Potential of Bioactive Protein and Protein Hydrolysate from Apis mellifera Larvae as Cosmeceutical Active Ingredients for Anti-Skin Aging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Amino Acid Profiles of Dried and Defatted A. mellifera Larvae
2.2. Yields of Protein and Protein Hydrolysate from Apis mellifera Larvae
2.3. Protein Content of A. mellifera Larval Extracts
2.4. Antioxidant Activities of A. mellifera Larval Extracts
2.5. Anti-Aging Activity of A. mellifera Protein Extracts
2.6. Irritation Properties of A. mellifera Protein Extracts
3. Materials and Methods
3.1. Chemical Materials
3.2. A. mellifera Larvae Material
3.3. Defatting Process of A. mellifera Larvae
3.4. Amino Acid Profile Determination
3.5. Crude Protein Extraction from A. mellifera Larvae
3.6. Protein Hydrolysis by the Alcalase® Enzyme
3.7. Total Protein Content Determination by the Bradford Assay
3.8. Molecular Weight Distribution Determination by SDS-PAGE
3.9. Antioxidant Activity Determination
3.9.1. 2,2′-Azino-bis (3-ethylbenzthia zoline-6-sulphonic Acid) (ABTS) Assay
3.9.2. Griess Assay
3.10. Anti-Aging Activity Determination
3.10.1. Inhibition of the Collagenase Enzyme
3.10.2. Inhibition of the Hyaluronidase Enzyme
3.11. Irritation Test by the HET-CAM Test
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabrosky, C.W. How many insects are there? Syst. Zool. 1953, 2, 31–36. [Google Scholar] [CrossRef]
- Manning, R.; Rutkay, A.; Eaton, L.; Dell, B. Lipid-enhanced pollen and lipid-reduced flour diets and their effect on the longevity of honey bees (Apis mellifera L.). Aust. J. Entomol. 2007, 46, 251–257. [Google Scholar] [CrossRef]
- Ediriweera, E.R.; Premarathna, N.Y. Medicinal and cosmetic uses of Bee’s Honey—A review. Int. Q. J. Res. Ayurveda 2012, 33, 178–182. [Google Scholar] [CrossRef]
- Alabdali, E.A.A.; Ghramh, H.A.; Ibrahim, E.H.; Ahmad, Z.; Asiri, A.N. Characterization of the native honey bee (Apis mellifera jemenitica) in the south western region of Saudi Arabia using morphometric and genetic (mtDNA COI) characteristics. Saudi J. Biol. Sci. 2021, 28, 2278–2284. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; O’Brien, M.; Georges, K.; Suepaul, S. Physical characteristics and antimicrobial properties of Apis mellifera, Frieseomelitta nigra and Melipona favosa bee honeys from apiaries in Trinidad and Tobago. BMC Complement. Med. Ther. 2020, 20, 85. [Google Scholar] [CrossRef]
- Machado De-Melo, A.A.; Almeida-Muradian, L.B.D.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Chen, X.; Feng, Y.; Chen, Z. Common edible insects and their utilization in China. Entomol. Res. 2009, 39, 299–303. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia Pac. Entomol. 2016, 19, 487–495. [Google Scholar] [CrossRef]
- Sawczuk, R.; Karpinska, J.; Filipowska, D.; Bajguz, A.; Hryniewicka, M. Evaluation of total phenols content, anti-DPPH activity and the content of selected antioxidants in the honeybee drone brood homogenate. Food Chem. 2022, 368, 130745. [Google Scholar] [CrossRef]
- Ngoc, L.T.N.; Moon, J.Y.; Lee, Y.C. Insights into bioactive peptides in cosmetics. Cosmetics 2023, 10, 111. [Google Scholar] [CrossRef]
- Gazitaeva, Z.I.; Drobintseva, A.O.; Chung, Y.; Polyakova, V.O.; Kvetnoy, I.M. Cosmeceutical product consisting of biomimetic peptides: Antiaging effects in vivo and in vitro. Clin. Cosmet. Investig. Dermatol. 2017, 10, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.N.; Pedriali Moraes, C.A. Bioactive Peptides: Applications and relevance for cosmeceuticals. Cosmetics 2018, 5, 21. [Google Scholar] [CrossRef]
