Synovial Membrane Is a Major Producer of Extracellular Inorganic Pyrophosphate in Response to Hypoxia
Abstract
:1. Introduction
2. Results
2.1. TGF-β1 Stimulates the Expression of Ank and Enpp1 to Increase the Production of ePPi and ENPP1 Activity by Synovial Fibroblasts
2.2. Ank Contributes More Than Enpp1 to the TGF-β1-Induced Production of ePPi by Synovial Fibroblasts
2.3. Hypoxia Enhances the Production of ePPi by Synovial Explants
2.4. Induction of Ank by Hypoxia Is Mainly a HIF-1 Dependent Event in Synovial Fibroblasts
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Culture of SM Explants and Synovial Fibroblasts
4.3. RNA Isolation and Reverse Transcription–Quantitative PCR (RT–qPCR)
4.4. Western Blot Analysis
4.5. Enpp1 and APase Activities
4.6. Radiometric Assay for ePPi
4.7. Immunohistochemistry
4.8. Silencing Experiments Using siRNA
4.9. Transient Transfection
4.10. Reporter Gene Assay
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ea, H.-K.; Lioté, F. Calcium Pyrophosphate Dihydrate and Basic Calcium Phosphate Crystalinduced Arthropathies: Update on Pathogenesis, Clinical Features, and Therapy. Curr. Rheumatol. Rep. 2004, 6, 221–227. [Google Scholar] [CrossRef]
- Neame, R.L. UK Community Prevalence of Knee Chondrocalcinosis: Evidence That Correlation with Osteoarthritis Is through a Shared Association with Osteophyte. Ann. Rheum. Dis. 2003, 62, 513–518. [Google Scholar] [CrossRef]
- Rosenthal, A.K. Calcium Crystal-Associated Arthritides. Curr. Opin. Rheumatol. 1998, 10, 273–277. [Google Scholar] [CrossRef]
- Abhishek, A.; Doherty, S.; Maciewicz, R.; Muir, K.; Zhang, W.; Doherty, M. Evidence of a Systemic Predisposition to Chondrocalcinosis and Association Between Chondrocalcinosis and Osteoarthritis at Distant Joints: A Cross-Sectional Study: Systemic Predisposition to CC and Association of CC and OA. Arthritis Care Res. 2013, 65, 1052–1058. [Google Scholar] [CrossRef]
- Gerster, J.C.; Varisco, P.A.; Kern, J.; Dudler, J.; So, A.K.L. CPPD Crystal Deposition Disease in Patients with Rheumatoid Arthritis. Clin. Rheumatol. 2006, 25, 468–469. [Google Scholar] [CrossRef]
- Giatromanolaki, A.; Sivridis, E.; Maltezos, E.; Athanassou, N.; Papazoglou, D.; Gatter, K.C.; Harris, A.L.; Koukourakis, M.I. Upregulated Hypoxia Inducible Factor-1α and -2α Pathway in Rheumatoid Arthritis and Osteoarthritis. Arthritis Res. Ther. 2003, 5, R193. [Google Scholar] [CrossRef]
- Muz, B.; Khan, M.N.; Kiriakidis, S.; Paleolog, E.M. The Role of Hypoxia and HIF-Dependent Signalling Events in Rheumatoid Arthritis. Arthritis Res. Ther. 2009, 11, 201. [Google Scholar] [CrossRef]
- Gerster, J.C.; Gobelet, C. Synovial Fluid Lactid Acid in Acute and Chronic Pyrophosphate Arthropathy and in Osteoarthritis. Clin. Rheumatol. 1988, 7, 197–199. [Google Scholar] [CrossRef]
- Kofoed, H. Synovitis Causes Hypoxia and Acidity in Synovial Fluid and Subchondral Bone. Injury 1986, 17, 391–394. [Google Scholar] [CrossRef]
- Rosenthal, A.K.; Mccarty, B.A.; Cheung, H.S.; Ryan, M. A Comparison of the Effect of Transforming Growth Factor Β1 on Pyrophosphate Elaboration from Various Articular Tissues. Arthritis Rheum. 1993, 36, 539–542. [Google Scholar] [CrossRef]
