Profibrotic Inflammatory Cytokines and Growth Factors Are Predicted as the Key Targets of Uncaria gambir (Hunter) Roxb. in Keloids: An Epistatic and Molecular Simulation Approach
Abstract
:1. Introduction
2. Results
2.1. Screening for Uncaria Gambir Bioactive Compounds and Its Target Proteins
2.2. Screening for Keloid-Related Target Proteins
2.3. Interaction of Bioactive Compounds of Gambir on Keloid-Related Target Proteins
2.4. Gene Ontology (GO) and Pathway Enrichment Analysis
2.5. Molecular-Docking Analysis
3. Discussion
4. Materials and Methods
4.1. Mining Databases of Gambir Bioactive Components and Target Protein
4.2. Construction of Protein–Protein Interaction (PPI) and Drug–Protein Interaction (DPI) Network
4.3. Gene Annotation (GO) and Pathway Enrichment Analyses
4.4. Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elsaie, M.L. Update on management of keloid and hypertrophic scars: A systemic review. J. Cosmet. Dermatol. 2021, 20, 2729–2738. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.P.; Marttala, J.; Macarak, E.; Rosenbloom, J.; Uitto, J. Keloids: The paradigm of skin fibrosis—Pathomechanisms and treatment. Matrix Biol. 2016, 51, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Berman, B.; Maderal, A.; Raphael, B. Keloids and hypertrophic scars: Pathophysiology, classification, and treatment. Dermatol. Surg. 2017, 43, S3–S18. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, K.J.; Syed, F.; Bayat, A. Site-specific keloid fibroblasts alter the behaviour of normal skin and normal scar fibroblasts through paracrine signalling. PLoS ONE 2013, 8, e75600. [Google Scholar] [CrossRef] [PubMed]
- Ud-Din, S.; Bayat, A. Keloid scarring or disease: Unresolved quasi-neoplastic tendencies in the human skin. Wound Repair Regen. 2020, 28, 422–426. [Google Scholar] [CrossRef]
- Ekstein, S.F.; Wyles, S.P.; Moran, S.L.; Meves, A. Keloids: A review of therapeutic management. Int. J. Dermatol. 2021, 60, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Naik, P.P. Novel targets and therapies for keloid. Clin. Exp. Dermatol. 2022, 47, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Wu, Z.; Zhong, Y.; Wang, Z.; Zhou, C.; Huo, S.; Guo, H.; Li, S.; Xu, K.; Liu, L.; et al. A Network Pharmacology and Molecular Docking Strategy to Explore Potential Targets and Mechanisms Underlying the Effect of Curcumin on Osteonecrosis of the Femoral Head in Systemic Lupus Erythematosus. BioMed Res. Int. 2021, 2021, 5538643. [Google Scholar] [CrossRef] [PubMed]
- Munggari, I.P.; Kurnia, D.; Deawati, Y.; Julaeha, E. Current Research of Phytochemical, Medicinal and Non-Medicinal Uses of Uncaria gambir Roxb.: A Review. Molecules 2022, 27, 6551. [Google Scholar] [CrossRef] [PubMed]
- Dharsono, H.D.A.; Wibisono, L.; Hayati, A.T.; Apriyanti, E.; Satari, M.H.; Kurnia, D. Mode action prediction of catechin from Uncaria gambir Roxb. against UDP-N-acetylenolpyruvyl-glucosamine reductase (MurB enzyme) of Streptococcus mutans: In silico study. J. Adv. Pharm. Technol. Res. 2022, 13, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Syarifah, S. Anticancer activity of Uncaria gambir roxb on T47D breast cancer cells. J. Phys. 2019, 1317, 012106. [Google Scholar] [CrossRef]
- Wardana, A.P.; Aminah, N.S.; Kristanti, A.N.; Zahrah, H.I.; Fahmi, M.Z.; Yuliati, A.; Suhaili; Choudhary, M.I. Anticancer Activity of Nano Uncaria gambir. 2022. Available online: https://www.researchsquare.com/article/rs-1497841/v1 (accessed on 19 September 2022).
