
Citation: Altyar, A.E.; Afzal, M.;

Ghaboura, N.; Alharbi, K.S.;

Alenezi, S.K.; Sayyed, N.; Kazmi, I.

Barbaloin Protects

Pentylenetetrazol-Induced Cognitive

Deficits in Rodents via Modulation of

Neurotransmitters and Inhibition of

Oxidative-Free-Radicals-Led

Inflammation. Pharmaceuticals 2024,

17, 699. https://doi.org/10.3390/

ph17060699

Academic Editors: Marco G. Alves

and Ariane Zamoner

Received: 22 April 2024

Revised: 9 May 2024

Accepted: 15 May 2024

Published: 28 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

Barbaloin Protects Pentylenetetrazol-Induced Cognitive Deficits
in Rodents via Modulation of Neurotransmitters and Inhibition
of Oxidative-Free-Radicals-Led Inflammation
Ahmad Essam Altyar 1,2,* , Muhammad Afzal 3,*, Nehmat Ghaboura 4, Khalid Saad Alharbi 5,
Sattam Khulaif Alenezi 5 , Nadeem Sayyed 6 and Imran Kazmi 7

1 Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University,
P.O. Box 80260, Jeddah 21589, Saudi Arabia

2 Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia
3 Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College,

P.O. Box 6231, Jeedah 21442, Saudi Arabia
4 Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College,

P.O. Box 6231, Jeedah 21442, Saudi Arabia; pharmacy8.jed@bmc.edu.sa
5 Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah,

Al Qassim 51452, Saudi Arabia; khalid.alharbi9@qu.edu.sa (K.S.A.); sk.alenezi@qu.edu.sa (S.K.A.)
6 Glocal School of Pharmacy, Glocal University, Mirzapur-Pole, Saharanpur 247121, India;

snadeem.pharma@gmail.com
7 Department of Biochemistry, Faculty of Science, King Abdulaziz University,

P.O. Box. 80200, Jeddah 21589, Saudi Arabia; ikazmi@kau.edu.sa
* Correspondence: aealtyar@kau.edu.sa (A.E.A.); mohmmad.afzal@bmc.edu.sa (M.A.)

Abstract: Background: Epilepsy is defined by an excessive level of activity in the neurons and coordi-
nated bursts of electrical activity, resulting in the occurrence of seizure episodes. The precise cause
of epileptogenesis remains uncertain; nevertheless, the etiology of epilepsy may involve neuroin-
flammation, oxidative stress, and malfunction of the neurotransmitter system. Objective: The goal of
this investigation was to assess barbaloin’s protective properties with respect to pentylenetetrazol
(PTZ)-)-induced cognitive deficits in rats via antioxidative, anti-inflammatory, and neurotransmitter-
modulating effects. Methods: Wistar rats were subjected to PTZ [40 mg/kg (i.p.)], which induced
cognitive decline. Behavior assessment using a kindling score, open-field test (OFT), novel object
recognition test (NORT), and assays for superoxide dismutase (SOD), reduced glutathione (GSH), catalase
(CAT), malondialdehyde (MDA), acetylcholinesterase (AChE), caspase-3, nitric oxide (NO), interleukins-1β

(IL-1β), tumor necrosis factor-α (TNF-α), IL-6, nuclear factor kappa-B (NF-κB), Bcl-2 and Bax, and neuro-
transmitter levels [GABA, DA, NE, and serotonin (5-HT)] were performed. Results: The treatment
of rats with barbaloin resulted in behavior improvement and significant changes in the levels of
GSH, SOD, CAT, MDA, AChE, NO, IL-6, IL-1β, TNF-α, NF-κB, caspase-3, Bcl-2, and Bax compared to
the PTZ control group. Barbaloin treatment resulted in notable changes in neurotransmitter levels
(GABA, NE, 5-HT, DA) compared to the PTZ group. Conclusions: The ongoing study has gathered
evidence indicating that the injection of barbaloin has resulted in significant improvements in cogni-
tive performance in rats. This is achieved by inhibiting oxidative stress, enhancing the activity of
natural antioxidant enzymes, reducing cytokine levels, and increasing the levels of neurotransmitters
in the brain. These results were detected in comparison to a PTZ control and can be attributed to
the potent anti-inflammatory and antioxidant capabilities of barbaloin, which could be linked to its
neuroprotective properties. Barbaloin may potentially increase cognitive decline and boost neuronal
survival by altering the expression of Bax, caspase-3, Bcl-2.
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1. Introduction