- Silcox, D.C.; McCarty, D.J. Elevated Inorganic Pyrophosphate Concentrations in Synovial Fluids in Osteoarthritis and Pseudogout. J. Lab. Clin. Med. 1974, 83, 518–531. [Google Scholar]
- Silcox, D.C.; McCarty, D.J. Measurement of Inorganic Pyrophosphate in Biological Fluids, Elevated Levels in Some Patients with Osteoarthritis, Pseudogout, Acromegaly, and Uremia. J. Clin. Investig. 1973, 52, 1863–1870. [Google Scholar] [CrossRef]
- Huang, R.; Rosenbach, M.; Vaughn, R.; Provvedini, D.; Rebbe, N.; Hickman, S.; Goding, J.; Terkeltaub, R. Expression of the Murine Plasma Cell Nucleotide Pyrophosphohydrolase PC-1 Is Shared by Human Liver, Bone, and Cartilage Cells. Regulation of PC-1 Expression in Osteosarcoma Cells by Transforming Growth Factor-Beta. J. Clin. Invest. 1994, 94, 560–567. [Google Scholar] [CrossRef]
- Cailotto, F.; Bianchi, A.; Sebillaud, S.; Venkatesan, N.; Moulin, D.; Jouzeau, J.-Y.; Netter, P. Inorganic Pyrophosphate Generation by Transforming Growth Factor-Beta-1 Is Mainly Dependent on ANK Induction by Ras/Raf-1/Extracellular Signal-Regulated Kinase Pathways in Chondrocytes. Arthritis Res. Ther. 2007, 9, R122. [Google Scholar] [CrossRef]
- Dabich, D.; Neuhaus, O.W. Purification and Properties of Bovine Synovial Fluid Alkaline Phosphatase. J. Biol. Chem. 1966, 241, 415–420. [Google Scholar] [CrossRef]
- Reimann, I.; Christensen, S.B. A Histochemical Study of Alkaline and Acid Phosphatase Activity in Osteoarthritic Synovial Membrane. Scand. J. Rheumatol. 1979, 8, 39–42. [Google Scholar] [CrossRef]
- Hirose, J.; Ryan, L.M.; Masuda, I. Up-Regulated Expression of Cartilage Intermediate-Layer Protein and ANK in Articular Hyaline Cartilage from Patients with Calcium Pyrophosphate Dihydrate Crystal Deposition Disease. Arthritis Rheum. 2002, 46, 3218–3229. [Google Scholar] [CrossRef]
- Sohn, P.; Crowley, M.; Slattery, E.; Serra, R. Developmental and TGF-β-Mediated Regulation of Ank mRNA Expression in Cartilage and Bone. Osteoarthr. Cartil. 2002, 10, 482–490. [Google Scholar] [CrossRef]
- Zaka, R.; Dion, A.S.; Kusnierz, A.; Bohensky, J.; Srinivas, V.; Freeman, T.; Williams, C.J. Oxygen Tension Regulates the Expression of ANK (Progressive ankylosis) in an HIF-1–Dependent Manner in Growth Plate Chondrocytes. J. Bone Miner. Res. 2009, 24, 1869–1878. [Google Scholar] [CrossRef]
- Berse, B.; Hunt, J.A.; Diegel, R.J.; Morganelli, P.; Yeo, K.-T.; Brown, F.; Fava, R.A. Hypoxia Augments Cytokine (Transforming Growth Factor-Beta (TGF-β) and IL-1)-Induced Vascular Endothelial Growth Factor Secretion by Human Synovial Fibroblasts. Clin. Exp. Immunol. 2001, 115, 176–182. [Google Scholar] [CrossRef]
- Punzi, L.; Oliviero, F.; Ramonda, R. Transforming Growth Factor-Beta Levels in Synovial Fluid of Osteoarthritis with or without Calcium Pyrophosphate Dihydrate Crystals. J. Rheumatol. 2003, 30, 420. [Google Scholar]
- Cailotto, F.; Sebillaud, S.; Netter, P.; Jouzeau, J.-Y.; Bianchi, A. The Inorganic Pyrophosphate Transporter ANK Preserves the Differentiated Phenotype of Articular Chondrocyte. J. Biol. Chem. 2010, 285, 10572–10582. [Google Scholar] [CrossRef]