- Yimam, M.; Lee, Y.C.; Kim, T.W.; Moore, B.; Jiao, P.; Hong, M.; Kim, H.J.; Nam, J.B.; Kim, M.R.; Oh, J.S.; et al. Analgesic and anti-Inflammatory effect of UP3005, a botanical composition Containing two standardized extracts of Uncaria gambir and Morus alba. Pharmacogn. Res. 2015, 7, S39–S46. [Google Scholar] [CrossRef] [PubMed]
- Desdiani, D.; Rengganis, I.; Djauzi, S.; Setiyono, A.; Sadikin, M.; Jusman, S.W.A.; Siregar, N.C.; Suradi, S.; Eyanoer, P.C.; Fadilah, F. In vitro assay and study interaction of Uncaria gambir (Hunter) Roxb. as anti-fibrotic activity against A549 cell line. Pharmacogn. J. 2020, 12, 1232–1240. [Google Scholar] [CrossRef]
- Desdiani, D.; Rengganis, I.; Djauzi, S.; Setiyono, A.; Sadikin, M.; Jusman, S.W.A.; Siregar, N.C.; Suradi, S.; Eyanoer, P.C. Fibropreventive and Antifibrotic Effects of Uncaria gambir on Rats with Pulmonary Fibrosis. Evid.-Based Complement. Altern. Med. 2022, 2022, 6721958. [Google Scholar] [CrossRef] [PubMed]
- Ningsih, S. Efek Hepatoprotektor Gambir (Uncaria gambir (Hunter) Roxb.) dalam Menghambat Pembentukan Pembentukan Kolagen dengan Menekan TiMP-1 In Vivo. Ph.D. Thesis, Universitas Indonesia, Kota Depok, Indonesia, 2015. [Google Scholar]
- Jusman, S.W.A.; Amalia, M.F.; Paramita, R.; Ningsih, S.; Fadilah, F. Structure-based screening of inhibitor platelet-derived growth factor from ethanol extract of Uncaria gambir (Hunter) Roxb. as an antifibrotic in keloid fibroblast cells. Appl. Pharm. Sci. 2023, 13, 36–43. [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, Y.; Li, Z.; Zhu, D.; Lu, H.; Chen, P.; Li, C.; Peng, X.; Li, Q.; Zeng, K. Multitranscriptome analyses of keloid fibroblasts reveal the role of the HIF-1α/HOXC6/ERK axis in keloid development. Burn. Trauma 2022, 10, tkac013. [Google Scholar] [CrossRef] [PubMed]
- Nagel, R.L. Epistasis and the genetics of human diseases. Comptes Rendus Biol. 2005, 328, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Liu, M.-Y.; Liu, Y.-M.; Zhu, L.-D.; Wu, Y.-S.; Luo, Z.-H.; Zhang, X.-Z.; Xu, S.-Z.; Yang, Q.-Y.; Zhang, H.-Y. Facilitating anti-cancer combinatorial drug discovery by targeting epistatic disease genes. Molecules 2018, 23, 736. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, J.F.; Cannataro, V.L.; Shuch, B.; Townsend, J.P. Analysis of mutation, selection, and epistasis: An informed approach to cancer clinical trials. Oncotarget 2018, 9, 22243–22253. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lauschke, V.M. Pharmacogenomic network analysis of the gene-drug interaction landscape underlying drug disposition. Comput. Struct. Biotechnol. J. 2020, 18, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Kihara, D. Computational identification of protein-protein interactions in model plant proteomes. Sci. Rep. 2019, 9, 8740. [Google Scholar] [CrossRef] [PubMed]
