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Abstract: Polymersomes, self-assembled nanoparticles composed of amphiphilic block copolymers,
have emerged as promising versatile nanovesicles with various applications, such as drug delivery,
medical imaging, and diagnostics. The integration of click chemistry reactions, specifically the copper
[I]-catalysed azide-alkyne cycloaddition (CuAAC), has greatly expanded the functionalisation and
bioconjugation capabilities of polymersomes and new drugs, being this synergistic combination
explored in this review. It also provides up-to-date examples of previous incorporations of click-
compatible moieties (azide and alkyne functional groups) into polymer building blocks, enabling
the “click” attachment of various functional groups and ligands, delving into the diverse range of
click reactions that have been reported and employed for polymersome copolymer synthesis and
the modification of polymersome surfaces, including ligand conjugation and surface modification.
Overall, this review explores the current state-of-the-art of the combinatory usage, in recent years, of
polymersomes with the click chemistry reaction, highlighting examples of studies of their synthesis
and functionalisation strategies.

Keywords: polymersome; click chemistry; CuAAC; surface modification; copolymer synthesis

1. Introduction
1.1. Click Chemistry

The 2022 Nobel Prize in chemistry was awarded to Carolyn Ruth Bertozzi, Morten
Meldal, and Karl Barry Sharpless [1] and brought a new window of possibilities to the
pharmaceutical and material industries. Sharpless and co-workers [2] enormously impacted
chemistry philosophy by discovering “click” reactions. Click chemistry is a class of nearly
perfect chemical reactions that are effective in terms of atom economy, stereospecificity,
wide scope, and almost all properties that today are called the green chemistry principles.
The reaction is enormously selective since it only occurs when azide and alkyl groups
are present.

The copper-catalysed azide-alkyne cycloaddition (CuAAC) is a variant of the classical
thermal Huisgen 1,3-dipolar cycloaddition and was described by Sharpless as the ‘cream
of the crop’ of click chemistry [3,4]. By using copper (CuSOy) and sodium ascorbate, the
energy necessary for the activation barrier is decreased significantly, making the reaction
possible to proceed at room temperature and in aqueous or organic solvents, leading to a
1,4-disubstituted triazole (Figure 1) [5].
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Figure 1. Schematic representation of Huisgen 1,3-dipolar cycloaddition variants. In (a) the classical
thermal azide-alkyne cycloaddition (AAC) and (b) the copper-catalysed azide-alkyne cycloaddition
(CuAAQ). rt, room temperature.

These Nobel laureates also impacted chemical and biorthogonal chemistry philosophy,
which can be briefly defined as the “chemical reaction that can occur inside of living
systems without interfering with native biochemical processes”. With the discovery of
“click” reactions, the need to proceed with biorthogonal reactions under conditions that
would not harm and preserve such biological systems was solved. Bertozzi’s group coined
this term, taking inspiration from the mathematical term “orthogonality”—two variables
that vary and coexist independently from one another. In a broad sense, this class of
chemistry allows for the use of normal organic synthesis techniques to be applied to
complex living systems, such as cells [6-8].

Overall, to be considered a “click’ reaction, several characteristics similar to green
chemistry principles must be satisfied [2]. Theoretically, there is neither the need to use
protective groups in click reaction synthesis nor the use of extensive chromatographic
purification methods [9-11]. This class of reactions had already impacted the scientific
world in a broad sense, given its properties [10-13].

1.2. Polymersomes

Polymersomes (PMs) are spherical and hollow nanosystems composed of amphiphilic
copolymers that can encapsulate hydrophilic and hydrophobic drugs, individually or at
the same time, and go from 100 nm to a few pum in diameter [14] (Figure 2).

Hydrophobic -
block Hydrophilic

block

Figure 2. Schematic representation of a polymersome.

Discher’s group was the first to use the term ‘polymersome’ in 1999 when they developed
and described a polymeric structure composed of polyethyleneglycol (PEG)-polyethylethylene
(PEE) [15]. A study has revealed that the synthetic polymer length is up to 10 times larger
than the phospholipid acyl chain [15,16]. Other studies have also contributed to high-
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lighting that the thickness of polymersomes (2-30 nm) [15,17-21] is more significant than
the liposome (3-5 nm) [18,19], providing more stability and protection against mechan-
ical/chemical shear, giving polymersomes more stability, more content retention [22],
superior functionalisation, high choice of drug encapsulation, bioavailability, biodegrad-
ability, and changeable mechanical properties, applications, and cargo release induced
by stimuli compared to other drug delivery systems (DDSs) (Table 1). Therefore, poly-
mersomes have a wider range of applications and are an excellent solution and a modern
candidate for DDSs [23,24].