- Qadri, M.; Jay, G.D.; Zhang, L.X.; Richendrfer, H.; Schmidt, T.A.; Elsaid, K.A. Proteoglycan-4 Regulates Fibroblast to Myofibroblast Transition and Expression of Fibrotic Genes in the Synovium. Arthritis Res. Ther. 2020, 22, 113. [Google Scholar] [CrossRef]
- Johnson, K.; Terkeltaub, R. Upregulated Ank Expression in Osteoarthritis Can Promote Both Chondrocyte MMP-13 Expression and Calcification via Chondrocyte Extracellular PPi Excess. Osteoarthr. Cartil. 2004, 12, 321–335. [Google Scholar] [CrossRef]
- Risbud, M.V.; Guttapalli, A.; Albert, T.J.; Shapiro, I.M. Hypoxia Activates MAPK Activity in Rat Nucleus Pulposus Cells: Regulation of Integrin Expression and Cell Survival. Spine 2005, 30, 2503–2509. [Google Scholar] [CrossRef]
- Shang, J.; Liu, H.; Li, J.; Zhou, Y. Roles of Hypoxia During the Chondrogenic Differentiation of Mesenchymal Stem Cells. Curr. Stem Cell Res. Ther. 2014, 9, 141–147. [Google Scholar] [CrossRef]
- Liu, Y.; Cox, S.R.; Morita, T.; Kourembanas, S. Hypoxia Regulates Vascular Endothelial Growth Factor Gene Expression in Endothelial Cells: Identification of a 5′ Enhancer. Circ. Res. 1995, 77, 638–643. [Google Scholar] [CrossRef]
- Forsythe, J.A.; Jiang, B.H.; Iyer, N.V.; Agani, F.; Leung, S.W.; Koos, R.D.; Semenza, G.L. Activation of Vascular Endothelial Growth Factor Gene Transcription by Hypoxia-Inducible Factor 1. Mol. Cell. Biol. 1996, 16, 4604–4613. [Google Scholar] [CrossRef]
- Ho, A.M.; Johnson, M.D.; Kingsley, D.M. Role of the Mouse Ank. Gene in Control of Tissue Calcification and Arthritis. Science 2000, 289, 265–270. [Google Scholar] [CrossRef]
- Benderro, G.F.; Sun, X.; Kuang, Y.; LaManna, J.C. Decreased VEGF Expression and Microvascular Density, but Increased HIF-1 and 2α Accumulation and EPO Expression in Chronic Moderate Hyperoxia in the Mouse Brain. Brain Res. 2012, 1471, 46–55. [Google Scholar] [CrossRef]
- Bohensky, J.; Terkhorn, S.P.; Freeman, T.A.; Adams, C.S.; Garcia, J.A.; Shapiro, I.M.; Srinivas, V. Regulation of Autophagy in Human and Murine Cartilage: Hypoxia-Inducible Factor 2 Suppresses Chondrocyte Autophagy. Arthritis Rheum. 2009, 60, 1406–1415. [Google Scholar] [CrossRef]
- Tian, H.; McKnight, S.L.; Russell, D.W. Endothelial PAS Domain Protein 1 (EPAS1), a Transcription Factor Selectively Expressed in Endothelial Cells. Genes Dev. 1997, 11, 72–82. [Google Scholar] [CrossRef]
- Luo, W.; Hu, H.; Chang, R.; Zhong, J.; Knabel, M.; O’Meally, R.; Cole, R.N.; Pandey, A.; Semenza, G.L. Pyruvate Kinase M2 Is a PHD3-Stimulated Coactivator for Hypoxia-Inducible Factor 1. Cell 2011, 145, 732–744. [Google Scholar] [CrossRef]
- Pineda, C.; Sandoval, H.; Pérez-Neri, I.; Soto-Fajardo, C.; Carranza-Enríquez, F. Calcium Pyrophosphate Deposition Disease: Historical Overview and Potential Gaps. Front. Med. 2024, 11, 1380135. [Google Scholar] [CrossRef]