- Nur Sazwi, N.; Nalina, T.; Rahim, Z.H.A. Antioxidant and cytoprotective activities of Piper betle, Areca catechu, Uncaria gambir and betel quid with and without calcium hydroxide. BMC Complement. Altern. Med. 2013, 13, 351. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Li, L.; Hu, Z. Exploring the Molecular Mechanism of Action of Yinchen Wuling Powder for the Treatment of Hyperlipidemia, Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. BioMed Res. Int. 2021, 2021, 9965906. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, S.H.; Zhong, K.; Jiang, T.; Zhang, M.; Kwan, H.Y.; Su, T. Network Pharmacology-Based Strategy for the Investigation of the Anti-Obesity Effects of an Ethanolic Extract of Zanthoxylum bungeanum Maxim. Front. Pharmacol. 2020, 11, 572387. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Huang, M.; Lin, H.; Wang, G.; Li, H. Network pharmacology and molecular docking approach to elucidate the mechanisms of Liuwei Dihuang pill in diabetic osteoporosis. J. Orthop. Surg. Res. 2022, 17, 314. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, S.; Kuroda, K.; Doi, K.-I.; Tanabe, M.; Shibata, T.; Yoshida, T.; Hatano, T. Revised structures of gambiriins A1, A2, B1, and B2, chalcane-flavan dimers from gambir (Uncaria gambir extract). Chem. Pharm. Bull. 2007, 55, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed]
- Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Stein, T.I.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; et al. GeneCards Version 3: The human gene integrator. Database 2010, 2010, baq020. [Google Scholar] [CrossRef] [PubMed]
- Macarak, E.J.; Wermuth, P.J.; Rosenbloom, J.; Uitto, J. Keloid disorder: Fibroblast differentiation and gene expression profile in fibrotic skin diseases. Exp. Dermatol. 2021, 30, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-C.; Zhao, W.-Y.; Cao, Y.; Liu, Y.-Q.; Sun, Q.; Shi, P.; Cai, J.-Q.; Shen, X.Z.; Tan, W.-Q. The Roles of Inflammation in Keloid and Hypertrophic Scars. Front Immunol. 2020, 11, 603187. [Google Scholar] [CrossRef] [PubMed]
- Mcginty, S.; Siddiqui, J.W. Keloid; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Lee, C.C.; Tsai, C.H.; Chen, C.H.; Yeh, Y.C.; Chung, W.H.; Chen, C.B. An updated review of the immunological mechanisms of keloid scars. Front. Immunol. 2023, 14, 1117630. [Google Scholar] [CrossRef] [PubMed]
- Nangole, F.W.; Agak, G.W. Keloid pathophysiology: Fibroblast or inflammatory disorders?: Pathophysiology of Keloids. JPRAS Open 2019, 22, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, L.A.; Wynn, T.A.; Fisher, A.J. Cytokine mediated tissue fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 2013, 1832, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Varmeh, S.; Egia, A.; McGrouther, D.; Tahan, S.R.; Bayat, A.; Pandolfi, P.P. Cellular Senescence as a Possible Mechanism for Halting Progression of Keloid Lesions. Genes Cancer 2011, 2, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.-C.; Hu, Y.-F.; Zhu, D.-H.; Cheng, Q.; Gu, J.-J.; Feng, Q.-L.; Zhang, L.-X.; Xu, Y.-P.; Wang, D.; Rong, Z.; et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat Commun. 2021, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.; Lennartsson, J. The PDGF/PDGFR pathway as a drug target. Mol. Aspects Med. 2018, 62, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Klinkhammer, B.M.; Floege, J.; Boor, P. PDGF in organ fibrosis. Mol. Aspects Med. 2018, 62, 44–62. [Google Scholar] [CrossRef] [PubMed]