Table 1. Polymersomes (PMs) compared with other drug delivery systems (DDSs).

DDS Disadvantages Compared to PMs
The thickness of the liposome (3-5 nm) provides less
stability, and less retention of content [16].
These particles have some disadvantages, such as the
Solid Liquid Nanoparticles rapid loss of large quantities of drugs and the lack of
controlled drug release [25,26].
Less stable—they can be affected by temperature, pH, and
Microemulsions other environmental factors and have lower
encapsulation efficiencies [27].
Reduced stability in the bloodstream, since the critical
micellar concentration (CMC) can be reduced by blood

Liposomes

Micelles dilution and the encapsulated drugs can leak out,
minimizing drug circulation [28,29].
Dendrimers Showed cytotoxicity [30].
Quantum Dots Cytotoxicity of small semiconductor particles [31].

The process of production is expensive and lacks solubility
in aqueous media [32].
Silver nanoparticles Toxic effects on cells and organisms [33].

The methods used for the synthesis are expensive and can
also use toxic ingredients. This makes it difficult to
implement this recent technology in all the places where it
could be useful [34].

Carbon nanotubes

Golden nanoparticles

Despite their excellent attributes, polymersome research still faces some challenges and
limitations. Achieving precise control over polymersome size and membrane properties
(such as permeability) and the scalability for large-scale production remains a challenge [35].
Maintaining stability during storage and delivery, performing efficient encapsulation of
hydrophilic and hydrophobic cargos, and achieving long-term stability in biological envi-
ronments are ongoing issues. Moreover, optimising polymersome targeting, biodistribution,
and clearance properties requires further investigation [36,37].

Different structures can be formed depending on the type of copolymers used and the
hydrophobic fraction. The interfacial tension between the hydrophobic part and the water
auto-modulates the copolymers, creating kinetically stable vesicles. By reducing the size
of this fraction, the result is the development of cylindrical micelles rather than spherical
micelles, and the continuous reduction will lead to the development of spherical vesicles and,
essentially, polymersomes [38]. Each copolymer block’s physical properties will define how
these polymers are “packed”, and by using the critical packing parameter (CPP), the most
probable type of structure achieved can predicted (Figure 3), where if the 1 > CPP > 1/2,
polymersomes are formed.

In this equation, V is the volume of the hydrophobic block, A is the interfacial area per
molecule, and L is the hydrophobic block length [39-41]. As a result, if the value of CPP
is equal to one, we will see planar lamellae forming (Table 2);if 1/2 > CPP >1/3, we can
observe cylindrical micelles; when p is smaller than 1/3, we can observe spherical micelles.
If, by any chance, the value of CPP is higher than 1, inverted structures are expected
to be present [39,41,42].
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Figure 3. Critical packing parameter equation concerning the membrane disposition: where V is the
volume of the hydrophobic part, A is the area of the hydrophilic fraction, and L is the length of the chain.

Table 2. Packing formation and membrane conformation given the CPP value of amphiphilic
membranes. The “Interface Formed” column represents phospholipid membranes, although poly-
mersomes’ are similar.

Packing Formation CPP Interface Formed

<1/3 (spherical)
1/3-1/2 (cylindric micelles)

1/2-1
(Flexible lamellae, vesicles,
polymersomes)

. ~1 T,

(Planar lamellae) SULSLLLL LU LU ULLULLL

>1
(Inverted structures) O

This review summarises the state-of-the-art on polymersome copolymer synthesis
and functionalisation using 1,4-disubstituted 1,2,3-triazole as the central linker between
polymer—polymer and polymer-ligand by click chemistry.

2. Click Chemistry in Copolymer Synthesis

One polymer sequence is called a “block”, and copolymers are defined as two or more
sets of polymers connected to form an amphiphilic macromolecule [43]. Given its molecular
design, the copolymer on the membrane itself can have different conformations, such as
diblock, triblock, or multiblock [44-50].