Epilepsy is a widespread neurological condition that impacts around 1% of the global
population, with a significantly greater occurrence in poorer nations [1]. Epilepsy is
defined by an excessive level of activity in the neurons and coordinated bursts of electrical
activity, resulting in the occurrence of seizure episodes [2]. Multiple sources of evidence
have shown that inflammatory markers enhance the excitability of neurons, increase
the blood–brain barrier’s (BBR) permeability, activate glial cells, and induce neuronal
death. Evidence demonstrates that the secretion of cytokines and chemokines by activated
glial cells, specifically astrocytes and microglia, is highly significant in the development
and advancement of neurological illnesses such as epilepsy [3–5]. The precise cause of
epileptogenesis remains uncertain; nevertheless, the etiology of epilepsy may involve
neuroinflammation, oxidative stress, and malfunction of the neurotransmitter system [6].

The transcription factor Nrf2 controls antioxidant function by inducing the expression
of many antioxidant enzymes, like reduced glutathione (GSH) and superoxide dismutase
(SOD)-related enzymes. Consequently, the Nrf2 molecule was specifically focused on
during the creation of anti-epileptic medications [7]. Furthermore, the presence of neuroin-
flammation is indicated by the activation of neuroglial cells and the release of cytokines.
This has been proposed to intensify epileptic convulsions. Reported cytokines such as
nuclear factor kappa B (NF-κB), GFAP, tumor necrosis factor-α (TNF-α), and IL-6 have been
shown to produce neuronal hyperexcitability, leading to the development of seizures [8,9].

Pentylenetetrazol (PTZ)-kindling is a long-term model of epilepsy, a condition marked
by a progressive escalation of seizures. PTZ-induced kindling induces alterations occur-
ring at the cellular and molecular level, which contribute to neural plasticity [10–12]. The
induction of the kindling model is achieved with the repeated administration of PTZ as
an antagonist of γ-aminobutyric acid type A (GABA-A) at sub-convulsive dosages [13,14].
Studies have demonstrated that the injection of PTZ leads to the death of neurons and
the activation of glial cells in particular areas of the hippocampus [15]. Furthermore, the
researchers employed PTZ kindling, a well-established paradigm commonly utilized to
investigate the processes behind epileptogenesis, as well as the cognitive impairments
resulting from seizures [16,17]. With repeated PTZ administration, each injection triggers a
seizure, and the severity of the seizures gradually increases [18]. Preclinical and clinical
research provide compelling data indicating that epilepsy may lead to neuroinflamma-
tion [19]. Excessive inflammatory processes are linked to impaired neuronal function,
and proinflammatory cytokines contribute to the development of seizures by triggering
the infiltration of white blood cells, disrupting the blood–brain barrier and boosting the
oxidation of lipids [20,21].

