Chemical Compositions of Lianqiao (Forsythia suspensa) Extracts and Their Potential Health Benefits
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Available online: https://covid19.who.int/ (accessed on 3 May 2024).
- Wang, Z.; Xia, Q.; Liu, X.; Liu, W.; Huang, W.; Mei, X.; Luo, J.; Shan, M.; Lin, R.; Zou, D.; et al. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. J. Ethnopharmacol. 2018, 210, 318–339. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Li, S.; Zhang, L. Study on comparison of antioxidant activity and determination of total phenol content in different parts of Forsythia suspensa. Chem. Res. App. 2016, 28, 610–616. [Google Scholar]
- Liu, S.; Xu, Y.; Zheng, Y. Effect of the ethanol extract of Forsythia suspensa (Thunb.) Vahl. on the growth curve of bacterium. J. Anhui Agri. Sci. 2007, 35, 7383–7384. [Google Scholar]
- Tian, W.; Li, H.; Yao, Z.; Dong, Y.; Qiu, H.; Han, Z. Inhibition of respiratory syncytial virus by Forsythia suspensa (Thunb.) Vahl. J. Harbin Med. Coll. 2004, 38, 421–423. [Google Scholar]
- Law, A.H.; Yang, C.L.; Lau, A.S.; Chan, G.C. Antiviral effect of forsythoside A from Forsythia suspensa (Thunb.) Vahl fruit against influenza A virus through reduction of viral M1 protein. J. Ethnopharmacol. 2017, 209, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xu, Y.; He, D.; Han, Y.; Tang, G.; Yang, Z.-M.; Yu, H.; Lin, Z. A retrospective study on clinical features of and treatment methods for 77 severe cases of SARS. Am. J. Chin. Med. 2003, 31, 821–839. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020, 94, e00127-20. [Google Scholar] [CrossRef] [PubMed]
- Runfeng, L.; Yunlong, H.; Jicheng, H.; Weiqi, P.; Qinhai, M.; Yongxia, S.; Chufang, L.; Jin, Z.; Zhenhua, J.; Haiming, J.; et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res. 2020, 156, 104761. [Google Scholar] [CrossRef]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, B.; Hashimoto, K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav. Immun. 2020, 87, 59–73. [Google Scholar] [CrossRef]
- Luo, H.; Tang, Q.L.; Shang, Y.X.; Liang, S.B.; Yang, M.; Robinson, N.; Liu, J.P. Can Chinese Medicine Be Used for Prevention of Corona Virus Disease 2019 (COVID-19)? A Review of Historical Classics, Research Evidence and Current Prevention Programs. Chin. J. Integr. Med. 2020, 26, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Huo, J.; Wang, C.; Wang, W. UPLC/Q-TOF MS screening and identification of antibacterial compounds in Forsythia suspensa (Thunb.) Vahl leaves. Front. Pharmacol. 2021, 12, 704260. [Google Scholar] [CrossRef]
- Sun, H.; Liu, M.; Lin, Z.; Jiang, H.; Niu, Y.; Wang, H.; Chen, S. Comprehensive identification of 125 multifarious constituents in Shuang-huang-lian powder injection by HPLC-DAD-ESI-IT-TOF-MS. J. Pharm. Biomed. Anal. 2015, 115, 86–106. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-H.; Tong, X.; Wang, J.-X.; Zou, W.; Cao, H.; Su, W.-W. Rapid separation and identification of multiple constituents in traditional Chinese medicine formula Shenqi Fuzheng Injection by ultra-fast liquid chromatography combined with quadrupole-time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2013, 74, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Arráez-Román, D.; Quirantes-Piné, R.; Fernández-Arroyo, S.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Res. Int. 2012, 46, 108–117. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Zhang, Z.; Ma, Y.; Liao, F.; Zhang, Y.; Wu, G. Forsythoside a inhibits the avian infectious bronchitis virus in cell culture. Phytother. Res. 2011, 25, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.P.; Lin, L.G.; Wang, Y.T. Chemistry and pharmacology of the herb pair Flos Lonicerae japonicae-Forsythiae fructus. Chin. Med. 2015, 10, 16. [Google Scholar] [CrossRef]
- Lin, H.; Li, C.L.; Yen, L.J.; Lu, L.Y.; Huang, H.S.; Liao, E.C.; Yu, S.J. Forsythoside A Alleviates Imiquimod-Induced Psoriasis-like Dermatitis in Mice by Regulating Th17 Cells and IL-17A Expression. J. Pers. Med. 2022, 12, 62. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia; China Medical Science Press: Beijing, China, 2015; Available online: https://www.webofpharma.com/2021/05/chinese-pharmacopoeia-in-english-cp-15.html (accessed on 8 November 2023).