- Cadar, R.L.; Amuza, A.; Dumitras, D.E.; Mihai, M.; Pocol, C.B. Analysing clusters of consumers who use medicinal and aromatic plant products. Sustainability 2021, 13, 8648. [Google Scholar] [CrossRef]
- Limbu, Y.B.; Ahamed, A.J. what influences green cosmetics purchase intention and behavior? A systematic review and future research agenda. Sustainability 2023, 15, 11881. [Google Scholar] [CrossRef]
- Haber, M.; Mishyna, M.; Martinez, J.I.; Benjamin, O. Edible larvae and pupae of honey bee (Apis mellifera): Odor and nutritional characterization as a function of diet. Food Chem. 2019, 292, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tu, M.J.; Zhang, C.; Jilek, J.L.; Zhang, Q.Y.; Yu, A.M. A reliable LC-MS/MS method for the quantification of natural amino acids in mouse plasma: Method validation and application to a study on amino acid dynamics during hepatocellular carcinoma progression. J. Chromatogr. B 2019, 1124, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.F.; Wang, T.; Regmi, N. Lysine nutrition in swine and the related monogastric animals: Muscle protein biosynthesis and beyond. SpringerPlus 2015, 4, 147. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Arauzo, P.J.; Meza Zavala, M.F.; Cao, Z.; Olszewski, M.P.; Kruse, A. Towards the properties of different biomass-derived proteins via various extraction methods. Molecules 2020, 25, 488. [Google Scholar] [CrossRef] [PubMed]
- Amarender, R.V.; Bhargava, K.; Dossey, A.T.; Gamagedara, S. Lipid and protein extraction from edible insects–Crickets (Gryllidae). LWT 2020, 125, 109222. [Google Scholar] [CrossRef]
- Soetemans, L.; Uyttebroek, M.; D’Hondt, E.; Bastiaens, L. Use of organic acids to improve fractionation of the black soldier fly larvae juice into lipid-and protein-enriched fractions. Eur. Food Res. Technol. 2019, 245, 2257–2267. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, D.; Liu, H.; Chen, K. Quantitative analysis and degradation mechanisms of different protein degradation methods. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Mishyna, M.; Martinez, J.J.I.; Chen, J.; Benjamin, O. Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Res. Int. 2019, 116, 697–706. [Google Scholar] [CrossRef]
- Dewi, D.P.A.P. Processing condition and properties of protein isolates from mung bean (Vigna radiata) and quinoa (Chenopodium quinoa willd). Indones. J. Appl. Sci. 2022, 4, 89–99. [Google Scholar] [CrossRef]
- Ryan, J.K.; Jelen, P.; Sauer, W.C. Alkaline extraction of protein from spent honey bees. J. Food Sci. 1983, 48, 886–896. [Google Scholar] [CrossRef]
- Hartfelder, K.; Bitondi, M.M.; Brent, C.S.; Guidugli-Lazzarini, K.R.; Simões, Z.L.; Stabentheiner, A.; Tanaka, É.D.; Wang, Y. Standard methods for physiology and biochemistry research in Apis mellifera. J. Apic. Res. 2013, 52, 1–48. [Google Scholar] [CrossRef]
- Chan, Q.W.; Howes, C.G.; Foster, L.J. Quantitative comparison of caste differences in honeybee hemolymph. Mol. Cell Proteom. 2016, 5, 2252–2262. [Google Scholar] [CrossRef] [PubMed]