Herbal medications provide promising and valuable reservoirs of medicinal com-
pounds [22,23]. Barbaloin is an organic compound with bioactive properties that is derived
from the Aloe vera L. plant. Barbaloin, like A. vera, has several pharmacological impacts
such as anti-inflammatory, antimicrobial, and antioxidant effects [24–26]. Prior studies
have confirmed that barbaloin triggers the overexpression of IL-6, tumor necrosis factor-
α, and IL-1β by activating NF-κB [26–29]. Moreover, the impact was notably reduced
when the PI3K/AKT signaling was obstructed. The previous results provide empirical
evidence that substantiates the notion that barbaloin effectively reduces the generation
of reactive oxygen species (ROS) in cells by impeding the phosphorylation process of
PI3K and AKT. Consequently, this obstacle inhibits the stimulation of NF-κB [27,28]. The
findings suggest that barbaloin possesses antidiabetic, antioxidant, neuroinflammatory,
cytokine-inhibitory, and acetylcholinesterase (AChE)-inhibiting properties. These properties
may contribute to its ability to protect against cognitive decline caused by STZ. Barbaloin
may have potential clinical applications in the treatment of neurological and cognitive
deficits in individuals with diabetes [28]. Barbaloin’s ability to improve cognitive function
stems from its ability to inhibit oxidative stress and enhance the activity of endogenous
antioxidant enzymes within the brain [30]. By minimizing the damage caused by oxidative
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stress, barbaloin can preserve the integrity of the brain’s structure and function, leading to
improved cognitive performance.

There has been no research conducted on the impact of barbaloin in epilepsy animal
models. The objective of the current study was to investigate the impact of barbaloin on
seizure tendencies and cognitive decline in a PTZ-induced kindling paradigm. In addition,
the concentration of inflammation, as well as caspase-3, Bcl-2-associated X protein (Bax), B-cell
lymphoma 2 (Bcl-2) marker, and neurotransmitter content in the brain, were assessed in rats
treated with barbaloin. The observed results were compared to a PTZ control and can be
attributed to the potent anti-neuroinflammatory and oxidative stress decline capabilities of
barbaloin, which may enhance its ability to protect against neuronal damage.

2. Results
2.1. Kindling Score

The administration of PTZ induced generalized tonic–clonic seizures (GTCS), which
were assessed using the Racine scale. According to the data shown in Figure 1A–C, the
administration of barbaloin for a period of 4 weeks significantly reduced the duration of
seizures [F (3, 20) = 55.54, p < 0.0001]. The treated groups had a significantly prolonged
latent time before the onset of seizures compared to the PTZ control rats [F (3, 20) = 148.7,
p < 0.0001]. Furthermore, the mortality rate was significantly decreased in the treated
groups compared to the PTZ control group [F (3, 20) = 76.09, p < 0.0001]. The findings
indicate that barbaloin has anticonvulsant properties against PTZ-induced seizures.
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Figure 1. (A–C) Outcome of barbaloin on kindling score. Mean ± S.E.M (n = 6). One-way ANOVA 
followed by Tukey’s post hoc test (n = 6). # p < 0.001 vs. control, ** p< 0.001, *** p< 0.0001 vs. PTZ. 

2.2. Open Field Test (OFT) 

Figure 1. (A–C) Outcome of barbaloin on kindling score. Mean ± S.E.M (n = 6). One-way ANOVA
followed by Tukey’s post hoc test (n = 6). # p < 0.001 vs. control, ** p < 0.001, *** p < 0.0001 vs. PTZ.

2.2. Open Field Test (OFT)

PTZ control rats had no significant effect on exploratory and locomotor in compar-
ison to rats in normal control (p < 0.0001). Treatment with barbaloin [F (3, 20) = 0.8348,
p = 0.4905] also had no significant effect compared to PTZ control rats (Figure 2).
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2.3. Novel Object Recognition Test (NORT)

PTZ control rats displayed a significantly decreased discrimination index in compari-
son to normal control rats (p < 0.0001). Treatment with barbaloin enhanced the discrimina-
tion index [F (3, 20) = 16.87, p < 0.0001] compared to PTZ control rats (Figure 3).
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Figure 3. The effect of barbaloin on NORT. Mean ± S.E.M. One-way ANOVA followed by Tukey’s
post hoc test (n = 6). # p < 0.001 vs. control, * p < 0.05, *** p < 0.0001 vs. PTZ.