- Piao, X.L.; Jang, M.H.; Cui, J.; Piao, X. Lignans from the fruits of Forsythia suspensa. Bioorg. Med. Chem. Lett. 2008, 18, 1980–1984. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, Z.; Li, P.; Li, C. Simultaneous determination of eight phenylethanoid glycosides in different species of the genus cistanche by high performance liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 2838–2850. [Google Scholar] [CrossRef]
- Murayama, T.; Yanagisawa, Y.; Kasahara, A.; Onodera, K.-I.; Kurimoto, M.; Ikeda, M. A novel phenylethanoid, isocrenatoside isolated from the whole plant of Orobanche coerulescens. J. Nat. Med. 1998, 52, 455–458. [Google Scholar]
- Kratzel, A.; Todt, D.; V’Kovski, P.; Steiner, S.; Gultom, M.; Thao, T.T.N.; Ebert, N.; Holwerda, M.; Steinmann, J.; Niemeyer, D.; et al. Inactivation of severe acute respiratory syndrome coronavirus 2 by WHO-recommended hand rub formulations and alcohols. Emerg. Infect. Dis. 2020, 26, 1592–1595. [Google Scholar] [CrossRef]
- Kielbowski, K.; Herian, M.; Pawlik, A. How to restore oxidative balance that was disrupted by SARS-CoV-2 infection. Int. J. Mol. Sci. 2022, 23, 6377. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020, 181, 1016–1035. [Google Scholar] [CrossRef] [PubMed]
- Fazio, S.; Affuso, F.; Bellavite, P. A review of the potential roles of antioxidant and anti-Inflammatory pharmacological approaches for the management of mild-to-moderate symptomatic COVID-19. Med. Sci. Monit. 2022, 28, e936292. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar]
- Bast, A.; Goris, R.J.A. Oxidative stress—Biochemistry and human disease. Pharm. Weekbl. 1989, 11, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mori, A. Stress, aging, and brain oxidative damage. Neurochem. Res. 1999, 24, 1479–1497. [Google Scholar] [CrossRef] [PubMed]
- Loscalzo, J. Oxidant stress: A key determinant of atherothrombosis. Biochem. Soc. Trans. 2003, 31, 1059–1061. [Google Scholar] [CrossRef]
- Caramori, G.; Papi, A. Oxidants and asthma. Thorax 2004, 59, 170–173. [Google Scholar] [CrossRef]
- Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 2012, 17, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.E.; Guarner-Lans, V.; Soria-Castro, E.; Manzano Pech, L.; Pérez-Torres, I. Is antioxidant therapy a useful complementary measure for COVID-19 treatment? An algorithm for its application. Medicina 2020, 56, 386. [Google Scholar] [CrossRef] [PubMed]
- Tirzitis, G.; Bartosz, G. Determination of antiradical and antioxidant activity: Basic principles and new insights. Acta Biochim. Pol. 2010, 57, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Perret, J.; Harris, M.; Wilson, J.; Haley, S. Antioxidant Properties of Bran Extracts from “Akron” Wheat Grown at Different Locations. J. Agric. Food Chem. 2003, 51, 1566–1570. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.; Yin, J.-J.; Yu, L.L. Novel Fluorometric Assay for Hydroxyl Radical Scavenging Capacity (HOSC) Estimation. J. Agric. Food Chem. 2006, 54, 617–626. [Google Scholar] [CrossRef]