- Ea, H.; Nguyen, C.; Bazin, D.; Bianchi, A.; Guicheux, J.; Reboul, P.; Daudon, M.; Lioté, F. Articular Cartilage Calcification in Osteoarthritis: Insights into Crystal-induced Stress. Arthritis Rheum. 2011, 63, 10–18. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, H.; Cai, J.; Huang, Y.; Xu, J.; Zhou, Y.; Chen, X.; Li, X.; Yang, Z.; Deng, L. Hypoxia Inhibits the Spontaneous Calcification of Bone Marrow-derived Mesenchymal Stem Cells. J. Cell. Biochem. 2012, 113, 1407–1415. [Google Scholar] [CrossRef]
- Nicolaije, C.; Koedam, M.; van Leeuwen, J.P.T.M. Decreased Oxygen Tension Lowers Reactive Oxygen Species and Apoptosis and Inhibits Osteoblast Matrix Mineralization through Changes in Early Osteoblast Differentiation. J. Cell. Physiol. 2012, 227, 1309–1318. [Google Scholar] [CrossRef]
- Kirchmeyer, M.; Koufany, M.; Sebillaud, S.; Netter, P.; Jouzeau, J.-Y.; Bianchi, A. All-Trans Retinoic Acid Suppresses Interleukin-6 Expression in Interleukin-1-Stimulated Synovial Fibroblasts by Inhibition of ERK1/2 Pathway Independently of RAR Activation. Arthritis Res. Ther. 2008, 10, R141. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, X.; Wang, H.; Zhang, Y.; Shi, Y.; Zhang, X. Continuous Cyclic Mechanical Tension Increases Ank Expression in Endplate Chondrocytes through the TGF-Β1 and P38 Pathway. Eur. J. Histochem. 2013, 57, e28. [Google Scholar] [CrossRef]
Gene | Forward Primer | Reverse Primer | GenBank® Accession Number |
---|---|---|---|
Ank | 5′-CAA GAG AGA CAG GGC CAA AG-3′ | 5′-AAG GCA GCG AGA TAC AGG AA-3′ | NM_053714 |
Enpp1 | 5′-TAT GCC CAA GAA AGG AAT GG-3′ | 5′-GCA GCT GGT AAG CAC AAT GA-3′ | NM_053535 |
Hif-1 | 5′-AAG TCT AGG GAT GCA GCA CG-3′ | 5′-GGG GAA GTG GCA ACT GAT GA-3′ | NM_024359 |
Hif-2 | 5′-GCA CCA GCA GTT CAC ACT TG-3′ | 5′-CTG ACG GTC TTG TCA GGC AT-3′ | NM_023090.1 |
Rp29 | 5′-CTC-TAA-CCG-CCA-CGG-TCT-GA-3′ | 5′-ACT-AGC-ATG-ATT-GGT-ATC-AC-3′ | NM_012876 |
Name | Sense | Antisense |
---|---|---|
Scr RNA | 5′-CGA UGG GUU CGU GUC GUU U-3′ | 5′-AAA CGA CAC GAA CCC AUC G-3′ |
siRNA Ank | 5′-CUG GCC AAC ACG AAC AAC A-3′ | 5′-UGU UGU UCG UGU UGG CCA G-3′ |
siRNA Enpp1 | 5′-GAG GAU GUU UAC UCU AUG A-3′ | 5′-UCA UAG AGU AAA CAU CCU C-3′ |
siRNA Hif-1 | 5′-CCC AGC UGU UCA CUA AAG U-3′ | 5′-ACU UUA GUG AAC AGC UGG G-3′ |
siRNA Hif-2 | 5′-CGG AGG UCU UCU AUG AAC U-3′ | 5′-AGU UCA UAG AAG ACC UCC G-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velot, É.; Sébillaud, S.; Bianchi, A. Synovial Membrane Is a Major Producer of Extracellular Inorganic Pyrophosphate in Response to Hypoxia. Pharmaceuticals 2024, 17, 738. https://doi.org/10.3390/ph17060738
Velot É, Sébillaud S, Bianchi A. Synovial Membrane Is a Major Producer of Extracellular Inorganic Pyrophosphate in Response to Hypoxia. Pharmaceuticals. 2024; 17(6):738. https://doi.org/10.3390/ph17060738
Chicago/Turabian StyleVelot, Émilie, Sylvie Sébillaud, and Arnaud Bianchi. 2024. "Synovial Membrane Is a Major Producer of Extracellular Inorganic Pyrophosphate in Response to Hypoxia" Pharmaceuticals 17, no. 6: 738. https://doi.org/10.3390/ph17060738
APA StyleVelot, É., Sébillaud, S., & Bianchi, A. (2024). Synovial Membrane Is a Major Producer of Extracellular Inorganic Pyrophosphate in Response to Hypoxia. Pharmaceuticals, 17(6), 738. https://doi.org/10.3390/ph17060738