2.4. Malondialdehyde (MDA), Nitric Oxide (NO), AChE Estimation

PTZ control rats significantly enhanced brain MDA, NO, and AChE concentration
in comparison to rats in normal control (p < 0.0001). Treatment with barbaloin lowered
the MDA [F (3, 20) = 45.40, p < 0.0001], NO [F (3, 20) = 30.54, p < 0.0001], and AChE [F
(3, 20) = 46.54, p < 0.0001] levels, respectively, compared to PTZ control rats (Figure 4A–C).



Pharmaceuticals 2024, 17, 699 6 of 18

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 6 of 25 
 

 

Figure 3. The effect of barbaloin on NORT. Mean ± S.E.M. One-way ANOVA followed by Tukey’s 
post hoc test (n = 6). # p < 0.001 vs. control, * p< 0.05, *** p< 0.0001 vs. PTZ. 

2.4. Malondialdehyde (MDA), Nitric Oxide (NO), AChE Estimation 
PTZ control rats significantly enhanced brain MDA, NO, and AChE concentration in 

comparison to rats in normal control (p < 0.0001). Treatment with barbaloin lowered the 
MDA [F (3, 20) = 45.40, p < 0.0001], NO [F (3, 20) = 30.54, p < 0.0001], and AChE [F (3, 20) = 
46.54, p < 0.0001] levels, respectively, compared to PTZ control rats (Figure 4A–C). 

 

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 7 of 25 
 

 

 
 
 

 

 

Figure 4. (A–C) The effect of barbaloin on MDA, NO, and AChE levels. Mean ± S.E.M. One-way 
ANOVA followed by Tukey’s post hoc test (n = 6). # p < 0.001 vs. control, ** p< 0.001, *** p< 0.0001 
vs. PTZ. 

Figure 4. (A–C) The effect of barbaloin on MDA, NO, and AChE levels. Mean ± S.E.M. One-way ANOVA
followed by Tukey’s post hoc test (n = 6). # p < 0.001 vs. control, ** p < 0.001, *** p < 0.0001 vs. PTZ.

2.5. SOD, GSH, Catalase (CAT) Estimation

PTZ control rats significantly decreased brain SOD, GSH, and CAT concentration in
comparison to rats in normal control (p < 0.0001). Treatment with barbaloin enhanced
brain SOD [F (3, 20) = 70.84, p < 0.0001], GSH [F (3, 20) = 86.95, p < 0.0001], and CAT [F
(3, 20) = 68.84, p < 0.0001] levels, respectively, compared to PTZ control rats (Figure 5A–C).
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2.6. Brain GABA, Dopamine (DA), Norepinephrine (NE), and 5-Hydroxytryptamine
(5-HT) Contents

Under comparable circumstances, PTZ control rats exhibited a significant decrease in
GABA, DA, NE, and 5-HT levels in the brain compared to the normal control (p < 0.0001).
Treatment with barbaloin enhanced the GABA [F (3, 20) = 41.59, p < 0.0001], DA [F
(3, 20) = 42.39, p < 0.0001], NE [F (3, 20) = 26.74, p < 0.0001], and 5-HT [F (3, 20) = 79.84,
p < 0.0001] contents in comparison to PTZ control rats (Figure 6A–D).
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2.7. Estimation of Cytokines

Cytokines IL-6, IL-1β, NF-κB, and TNF-α were significantly increased in the PTZ
control in comparison to rats in normal control (p < 0.0001). Administration of barbaloin
seemingly declines the IL-1β [F (3, 20) = 10.99, p = 0.0002], IL-6 [F (3, 20) = 7.912, p = 0.0011],
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NF-κB [F (3, 20) = 7.573, p = 0.0014], and TNF-α [F (3, 20) = 18.38, p < 0.0001] levels in
comparison to PTZ control. Figure 7A–D display the outcomes acquired from the IL-1β,
IL-6, NF-κB, and TNF-α examination.
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2.8. Caspase-3 Bcl-2 and Bax Contents