- Cheng, Z.; Moore, J.; Yu, L.L. High-throughput relative DPPH radical scavenging capacity assay. J. Agric. Food Chem. 2006, 54, 7429–7436. [Google Scholar] [CrossRef]
- Zhou, K.; Su, L.; Yu, L.L. Phytochemicals and antioxidant properties in wheat bran. J. Agric. Food Chem. 2004, 52, 6108–6114. [Google Scholar] [CrossRef]
ID | Positive Mode (ESI+) | Negative Mode (ESI−) | Formula | Name | Structure | Relative Ion Intensity (×107) | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Retention Time | Exptl. [M + H]+ | Fragment Ions | Mass Error (ppm) | Retention Time | Exptl. [M − H]− | Fragment Ions | Mass Error (ppm) | WE (+/−) | EE (+/−) | |||||
1. | 1.03 | 127.03889 | nd | −0.635 | nd | nd | nd | nd | C6H6O3 | benzene-1,2,4-triol | 1.03/nd | nd/nd | [13] | |
2. | 2.78 | 268.10385 | 136.0612 | −0.673 | nd | nd | nd | nd | C10H13O4N5 | adenosine | 5.47/nd | nd/nd | [14] | |
3. | 3.14 | 169.04961 | 151.0385, 123.0436 | 0.442 | 3.24 | 167.03466 | 123.0447, 108.0213 | 4.638 | C8H8O4 | vanillic acid | 1.06/7.54 | 2.34/nd | [14] | |
4. | 3.55 | 317.12292 | 299.1143, 263.0929, 221.0820, 137.0603 | −0.549 | 3.72 | 315.10797 | 179.0567, 161.0459 | 1.669 | C14H20O8 | isomer of hydroxytyrosol glucoside | 4.58/2.46 | nd/nd | [14] | |
5. | 3.82 | 165.05450 | 147.0434, 119.0486 | −0.731 | nd | nd | nd | nd | C9H8O3 | isomer of p-Coumaric acid | 7.52/nd | nd/nd | ||
6. | nd | nd | nd | nd | 4.34 | 191.05573 | 145.0500, 129.0552, 101.0602 | 3.745 | C7H12O6 | quinic acid | nd/21.27 | nd/nd | [13] | |
7. | 4.83 | 155.07012 | 137.0592, 109.0644 | −0.972 | nd | nd | nd | nd | C8H10O3 | halleridone | 38.28/nd | nd/nd | [13] | |
8. | nd | nd | nd | nd | 5.74 | 153.01794 | 109.0284 | −1.929 | C7H6O4 | protocatechuic acid | nd/nd | nd/0.50 | [15] | |
9. | 6.49 | 317.12283 | 299.1146, 281.1040 | −0.833 | nd | nd | nd | nd | C14H20O8 | isomer of hydroxytyrosol glucoside | 1.00/nd | nd/nd | [2] | |
10. | nd | nd | nd | nd | 7.89 | 315.07126 | 153.0197, 109.0295 | 0.640 | C13H16O9 | protocatechuic acid-O-glucopyranoside | nd/0.76 | nd/nd | [14] | |
11. | 9.40 | 139.03885 | 111.0436, 93.0694 | −0.867 | 10.15 | 137.02404 | 93.0342 | 5.251 | C7H6O3 | isomer of 3,4-dihydroxybenzaldehyde | 6.44/11.09 | nd/nd | [13] | |
12. | 9.97 | 139.03783 | 111.0433 | −8.204 | 9.32 | 137.02316 | 120.8092, 103.4394 | −1.172 | C7H6O3 | isomer of 3,4-dihydroxybenzaldehyde | nd/nd | 0.48/3.86 | [13] | |
13. | 10.45 | 317.12305 | 299.1147, 281.1026, 263.0923 | −0.139 | 10.28 | 315.10757 | 153.0561, 135.0455 | 0.400 | C14H20O8 | isomer of hydroxytyrosol glucoside | nd/1.50 | nd/nd | [14] | |
