norrie, J.; Chrystyn, H.; O’Neil, D. An Open-Label Investigation of the Pharmacokinetics and Tolerability of Oral Cysteamine in Adults with Cystic Fibrosis. Clin. Drug Investig. 2016, 36, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Gangoiti, J.A.; Fidler, M.; Cabrera, B.L.; Schneider, J.A.; Barshop, B.A.; Dohil, R. Pharmacokinetics of enteric-coated cysteamine bitartrate in healthy adults: A pilot study. Br. J. Clin. Pharmacol. 2010, 70, 376–382. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
Parameter | Cysteamine | |||
---|---|---|---|---|
Quality control sample (target concentration) | LLOQ (0.50 µM) | L-QC (50 µM) | M-QC (333 µM) | H-QC (714 µM) |
Number of analyzed samples | 10 | 10 | 10 | 10 |
Cysteamine concentration found µg/mL (median, range) | 0.40 (0.43–0.55) | 51.14 (50.39–51.74) | 334.89 (302.03–336.44) | 722.10 (720.65–726.24) |
Intra-assay %bias | −4.8 | 2.0 | −1.3 | 1.2 |
Intra-assay %CV | 10.2 | 1.1 | 4.5 | 0.3 |
Parameter | Cysteamine | |||
---|---|---|---|---|
Quality control sample (target concentration) | LLOQ (0.50 µM) | L-QC (50 µM) | M-QC (333 µM) | H-QC (714 µM) |
Number of analyzed samples | 10 | 10 | 10 | 10 |
Cysteamine concentration found µg/mL (median, range) | 0.53 (0.43–0.60) | 54.67 (51.02–55.95) | 344.48 (328.75–358.36) | 728.38 (665.24–745.02) |
Inter-assay %bias | 4.0 | 8.1 | 3.3 | 0.4 |
Inter-assay %CV | 14.0 | 4.2 | 4.4 | 5.0 |
L-QC (50 µM) | M-QC (333 µM) | H-QC (714 µM) | ||||
---|---|---|---|---|---|---|
ER% | ME% | ER% | ME% | ER% | ME% | |
Analyte: cysteamine | 82 | 86 | 83 | 88 | 90 | 83 |
Number of analyzed samples | 3 | 3 | 3 | 3 | 3 | 3 |
Patient ID | Age (Years) | Gender | Race | Weight (kg) | Height (cm) | Cysteamine (mg) * |
---|---|---|---|---|---|---|
1 | 8 | M | Caucasian | 16.7 | 110.6 | 700 |
2 | 18 | F | Caucasian | 47 | 146 | 1900 |
3 | 5 | F | Caucasian | 16.5 | 103.5 | 300 |
4 | 10 | M | Caucasian | 25.7 | 120 | 1100 |
5 | 26 | F | Caucasian | 39.5 | 152 | 2000 |
6 | 23 | F | Caucasian | 71 | 165.5 | 2000 |
7 | 38 | M | Caucasian | 63.5 | 160 | 2000 |
8 | 26 | M | Caucasian | 75.50 | 167.20 | 2400 |
Short-Term Stability | |||
---|---|---|---|
Time Point | Day 0 | Day 1 | Day 2 |
Measured concentration for L-QC (50 µM) | 56.62 | nd | nd |
Stability (%) | 100 | nd | nd |
Measured concentration for M-QC (333 µM) | 361.52 | 327.56 | nd |
Stability (%) | 100 | 94 | nd |
Measured concentration for H-QC (714 µM) | 673.13 | 666.10 | 396.80 |
Stability (%) | 100 | 90 | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simeoli, R.; Cairoli, S.; Greco, M.; Bellomo, F.; Mancini, A.; Rossi, C.; Dionisi Vici, C.; Emma, F.; Goffredo, B.M. A New and Rapid LC-MS/MS Method for the Determination of Cysteamine Plasma Levels in Cystinosis Patients. Pharmaceuticals 2024, 17, 649. https://doi.org/10.3390/ph17050649
Simeoli R, Cairoli S, Greco M, Bellomo F, Mancini A, Rossi C, Dionisi Vici C, Emma F, Goffredo BM. A New and Rapid LC-MS/MS Method for the Determination of Cysteamine Plasma Levels in Cystinosis Patients. Pharmaceuticals. 2024; 17(5):649. https://doi.org/10.3390/ph17050649
Chicago/Turabian StyleSimeoli, Raffaele, Sara Cairoli, Marcella Greco, Francesco Bellomo, Alessandro Mancini, Chiara Rossi, Carlo Dionisi Vici, Francesco Emma, and Bianca Maria Goffredo. 2024. "A New and Rapid LC-MS/MS Method for the Determination of Cysteamine Plasma Levels in Cystinosis Patients" Pharmaceuticals 17, no. 5: 649. https://doi.org/10.3390/ph17050649
APA StyleSimeoli, R., Cairoli, S., Greco, M., Bellomo, F., Mancini, A., Rossi, C., Dionisi Vici, C., Emma, F., & Goffredo, B. M. (2024). A New and Rapid LC-MS/MS Method for the Determination of Cysteamine Plasma Levels in Cystinosis Patients. Pharmaceuticals, 17(5), 649. https://doi.org/10.3390/ph17050649