- Piulachs, M.D.; Guidugli, K.R.; Barchuk, A.R.; Cruz, J.; Simões, Z.L.P.; Belles, X. The vitellogenin of the honey bee, Apis mellifera: Structural analysis of the cDNA and expression studies. Insect Biochem. Mol. Biol. 2013, 33, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Guidugli, K.R.; Piulachs, M.D.; Bellés, X.; Lourenço, A.P.; Simões, Z.L. Vitellogenin expression in queen ovaries and in larvae of both sexes of Apis mellifera. Arch. Insect Biochem. Physiol. 2005, 59, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Raman, M.; Kalarikkathara Parameswaran, M.; Rajan, D.P. Bioactive Compounds from Marine Sources. In Fish and Fishery Products Analysis; Springer: Singapore, 2019; pp. 379–443. [Google Scholar] [CrossRef]
- Hayes, M. Measuring protein content in food: An overview of methods. Foods 2020, 9, 1340. [Google Scholar] [CrossRef]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Bradford assay for determining protein concentration. Cold Spring Harb. Protoc. 2020, 2020, 102269. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Wiechelman, K.J.; Braun, R.D.; Fitzpatrick, J.D. Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation. Anal. Biochem. 1988, 175, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Navaf, M.; Sunooj, K.V.; Aaliya, B.; Sudheesh, C.; Akhila, P.P.; Mir, S.A.; Nemţanu, M.R.; George, J.; Lackner, M.; Mousavi Khaneghah, A. Contemporary insights into the extraction, functional properties, and therapeutic applications of plant proteins. J. Agric. Food Res. 2023, 14, 100861. [Google Scholar] [CrossRef]
- Sedmak, J.J.; Grossberg, S.E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 1977, 79, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Chaiyana, W.; Anuchapreeda, S.; Punyoyai, C.; Neimkhum, W.; Lee, K.H.; Lin, W.C.; Lue, S.C.; Viernstein, H.; Mueller, M. Ocimum sanctum Linn. as a natural source of skin anti-ageing compounds. Ind. Crops Prod. 2019, 127, 217–224. [Google Scholar] [CrossRef]
- Sumanont, Y.; Murakami, Y.; Tohda, M.; Vajragupta, O.; Matsumoto, K.; Watanabe, H. Evaluation of the nitric oxide radical scavenging activity of manganese complexes of curcumin and its derivative. Biol. Pharm. Bull. 2004, 27, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Naser, W. The cosmetic effects of various natural biofunctional ingredients against skin aging: A review. Int. J. Appl. Pharm. 2021, 13, 10–18. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Mikail, M.A.; Zamakshshari, N.H.; Mustafa, M.R.; Hashim, N.M.; Othman, R. Trends and challenges in phytotherapy and phytocosmetics for skin aging. Saudi J. Biol. Sci. 2022, 29, 103363. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Toldrá, F. Characterisation of the antioxidant peptide AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chem. 2018, 258, 8–15. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Rajput, M.S.; Rathod, N.B.; Mudgil, P.; Pati, S.; Bono, G.; Nalinanon, S.; Li, L.; Maqsood, S. Structural characteristic and molecular docking simulation of fish protein-derived peptides: Recent updates on antioxidant, anti-hypertensive and anti-diabetic peptides. Food Chem. 2023, 405, 134737. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The Structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Ketnawa, S.; Wickramathilaka, M.; Liceaga, A.M. Changes on antioxidant activity of microwave-treated protein hydrolysates after simulated gastrointestinal digestion: Purification and identification. Food Chem. 2018, 254, 36–46. [Google Scholar] [CrossRef]
- Patel Rajesh, M.; Patel Natvar, J. In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods. J. Adv. Pharm. Educ. Res. 2011, 1, 52–68. [Google Scholar]