14. | nd | nd | nd | nd | 10.69 | 353.08662 | 191.0551, 179.0340 | −0.251 | C16H18O9 | isomer of chlorogenic acid | nd/0.34 | nd/nd | [15] | |
15. | nd | nd | nd | nd | 11.20 | 341.08682 | 179.0339 | 0.327 | C15H18O9 | isomer of caffeic acid 3-glucoside | nd/0.90 | nd/nd | [14] | |
16. | nd | nd | nd | nd | 11.43 | 375.12872 | 213.0763, 125.0603 | 0.391 | C16H24O10 | loganic acid | nd/5.36 | nd/3.21 | [14] | |
17. | nd | nd | nd | nd | 11.62 | 389.10786 | 345.1174, 183.0654 | 0.057 | C16H22O11 | secologanoside | nd/4.81 | nd/0.30 | [14] | |
18. | nd | nd | nd | nd | 14.68 | 487.14523 | 469.1335, 427.1229, 397.1122, 233.0445, 203.0340, 179.0341 | 1.258 | C21H28O13 | cistanoside F | nd/0.70 | nd/nd | ||
19. | 14.40 | 181.04939 | 163.0387 | −0.802 | 14.80 | 179.03457 | 135.0444 | 3.825 | C9H8O4 | isomer of caffeic acid | 4.05/6.43 | nd/0.77 | [13] | |
20. | 14.45 | 463.18079 | 317.1227, 301.1280 | −0.459 | 14.85 | 461.16580 | 315.1071, 205.0709, 135.0445 | 0.970 | C20H30O12 | forsythoside E | 2.62/0.869 | nd/0.74 | [14] | |
21. | nd | nd | nd | nd | 15.00 | 353.08679 | 191.0551 | 0.231 | C16H18O9 | isomer of chlorogenic acid | nd/0.92 | nd/0.20 | [16] | |
22. | nd | nd | nd | nd | 17.73 | 493.13428 | 475.1233 | 0.461 | C23H26O12 | derhamnosyl suspensaside | nd/0.43 | nd/nd | [14] | |
23. | nd | nd | nd | nd | 17.75 | 163.03867 | 146.3310, 135.0436, 118.9913 | −1.844 | C9H8O3 | isomer of p-coumaric acid | nd/nd | nd/0.16 | ||
24. | 18.20 | 477.13864 | 459.1276, 325.0911, 163.0387 | −1.044 | nd | nd | nd | nd | C23H24O11 | plantasioside | 12.66/nd | nd/nd | [14] | |
25. | 18.43 | 165.05457 | 147.0435 | −0.307 | 18.67 | 163.03963 | 119.0498 | 4.044 | C9H8O3 | isomer of p-coumaric acid | 1.91/0.185 | nd/0.22 | [15] | |
26. | 22.13 | 625.21222 | 607.2369, 589.2271 | −0.762 | 22.27 | 623.19714 | 461.1649, 443.1544 | −0.150 | C29H36O15 | forsythoside H | 7.48/14.43 | 1.23/3.15 | [14] | |
27. | nd | nd | nd | nd | 23.14 | 477.13669 | 315.1053, 179.0331, 161.0226 | −5.131 | C23H26O11 | calceolarioside A | nd/nd | nd/1.03 | [14] | |
28. | 23.20 | 625.21246 | 479.1540, 471.1494, 325.0915 | −0.379 | nd | nd | nd | nd | C29H36O15 | forsythoside A | 7.43/nd | nd/nd | [14] | |
29. | 23.40 | 623.19672 | 477.1382, 325.0912 | −0.524 | 23.22 | 621.18140 | 487.1441, 469.1337, 459.1494 | 0.005 | C29H34O15 | suspensaside A | 1.08/1.80 | nd/nd | [14] | |
30. | nd | nd | nd | nd | 24.49 | 519.18640 | 357.1328 | 0.601 | C26H32O11 | pinoresinol-4′-O-glucopyranoside | nd/5.39 | nd/3.20 | [14] | |
31. | 24.80 | 189.11209 | 171.1012, 125.0957 | −0.241 | 24.67 | 187.09706 | 125.0967 | 3.071 | C9H16O4 | azelaic acid | 2.32/9.54 | nd/4.80 | [15] | |
32. | 25.89 | 521.20148 | 359.1483 | −0.495 | 26.20 | 519.18646 | 357.1331 | 0.716 | C26H32O11 | epipinoresinol-4′-β-D-glucopyranoside | 0.37/4.07 | 0.19/3.96 | [14] | |