PTZ control rats considerably upregulated brain caspase-3 and Bax and downregulated
Bcl-2 expression in comparison to rats in normal control (p < 0.0001). Barbaloin-treatment
downregulated Bax [F (3, 20) = 32.04, p < 0.0001] and caspase-3 [F (3, 20) = 8.379, p = 0.0008]
and upregulated the Bcl-2 [F (3, 20) = 33.65, p < 0.0001] level, respectively, in comparison to
PTZ control rats (Figure 8A–C).
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3. Discussion

This study aimed to assess the potential neuroprotective impact of barbaloin in rats
with PTZ-induced kindling, which leads to cognitive decline. The ingestion of PTZ was
observed to impede these benefits. This was achieved by examining changes in kindling
score, open field test, NORT, oxidative stress levels, cytokine levels, and the expression of
proteins caspase-3, Bcl-2, and Bax. The results indicate that the administration of barbaloin
maintained the kindling score, as well as in the levels of NO, GSH, MDA, CAT, AChE,
SOD, TNF-α, Bcl-2, IL-6, Bax, IL-1β, NF-κB, and caspase-3. Furthermore, the barbaloin also
led to significant enhancements in the level of neurotransmitters such as 5-HT, DA, NE,
and GABA.

The experiment demonstrated that the PTZ-treated animals interacted more similarly
with both familiar and novel objects and were unable to recall the familiar object, as seen
by the drop in the discrimination index in the NORT, whereas treatment with barbaloin
enhanced the discrimination index. According to studies, the hippocampus is important
for memory related to object recognition. Anterograde memory will alter modestly and
consistently if this structure is compromised [31]. In OFT, the PTZ-induced and barbaloin
treatment group had no significant effect on locomotor and exploratory activity. These
findings suggest that the PTZ and barbaloin treatment may not have a direct impact on
locomotor and exploratory activity.

Oxidative stress is well recognized as one of the primary and essential factors that
lead to recurrent seizure occurrence. Excitotoxicity results in the release of free radicals
and ROS. Consequently, lipids, proteins, and DNA are oxidized, leading to changes in
membrane permeability, protein function, and gene expression [32]. These alterations
can make neurons more susceptible to degeneration or mortality [32,33]. According to
this study, PTZ kindling leads to a reduction in GSH and elevation in MDA levels. This
might happen either via the direct removal of ROS or by promoting the formation of
GSH [34,35]. Moreover, PTZ has the ability to universally elevate the concentration of NO
throughout the whole brain [36]. In addition, our findings align with these prior studies.
This concept is reinforced by the evidence that some medically prescribed antiepileptic
medicines (AEDs) decrease ROS during seizures [37], whilst numerous others enhance
oxidative harm [38,39]. Therefore, it may be inferred that the use of antioxidants as a
supplementary treatment with AEDs can be advantageous in the control of epilepsy, as
previously proven [40]. Our investigation found a reduced concentration of GSH, CAT, and
SOD, consistent with previous findings suggesting that PTZ treatment causes oxidative
stress [41,42]. The current study suggests that rats treated with PTZ exhibit decreased
activities of GSH, SOD, and CAT, together with increased levels of MDA and NO, which
are indicative of lipid peroxidation. The barbaloin led to a significant increase in the
activities of SOD, GSH, and CAT, while simultaneously reducing the quantity of MDA
and nitric oxide. Oxidative stress is caused by free radicals, which can cause cell and
tissue damage. Barbaloin’s ability to improve cognitive function stems from its ability
to inhibit oxidative stress and enhance the activity of endogenous antioxidant enzymes
within the brain [30]. By minimizing the damage caused by oxidative stress, barbaloin can
preserve the integrity of the brain’s structure and function, leading to improved behavioral
cognitive performance.

The AChE is a crucial enzyme that catalyzes the hydrolysis of ACh, hence terminating
cholinergic signaling. Thus, AChE is regarded as a significant therapeutic target, and many
AChE-reversible antagonists are now employed in clinical practice to increase memory in
patients suffering from neurological conditions and epilepsy [43–45]. In this work, AChE
concentration was enhanced in the PTZ-injected rats. However, the administration of
barbaloin to rats resulted in a significant decrease in AChE levels compared to animals
stimulated with PTZ.