- Dowling, C.M.; Kiely, P.A. Targeting protein Kinase C downstream of growth factor and adhesion signalling. Cancers 2015, 7, 1271–1291. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kong, J.; Chang, H.; Kim, H.; Kim, A. EGF induces epithelial-mesenchymal transition through phosphor-Smad2/3-Snail signaling pathway in breast cancer cells. Oncotarget 2016, 7, 85021–85032. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.-W.; Hsu, S.-C.; Xia, W.; Cao, X.; Shih, J.-Y.; Wei, Y.; Abbruzzese, J.L.; Hortobagyi, G.N.; Hung, M.-C. Epidermal Growth Factor Receptor Cooperates with Signal Transducer and Activator of Transcription 3 to Induce Epithelial-Mesenchymal Transition in Cancer Cells via Up-regulation of TWIST Gene Expression. Cancer Res. 2008, 23, 9066–9076. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.I.; Shim, J.E.; Kim, J.; Lee, W.J.; Kim, J.W.; Nam, K.H.; Lee, J.H. WNT5A drives interleukin-6-dependent epithelial–mesenchymal transition via the JAK/STAT pathway in keloid pathogenesis. Burn. Trauma. 2022, 10, tkac023. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Liang, Y.C.; Wu, P.; Kulber, D.A.; Tanabe, K.; Chuong, C.M.; Ming, C.; Randall, W.; Tai-Lan, T. STAT3 Signaling Pathway is Implicated in Keloid Pathogenesis by Preliminary Transcriptome and Open Chromatin Analyses. Physiol. Behav. 2017, 174, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Jackson, C.J. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv. Wound Care 2015, 4, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.E.; Trowbridge, R.M.; Ayoub, N.T.; Agrawal, D.K. High-mobility Group Box Protein-1, Matrix Metalloproteinases, and Vitamin D in Keloids and Hypertrophic Scars. PRS Glob. Open 2015, 3, e425. [Google Scholar] [CrossRef] [PubMed]
- Wulandari, E.; Jusman, S.W.A.; Moenadjat, Y.; Jusuf, A.A.; Sadikin, M. Expressions of Collagen I and III in Hypoxic Keloid Tissue. Kobe J. Med. Sci. 2016, 62, 58–69. [Google Scholar]
- Dohi, T.; Miyake, K.; Aoki, M.; Ogawa, R.; Akaishi, S.; Shimada, T.; Okada, T.; Hyakusoku, H. Tissue Inhibitor of Metalloproteinase-2 Suppresses Collagen Synthesis in Cultured Keloid Fibroblasts. PRS Glob. Open 2015, 3, e520. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Venny, O.J. An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: https://methods.sagepub.com/reference/dictionary-of-statistics-methodology/n2067.xml (accessed on 14 February 2023).
- Bozhilova, L.V.; Whitmore, A.V.; Wray, J.; Reinert, G.; Deane, C.M. Measuring rank robustness in scored protein interaction networks. BMC Bioinform. 2019, 20, 446. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res. 2018, 46, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, H.; Wang, D.; Mi, J.; Chen, G.; Li, F.; Wang, Y.; Zhang, Y. Network Pharmacology Analysis on the Mechanism of Huangqi Sijunzi Decoction in Treating Cancer-Related Fatigue. J. Healthc. Eng. 2021, 2021, 9780677. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Lempicki RA. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Marin-Garcia, P.; Ping, P.; Stein, L.; D’eustachio, P.; Hermjakob, H. Reactome diagram viewer: Data structures and strategies to boost performance. Bioinformatics 2018, 34, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Coppola, M.M.; Salzillo, R.; Segreto, F.; Persichetti, P. Triamcinolone acetonide intralesional injection for the treatment of keloid scars: Patient selection and perspectives. Clin. Cosmet. Investig. Dermatol. 2018, 11, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhao, Q.; Wang, Y. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy. Sci. Rep. 2021, 11, 19496. [Google Scholar] [CrossRef] [PubMed]