33. | 26.01 | 375.14349 | 357.1327 | −0.905 | 26.12 | 373.12838 | 343.1174, 313.1071 | 0.538 | C20H22O7 | (+)-1-hydroxylpinoresinol | 11.87/6.69 | 4.25/2.13 | [14] | |
34. | 26.08 | 359.14876 | 341.1375, 223.0961, 137.0594 | −0.431 | nd | nd | nd | nd | C20H22O6 | isomer of pinoresinol | 6.16/nd | 2.16/nd | [2] | |
35. | 29.23 | 389.15921 | 371.1485, 247.0963, 217.0858 | −0.693 | 29.52 | 387.14408 | 372.1202 | 0.647 | C21H24O7 | forsythialan B | 16.66/0.81 | 7.12/nd | [2] | |
36. | 31.11 | 335.22156 | 317.2100, 289.2160 | −0.376 | nd | nd | nd | nd | C20H30O4 | isomer of dehydropinifolic acid | 2.54/nd | 2.65/nd | [2] | |
37. | 31.49 | 359.14883 | 341.1378, 223.0962, 137.0595 | −0.236 | 31.46 | 357.13330 | 342.1093, 313.1433, 209.0810 | 0.098 | C20H22O6 | matairesinol | 3.44/1.79 | 0.54/0.59 | [14] | |
38. | 32.70 | 359.14868 | 341.1376, 311.1272, 235.0961, 217.0858 | −0.654 | nd | nd | nd | nd | C20H22O6 | isomer of pinoresinol | 1.07/nd | 2.92/nd | [2] | |
39. | 32.78 | 335.22141 | 317.2107, 299.2003 | −0.823 | nd | nd | nd | nd | C20H30O4 | isomer of dehydropinifolic acid | 2.22/nd | 2.68/nd | [2] | |
40. | 32.81 | 359.14627 | 341.1359, 235.0946 | −7.364 | nd | nd | nd | nd | C20H22O6 | isomer of pinoresinol | nd/nd | 1.19/nd | [2] | |
41. | 33.55 | 335.22177 | 317.2105, 299.2001, 289.2157 | 0.251 | nd | nd | nd | nd | C20H30O4 | isomer of dehydropinifolic acid | 2.39/nd | 2.51/nd | [2] | |
42. | 34.45 | 335.22156 | 317.2102, 299.1998, 287.1999 | −0.376 | nd | nd | nd | nd | C20H30O4 | isomer of dehydropinifolic acid | 1.05/nd | 3.33/nd | [2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Zhu, H.; Liu, Z.; He, X.; Sun, J.; Li, Y.; Wu, X.; Pehrsson, P.; Zhang, Y.; Yao, Y.; et al. Chemical Compositions of Lianqiao (Forsythia suspensa) Extracts and Their Potential Health Benefits. Pharmaceuticals 2024, 17, 740. https://doi.org/10.3390/ph17060740
Gao B, Zhu H, Liu Z, He X, Sun J, Li Y, Wu X, Pehrsson P, Zhang Y, Yao Y, et al. Chemical Compositions of Lianqiao (Forsythia suspensa) Extracts and Their Potential Health Benefits. Pharmaceuticals. 2024; 17(6):740. https://doi.org/10.3390/ph17060740
Chicago/Turabian StyleGao, Boyan, Hanshu Zhu, Zhihao Liu, Xiaohua He, Jianghao Sun, Yanfang Li, Xianli Wu, Pamela Pehrsson, Yaqiong Zhang, Yuanhang Yao, and et al. 2024. "Chemical Compositions of Lianqiao (Forsythia suspensa) Extracts and Their Potential Health Benefits" Pharmaceuticals 17, no. 6: 740. https://doi.org/10.3390/ph17060740
APA StyleGao, B., Zhu, H., Liu, Z., He, X., Sun, J., Li, Y., Wu, X., Pehrsson, P., Zhang, Y., Yao, Y., & Yu, L. (2024). Chemical Compositions of Lianqiao (Forsythia suspensa) Extracts and Their Potential Health Benefits. Pharmaceuticals, 17(6), 740. https://doi.org/10.3390/ph17060740