Seizure activity is linked to a diverse array of localized metabolic alterations that im-
pact different neurotransmitters, including monoamines and amino acids [46]. The present
investigation revealed that PTZ led to a decline in GABA, NE, DA, and 5-HT concentration
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in the hippocampal area. These findings align with the earlier investigations conducted by
Visweswari et al. (2010) [47–49]. Monoamines are crucial in the epileptogenesis process,
which involves the formation and advancement of epilepsy. An observed decrease in 5-HT
level was shown to be linked to a decline in its synaptosomal absorption, the tryptophan
hydroxylase activity inhibition, and a decline in tryptophan concentration in the epilepsy
model [50,51]. Conversely, the reduction in DA levels observed in individuals with epilepsy
can be linked to the heightened activity of monoamine oxidase and the diminished reuptake
process [52]. In addition, NE functions as a neuromodulator with anticonvulsant properties.
The reduction in NE levels in individuals with epilepsy is attributed to the decrease in the
density of α1 receptors in the brain. This drop may possibly be attributed to the decline in
the activity of dopamine-β-hydroxylase (DBH), which is the enzyme that limits the rate of
norepinephrine production [53]. During the present research, it was shown that treatment
with barbaloin effectively reversed the changes in levels of DA, NE, 5-HT, and GABA.

The synthesis of pro-inflammatory indicators, such as IL-6, TNF-α, and IL-1β, is caused
by the activation of NF-κB signal transduction through the creation of ROS [54,55]. IL-1
induces the upregulation of the gene expression of the enzyme cyclooxygenase-2 (Cox-2),
which is responsible for converting arachidonic acid into prostaglandins. Prostaglandin
is a substance that comes before prostacyclin and is involved in inflammatory reactions.
It activates astrocytes to generate glutamate, which leads to increased neuroexcitability
linked with seizures [56]. The findings demonstrated that the PTZ injection resulted in a
neuroinflammatory reaction, as indicated by a substantial rise in the protein concentration
of cytokines (IL-6, TNF-α, NF-κB, and IL-1β) in the cerebral cortex [57]. Furthermore, the
injection of PTZ resulted in a considerable rise in GFAP, which suggests the activation of
astrocytes and subsequent inflammatory and apoptotic reactions in the brain [58]. Our
data show that administering barbaloin has a considerable inhibitory effect on the raised
levels of IL-6, TNF-α, IL-1β, and NF-κB in PTZ-induced kindling rats. These substances are
known as inflammatory markers.

Preclinical investigations have shown that both transient and oxidative stress and
neuronal death may arise from recurrent seizures, which entail molecular-level changes
in the hippocampus [59,60]. The collapse of neurons can be attributed to the stimulation
of pro-apoptotic proteins, including Bax and caspases 3. The findings from the current
study showed that the administration of PTZ led to an enhanced concentration of caspase-3
and Bax and a lower concentration of the Bcl-2. However, these aberrations were reversed
and returned to normal levels following treatment with barbaloin. Based on this evidence,
barbaloin may inhibit PTZ-induced cognitive decline and changes in rats via modification
of cytokines, oxidative stress, and protein expression Bcl-2, caspases-3, and Bax. PTZ-
induced rats exhibited cognitive impairment, as demonstrated by alterations in kindling
score, OFT, and NORT. Treatment with barbaloin resulted in significant improvements in
cognitive function compared to the PTZ control groups. This suggests that barbaloin has
the potential to help with cognitive deficits associated with epilepsy. The administration
of PTZ led to changes in oxidative stress markers such as GSH, MDA, CAT, NO, and
SOD. However, barbaloin treatment substantially restored these markers, indicating its
antioxidative properties and its ability to counteract oxidative damage in the brain. In
addition, PTZ-induced neuroinflammation was characterized by elevated levels of NF-
κB, IL-1β, TNF-α, and IL-6. But when barbaloin was administered, the levels of these
pro-inflammatory cytokines were significantly reduced. This suggests that barbaloin
has anti-inflammatory effects that may help mitigate neuroinflammation associated with
epilepsy. Moreover, barbaloin treatment caused significant changes in neurotransmitter
levels such as GABA, 5-HT, and DA compared to PTZ-induced controls. These changes
indicate that barbaloin may exert its neuroprotective effects, at least in part, through
the modulation of neurotransmitter systems implicated in epilepsy pathogenesis. Lastly,
barbaloin altered the expression of apoptotic markers, including caspase-3, Bcl-2, and Bax,
suggesting its potential role in regulating apoptotic pathways and promoting neuronal
survival in epileptic conditions. This work employed a minimal number of animals, and
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in future investigations, histopathology and Western blotting will be necessary to confirm
this mechanism.