No | Molecule | Drug-Likeness | Pharmacokinetics | Predicted Toxicity Class | ||||
---|---|---|---|---|---|---|---|---|
Mw | Log P | HBA | HBD | GI Abs | CYP Inhibitor | |||
1 | Catechol | 110.11 | 0.94 | 2 | 2 | High | No | 3 |
2 | Gambiriin C | 562.52 | 1.84 | 11 | 9 | Low | CYP3A4 | 5 |
3 | Gambiriin A1 | 580.54 | 1.69 | 12 | 11 | Low | CYP3A4 | 5 |
4 | Gambiriin A3 | 580.54 | 1.45 | 12 | 11 | Low | CYP3A4 | 5 |
5 | Procyanidin B3 | 578.52 | 1.53 | 12 | 10 | Low | CYP3A4 | 5 |
6 | Procyanidin B1 | 578.52 | 1.53 | 12 | 10 | Low | CYP3A4 | 5 |
7 | Gambiriin A2 | 580.54 | 1.69 | 12 | 11 | Low | CYP3A4 | 5 |
8 | Procyanidin B2 | 578.52 | 1.53 | 12 | 10 | Low | CYP3A4 | 5 |
9 | Procyanidin B4 | 578.52 | 1.53 | 12 | 10 | Low | CYP3A4 | 5 |
10 | Ursolic acid | 456.70 | 5.88 | 3 | 2 | Low | No | 4 |
11 | Quercetin | 302.24 | 1.23 | 7 | 5 | High | CYP2D6CYP3A4CYP3A2 | 3 |
12 | Quinic acid | 192.17 | 1.75 | 6 | 5 | Low | No | 6 |
13 | Kaempferol | 286.24 | 1.58 | 6 | 4 | High | CYP2D6CYP3A4CYP3A2 | 5 |
14 | Protocatechuic acid | 154.12 | 0.65 | 4 | 3 | High | CYP3A4 | 4 |
15 | Epicatechin gallate | 442.37 | 1.25 | 10 | 7 | Low | No | 4 |
16 | Dimeric proanthocyanidin | 576.50 | 1.61 | 12 | 9 | Low | CYP3A4 | 5 |
17 | Gambirflavan D1 | 562.52 | 2.29 | 11 | 9 | Low | CYP2C9 CYP3A4 | 5 |
18 | Gambirflavan D2 | 562.52 | 2.29 | 11 | 9 | Low | CYP2C9CYP3A4 | 5 |
19 | Hyperoside | 464.38 | −0.25 | 12 | 8 | Low | No | 5 |
20 | Isoquercitrin | 464.38 | −0.25 | 12 | 8 | Low | No | 5 |
21 | Pyrocatechol | 110.11 | 0.97 | 2 | 2 | High | CYP3A4 | 3 |
22 | Phloroglucinol | 126.11 | 0.45 | 3 | 3 | High | CYP3A4 | 3 |
23 | 4-methoxyphenol | 124.14 | 1.41 | 2 | 1 | High | No | 4 |
24 | 4-allyl-2-methoxyphenol | 164.20 | 2.25 | 2 | 1 | High | CYP1A2 | 4 |
25 | Gambirine | 384.47 | 2.85 | 5 | 2 | High | CYP2D6 | 3 |
26 | Isogambirine | 384.50 | 2.82 | 5 | 2 | High | CYP2D6 | 3 |
27 | Tetrahydroalstonine | 352.43 | 2.67 | 4 | 1 | High | CYP2D6 | 3 |
28 | Dihydrocorynantheine | 368.47 | 3.22 | 4 | 1 | High | CYP2D6 CYP3A4 | 3 |
29 | Uncariagambiriine | 620.65 | 3.61 | 9 | 6 | Low | CYP2C9 | 4 |
Gene | Gene Full Name | BC | CC | Degree |
---|---|---|---|---|
EP300 | E1A-binding protein p300 | 0.19 | 0.43 | 12 |
AKT1 | AKT serine/threonine kinase 1 | 0.12 | 0.44 | 10 |
STAT3 | Signal transducer and activator of transcription 3 | 0.26 | 0.39 | 10 |
TGFB1 | Transforming growth factor beta 1 | 0.11 | 0.44 | 8 |
VEGFA | Vascular endothelial growth factor A | 0.17 | 0.43 | 7 |
EGFR | Epidermal growth factor receptor | 0.18 | 0.44 | 6 |
CCND1 | Cyclin D1 | 0.05 | 0.41 | 4 |
IGF1R | Insulin-like growth factor 1 receptor | 0.02 | 0.39 | 3 |
TIMP1 | TIMP metallopeptidase inhibitor 1 | 0.11 | 0.39 | 2 |
MMP1 | Matrix metallopeptidase 1 | 0.14 | 0.33 | 1 |
PDGFA | Platelet-derived growth factor alpha | 0.07 | 0.31 | 1 |
Category | Gene Function | Count | p-Value |
---|---|---|---|
BP | Positive regulation of cell proliferation | 6 | 1.9 × 10−6 |
BP | Positive regulation of transcription from RNA polymerase II promoter | 6 | 1.0 × 10−4 |