- Laroux, F.S.; Pavlick, K.P.; Hines, I.N.; Kawachi, S.; Harada, H.; Bharwani, S.; Hoffman, J.M.; Grisham, M.B. Role of nitric oxide in inflammation. Acta Physiol. Scand 2001, 173, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Cals-Grierson, M.M.; Ormerod, A.D. Nitric oxide function in the skin. Nitric Oxide 2004, 10, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Royer, M.; Prado, M.; García-Pérez, M.E.; Diouf, P.N.; Stevanovic, T. Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition 2013, 1, 158–167. [Google Scholar] [CrossRef]
- Momen, S.; Alavi, F.; Aider, M. Alkali-mediated treatments for extraction and functional modification of proteins: Critical and application review. Trends Food Sci. Technol. 2021, 110, 778–797. [Google Scholar] [CrossRef]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxid. Med. Cell. Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef]
- Pintus, F.; Floris, S.; Fais, A.; Era, B.; Kumar, A.; Gatto, G.; Uriarte, E.; Matos, M.J. Hydroxy-3-phenylcoumarins as multitarget compounds for skin aging diseases: Synthesis, molecular docking and tyrosinase, elastase, collagenase and hyaluronidase inhibition, and sun protection factor. Molecules 2022, 27, 6914. [Google Scholar] [CrossRef]
- Amano, S. Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp. Dermatol. 2016, 25, 14–19. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.; Kim, M. Structural and functional changes and possible molecular mechanisms in aged skin. Int. J. Mol. Sci. 2021, 22, 12489. [Google Scholar] [CrossRef]
- Žádníková, P.; Šínová, R.; Pavlík, V.; Šimek, M.; Šafránková, B.; Hermannová, M.; Nešporová, K.; Velebný, V. The degradation of hyaluronan in the skin. Biomolecules 2022, 12, 251. [Google Scholar] [CrossRef]
- Li, J.; Qiao, M.; Ji, Y.; Lin, L.; Zhang, X.; Linhardt, R.J. Chemical, enzymatic and biological synthesis of hyaluronic acids. Int. J. Biol. Macromol. 2020, 152, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Chaiyana, W.; Anuchapreeda, S.; Somwongin, S.; Marsup, P.; Lee, K.H.; Lin, W.C.; Lue, S.C. Dermal delivery enhancement of natural anti-ageing compounds from Ocimum sanctum Linn. extract by nanostructured lipid carriers. Pharmaceutics 2020, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, H. HET-CAM Test. In In Vitro Toxicity Testing Protocols; Springer: Berlin/Heidelberg, Germany, 1995; pp. 199–204. [Google Scholar]
- Kim, T.K.; Yong, H.I.; Chun, H.H.; Lee, M.; Kim, Y.; Choi, Y. Changes of amino acid composition and protein technical functionality of edible insects by extracting steps. J. Asia Pac. Entomol. 2020, 23, 298–305. [Google Scholar] [CrossRef]
- Windham, W.R. AOAC official method. In Official Methods of Analysis of AOAC International, 16th ed.; Cunniff, P., Ed.; AOAC International: Rockville, MD, USA, 1995. [Google Scholar]
- AOAC. AOAC official method 988.15, Tryptophan in Foods and Food & Feed Ingredients. In Official Methods of Analysis of AOAC International, 18th ed.; Gaithersburg, M., Ed.; AOAC International: Rockville, MD, USA, 2006. [Google Scholar]
- Li, G.H.; Le, G.W.; Liu, H.; Shi, Y.H. Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme inhibitory activity. Food Sci. Technol. Int. 2005, 11, 281–287. [Google Scholar] [CrossRef]
- Khammuang, S.; Sarnthima, R.; Sanachai, K. Purification and identification of novel antioxidant peptides from silkworm pupae (Bombyx mori) protein hydrolysate and molecular docking study. Biocatal. Agric. Biotechnol. 2022, 42, 102367. [Google Scholar] [CrossRef]