4. Materials and Methods
4.1. Animals

Thirty Wistar rats, with a weight range of 275–300 g, were acquired from T. G. Lab,
India for this investigation. The participants were housed in a regulated setting, ensuring
22 ± 0.5 ◦C an interior temperature, and subjected to 12 h alternating periods of light
and darkness. They had full access to food and drink. The experimental approach was
approved in accordance with the ARRIVE guidelines (LNCP/IAEC/23/005).

4.2. Drugs

Barbaloin (purity: ≥97%) was obtained from Yucca Enterprises, India, and PTZ (purity:
≥98.0%) was procured from Sigma Aldrich, USA. All the chemicals used in this study were
of excellent grade. The quantification of IL-1β, Bcl-2, IL-6, NF-κB, caspase-3, TNF-α and Bax
was performed using the ELISA kit acquired from MSW Pharma, India.

4.3. Epileptic Seizure Scoring and a Rat Model Induced by PTZ

To induce epileptic episodes, we employed the methodology described in the study
conducted by Hansen et al [61]. To initiate a dosage of 40 mg/kg, PTZ was administered
intraperitoneally (i.p.) once every forty-eight hours for seventeen days until the animal
displayed complete motor convulsions. Following each injection of PTZ, each rat was
monitored for a period of 30 min to measure the time it took for an epileptic seizure to
occur, the length of the episode, and the stage of the seizure based on the Racine scale, with
some modification [51], as follows:

Level 0: No response;
Level 1: Eye and face twitching;
Level 2: Axially passing convulsive waves across the body;
Level 3: Myoclonic jerks of the body;
Level 4: Move to the side position, clonic-tonic seizures (CTS); and
Level 5: Turn over and lie on the back, GTCS, or mortality. To be completely kindled,

a seizure number had to hit level 4 or 5 on three separate trials.

4.4. Research Design

The animals were selected randomly and then divided into four groups, with each
group consisting of six animals and treated every 48 h as follows: Group I (Normal control)
was administered the saline; Group II (PTZ control) PTZ was administered intraperi-
toneally 40 mg/kg; [62] and Group III and Group IV were administered PTZ + barbaloin
25 mg/kg and PTZ + barbaloin 50 mg/kg, respectively, for seventeen days, followed by
PTZ (40 mg/kg) for another seventeen days.

At the end of the investigation, cervical dislocation was used to sacrifice the rats. The
brain was excised and cleaned with a cold 0.9% NaCl solution, and then their hippocampus
areas were dissected so that biochemical data could be evaluated. The tissue from the brain
regions was thoroughly combined (10% weight/volume) in a buffer solution containing
0.01 M sodium phosphate (pH 7.4) and 1.15% potassium chloride per gram of tissue,
ensuring a low temperature; it was then separated and, thereafter, kept at a temperature of
4 ◦C for enzymatic assay.