BP | Positive regulation of protein phosphorylation | 5 | 1.7 × 10−6 |
BP | Positive regulation of cell migration | 5 | 3.9 × 10−6 |
BP | Negative regulation of apoptotic process | 5 | 5.8 × 10−5 |
BP | Positive regulation of transcription, DNA-templated | 5 | 2.1 × 10−4 |
BP | Negative regulation of transcription from RNA polymerase II promoter | 5 | 6.8 × 10−4 |
BP | Signal transduction | 5 | 1.8 × 10−3 |
BP | Positive regulation of peptidyl-serine phosphorylation | 4 | 8.5 × 10−6 |
BP | Positive regulation of protein kinase B signaling | 4 | 2.3 × 10−5 |
MF | Identical protein binding | 6 | 5.4 × 10−4 |
MF | Enzyme binding | 4 | 6.1 × 10−4 |
MF | Growth factor activity | 3 | 2.7 × 10−3 |
MF | Cytokine activity | 3 | 3.5 × 10−3 |
MF | Protein kinase activity | 3 | 1.3 × 10−2 |
MF | Protein serine/threonine/tyrosine kinase activity | 3 | 1.7 × 10−2 |
MF | Protein kinase binding | 3 | 2.4 × 10−2 |
MF | Protein homodimerization activity | 3 | 4.5 × 10−2 |
CC | Cytoplasm | 8 | 2.5 × 10−3 |
CC | Nucleus | 7 | 2.2 × 10−2 |
CC | Extracellular space | 5 | 7.1 × 10−3 |
CC | Extracellular matrix | 4 | 1.5 × 10−4 |
CC | Extracellular region | 4 | 6.1 × 10−2 |
CC | Platelet alpha granule lumen | 3 | 3.7 × 10−4 |
CC | Cell surface | 3 | 3.1 × 10−2 |
CC | Collagen trimer | 2 | 4.0 × 10−2 |
CC | Secretory granule | 2 | 4.2 × 10−2 |
Compound/Affinity (kcal/mol) | TGFβ1 | AKT1 | MMP1 |
---|---|---|---|
Gambiriin A1 | −4.47 | −7.43 | −5.32 |
Procyanidin B1 | −6.76 | −3.66 | −9.54 |
Procyanidin B3 | −6.56 | −6.52 | −7.49 |
Procyanidin B2 | −6.03 | −5.98 | −8.38 |
Gambiriin A2 | −5.53 | −5.27 | −5.99 |
Epicatechin gallate | −5.18 | −7.79 | −9.48 |
Gambiriin A3 | −5.45 | −7.68 | −6.24 |
Gambiriin C | −6.90 | −7.99 | −8.46 |
Isogambirine | −6.02 | −8.68 | −8.44 |
Procyanidin B4 | −6.62 | −8.47 | −8.84 |
TAC | −6.19 | −8.88 | −6.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ningsih, S.S.; Fadilah, F.; Jusman, S.W.A.; Syaidah, R.; Yashiro, T. Profibrotic Inflammatory Cytokines and Growth Factors Are Predicted as the Key Targets of Uncaria gambir (Hunter) Roxb. in Keloids: An Epistatic and Molecular Simulation Approach. Pharmaceuticals 2024, 17, 662. https://doi.org/10.3390/ph17060662
Ningsih SS, Fadilah F, Jusman SWA, Syaidah R, Yashiro T. Profibrotic Inflammatory Cytokines and Growth Factors Are Predicted as the Key Targets of Uncaria gambir (Hunter) Roxb. in Keloids: An Epistatic and Molecular Simulation Approach. Pharmaceuticals. 2024; 17(6):662. https://doi.org/10.3390/ph17060662
Chicago/Turabian StyleNingsih, Sri Suciati, Fadilah Fadilah, Sri Widia A. Jusman, Rahimi Syaidah, and Takashi Yashiro. 2024. "Profibrotic Inflammatory Cytokines and Growth Factors Are Predicted as the Key Targets of Uncaria gambir (Hunter) Roxb. in Keloids: An Epistatic and Molecular Simulation Approach" Pharmaceuticals 17, no. 6: 662. https://doi.org/10.3390/ph17060662
APA StyleNingsih, S. S., Fadilah, F., Jusman, S. W. A., Syaidah, R., & Yashiro, T. (2024). Profibrotic Inflammatory Cytokines and Growth Factors Are Predicted as the Key Targets of Uncaria gambir (Hunter) Roxb. in Keloids: An Epistatic and Molecular Simulation Approach. Pharmaceuticals, 17(6), 662. https://doi.org/10.3390/ph17060662