- Anootthato, S.; Therdthai, N.; Ritthiruangdej, P. Characterization of protein hydrolysate from silkworm pupae (Bombyx mori). J. Food Process Preserv. 2019, 43, e14021. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Spectrophotometric determination of antioxidant activity. Redox Rep. 1996, 2, 161–171. [Google Scholar] [CrossRef]
- Chaiyana, W.; Sirithunyalug, J.; Somwongin, S.; Punyoyai, C.; Laothaweerungsawat, N.; Marsup, P.; Neimkhum, W.; Yawootti, A. Enhancement of the antioxidant, anti-tyrosinase, and anti-hyaluronidase activity of Morus alba L. leaf extract by pulsed electric field extraction. Molecules 2020, 25, 2212. [Google Scholar] [CrossRef] [PubMed]
- Somwongin, S.; Chantawannakul, P.; Chaiyana, W. Antioxidant activity and irritation property of venoms from Apis species. Toxicon 2018, 145, 32–39. [Google Scholar] [CrossRef] [PubMed]
Amino Acid Profile | Amount (% w/w) | |
---|---|---|
Dried A. mellifera Larvae | Defatted A. mellifera Larvae | |
Lysine | 9.52 ± 0.18 | 8.61 ± 0.17 |
Leucine | 4.62 ± 0.02 | 5.28 ± 0.09 |
Isoleucine | 3.93 ± 0.07 | 4.33 ± 0.02 |
Phenylalanine | 3.88 ± 0.08 | 4.54 ± 0.15 |
Tyrosine | 3.00 ± 0.07 | 3.65 ± 0.25 |
Glutamic acid | 2.18 ± 0.19 | 2.38 ± 0.01 |
Valine | 2.00 ± 0.02 | 2.20 ± 0.06 |
Histidine | 1.80 ± 0.01 | 1.73 ± 0.05 |
Aspartic acid | 1.73 ± 0.02 | 2.04 ± 0.21 |
Alanine | 1.31 ± 0.13 | 1.42 ± 0.07 |
Proline | 0.98 ± 0.09 | 1.08 ± 0.07 |
Glycine | 0.69 ± 0.01 | 0.76 ± 0.02 |
Cystine | 0.54 ± 0.01 | 0.68 ± 0.12 |
Serine | 0.53 ± 0.31 | 0.44 ± 0.13 |
Threonine | 0.44 ± 0.15 | 0.43 ± 0.07 |
Tryptophan | 0.15 ± 0.00 | 0.15 ± 0.00 |
Hydroxylysine | <0.02 1 | <0.02 1 |
Hydroxyproline | <0.02 1 | <0.02 1 |
Methionine | <0.02 1 | <0.02 1 |
Total | 37.30 | 39.72 |
Substance | Irritation Score | Severity of Irritation |
---|---|---|
Positive control | 15.51 ± 0.64 a | Severe irritation |
Negative control | 0.0 ± 0.0 b | No irritation |
Lysine | 0.0 ± 0.0 b | No irritation |
Crude proteins | ||
| 0.0 ± 0.0 b | No irritation |
| 0.0 ± 0.0 b | No irritation |
| 0.0 ± 0.0 b | No irritation |
| 0.0 ± 0.0 b | No irritation |
| 0.0 ± 0.0 b | No irritation |
Protein hydrolysate | ||
| 0.0 ± 0.0 b | No irritation |
| 0.0 ± 0.0 b | No irritation |
| 0.0 ± 0.0 b | No irritation |
| 0.0 ± 0.0 b | No irritation |
| 0.0 ± 0.0 b | No irritation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thuraphan, P.; Suang, S.; Bunrod, A.; Kanjanakawinkul, W.; Chaiyana, W. Potential of Bioactive Protein and Protein Hydrolysate from Apis mellifera Larvae as Cosmeceutical Active Ingredients for Anti-Skin Aging. Pharmaceuticals 2024, 17, 679. https://doi.org/10.3390/ph17060679
Thuraphan P, Suang S, Bunrod A, Kanjanakawinkul W, Chaiyana W. Potential of Bioactive Protein and Protein Hydrolysate from Apis mellifera Larvae as Cosmeceutical Active Ingredients for Anti-Skin Aging. Pharmaceuticals. 2024; 17(6):679. https://doi.org/10.3390/ph17060679
Chicago/Turabian StyleThuraphan, Paphawarin, Suphawan Suang, Anurak Bunrod, Watchara Kanjanakawinkul, and Wantida Chaiyana. 2024. "Potential of Bioactive Protein and Protein Hydrolysate from Apis mellifera Larvae as Cosmeceutical Active Ingredients for Anti-Skin Aging" Pharmaceuticals 17, no. 6: 679. https://doi.org/10.3390/ph17060679
APA StyleThuraphan, P., Suang, S., Bunrod, A., Kanjanakawinkul, W., & Chaiyana, W. (2024). Potential of Bioactive Protein and Protein Hydrolysate from Apis mellifera Larvae as Cosmeceutical Active Ingredients for Anti-Skin Aging. Pharmaceuticals, 17(6), 679. https://doi.org/10.3390/ph17060679