4.5. Behavioral Tests
4.5.1. OFT

A study was conducted to ascertain the long-term impact of stress on mice. The OFT
test is meant to examine the impact of PTZ on the motivational activity of animals on the
final day of the trials. The unit comprises a rectangular box of 80 × 80 × 50 cm, with the
floor divided into squares of equal size measuring 25 × 16 × 16 cm. The mice were placed



Pharmaceuticals 2024, 17, 699 14 of 18

in the central part of an open field and allowed to freely explore for a duration of 3 min.
During this test, two criteria were measured, namely, the rate of locomotion, which is the
number of times the mice crossed one of the four-paw grid lines. The animals were housed
in the testing facility for a minimum of 2 h before the test commenced. The OFT technique
was carried out in a soundproof chamber without any human involvement. Room cleaning
was conducted using a 5% ethanol–water solution to eliminate any bias in behavioral
testing caused by the stench left by previously used rats. A study of the motivated behavior
of the mice was conducted randomly by two unbiased observers. The resulting data were
statistically analyzed to assess the reliability of the interobserver test [63].

4.5.2. NORT

To evaluate recognition, a novel object recognition task is used memory. In this task,
rodents explore unfamiliar objects within their environment based on their innate curiosity.
The purpose of this test is to determine whether a mouse is able to distinguish between
familiar objects and novel objects. To start, each mouse was habituated to a 30 × 30 × 15 cm
plexiglass box for 5 min. In the acquisition phase, the mice explored two identical objects
for 5 min after 15 min. For mice, the objects were heavy and tall enough that they could
neither move them nor climb over them. A 5-min interval was followed by mice being
presented with similar objects, but with a novel or unknown object replacing one familiar
object. After 5 min, the animals were allowed to explore the objects again. A discrimination
index was calculated as follows: (time exploring new object − time exploring familiar
object)/(time exploring new object + time exploring familiar object) [64,65].

4.6. Oxidative Stress Estimation

The quantification of MDA was conducted using the thiobarbituric acid technique as
outlined by Ohkawa et al. in 1979 [66]. The concentration of NO in the brain supernatant
was measured using the methodology established by Koracevic et al. [67]. The GSH
concentration was measured using the method reported by Jollow et al. [68]. The enzymatic
activity of the antioxidants CAT and SOD were determined using the methods previously
described by Yousef et al. (2020) [69].

4.7. AChE Estimation

An approach similar to the one explained by Ellman (1961) was used to measure the
level of AChE, expressed as µmol per min per mg of protein [70,71].

4.8. Neurotransmitter Levels

The amounts of neurotransmitters such as serotonin (5-HT), DA, and GABA were
determined using high-performance liquid chromatography (HPLC).

4.9. Biological Inflammation

An ELISA kit was used to assess the levels of cytokines, namely, IL-1β, IL-6, NF-κB,
TNF-α, caspase-3, Bcl-2, and Bax. The levels of IL-1β, Bcl-2, TNF-α, caspase-3, Bax, and
IL-6 indicators were assessed in pg/mL, whereas the level of NF-κB was evaluated in
ng/mL [72].

4.10. Analysis of Statistics

The data from the exams were evaluated using GraphPad software (8.0.2), developed
by GraphPad Software Inc., California, United States. The ultimate outcomes were there-
after presented as the average value accompanied by the SEM. The results were evaluated
using one-way analysis of variance (ANOVA) for the MWM test, followed by Bonferroni’s
post hoc test. In addition, a one-way analysis of variance (ANOVA) was performed using
Tukey’s test.
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5. Conclusions

Barbaloin, a plant-derived natural product, has been discovered to alleviate cognitive
impairments caused by PTZ. This effect is achieved by reducing oxidative stress triggered
by the NF-κβ pathway, neuroinflammatory cytokines, and the caspases-3, Bcl-2, and Bax path-
ways. These findings suggest that barbaloin holds promise as a phytotherapeutic agent for
treating cognitive impairments induced by PTZ in rats. Further investigation is necessary
to confirm its potential neuroprotective effects in various cognitive dysfunction models.
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