The CuAAC has been previously used to connect the different blocks. It was proven
in 2005 that the synthesis of copolymers via the 1,3-dipolar cycloaddition of terminal azide
and alkyne functionalised polymers was possible and provided good yields [51]. Years
after, in 2008 and 2009, this strategy was integrated into polymersome’s copolymer block
synthesis. The first publication reports the aggregation of a diblock copolymer composed
of polystyrene (PS)-PEG synthesised by CuAAC. Briefly, the aim was to functionalise a
PS—poly[isocyanoalanine(2-thiophen-3-yl-ethyl)amide (PIAT) polymersome with an en-
zyme. A diacetylene-functionalised PEG chain allowed for cycloaddition with the PS-azide
copolymer (Figure 4a). After polymersome assembly, the free acetylene group reacted with
an azide enzyme [52,53].
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Figure 4. Compilations of copolymer synthesis. (a) Synthesis of PS-PEG diblock copolymer;
(b) synthesis of PIB-PEG diblock copolymer; (c) synthesis of HYA-derivate diblock copolymers. The
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first: HYA-PBLG copolymer synthesis. The second: HYA-PCL copolymer synthesis; (d) synthesis of
a PEG-PMPC-PDPA triblock miktoarm copolymer; (e) synthesis of a PEG-PCL diblock copolymer.
PS: polystyrene; PEG: polyethyleneglycol; PIB: polyisobutylene; HYA: hyaluronan; PCL: polycapro-
lactone; PBLG: poly y-benzyl glutamate; PMPC: poly-2-(methacryloyloxy)ethyl choline phosphate;
PDPA: poly-2-(diisopropylamino)ethyl methacrylate.

The CuAAC reaction was also used by Binder et al. to synthesise a PEG—polyisobutylene
(PIB) diblock copolymer in 2008 [54] (Figure 4b), by Kumar et al. for the synthesis of hyaluro-
nan (HYA)-poly y-benzyl glutamate (PBLG) in 2009 [55] (Figure 4c), and by Shahriari et al.
for the synthesis of HYA—polycaprolactone (PCL) in 2021 [56] (Figure 4c).

Besides the typical diblock copolymer, another two groups focused on synthesizing
and connecting triblock copolymers into a miktoarm shape. In 2012, Yin et al. [57] re-
ported the synthesis of PEG—(poly His), 3-miktoarm, mimicking a phospholipid structure
assembled in the aqueous phase into polymersomes that presented low cytotoxicity and
pH sensitiveness. This particular copolymer was described as a pH-dependent drug re-
lease system. Later that decade, Battaglia et al. [58] successfully synthesised a 3-miktoarm
copolymer with three distinct arms connected by a dibromo-N-propargyl-maleimide motif.
Poly-2-(diisopropylamino)ethyl methacrylate (PDPA) and poly-2-(methacryloyloxy)ethyl
choline phosphate (PMPC) were synthesised with a sulphide moiety that was later attached
to the maleimide central block. The PEG block attachment was the last step using the
CuAAC reaction (Figure 4d). The resulting miktoarm copolymer was able to induce the
assembly of polymersomes.

Another study in 2018 by Khoee et al. [59] demonstrated a complex polymersome
structure that combines the advantages of magnetite (Fe3O,) nanoparticles and a three-layer
copolymer. This structure comprises a PCL layer between two inner and outer PEGs, which
were connected after the click reaction (Figure 4e) between the first azide-PEG moiety and
the alkyne-PCL.

3. Click Chemistry in Polymersome Functionalisation

Polymersomes can be functionalised with various molecules or groups to introduce
specific properties or functionalities to their structure. The functionalisation of poly-
mersomes enables customisation and tailoring of their behaviour for specific biomedical
applications [60]. The choice and combination of functionalisation strategies depend on the
desired properties, targeted applications, and the compatibility of the functional molecules
with the polymersome structure.

Surface modification can be conducted through various methods and reactions, namely,
the inverse electron-demand Diels—Alder [61-63], thiol-ene chemistry [64—66], click
chemistry [67-69], or Diels—Alder reactions [70-72]. However, this broad spectrum of
reactions is not always possible, given their limitations in material functionalisation. The
use of the CuAAC reaction on polymersome functionalisation is relatively new, and few
different ligands have been reported to be attached to a polymersome outer surface by
different reactions [73], and each one of them will be explored.

Firstly, for the CuAAC to be possible, it is necessary to have a pair of alkyne and azide
functional groups. Usually, these groups are absent in the ligands and in the polymers to be
connected, so the introduction of these groups needs to be accomplished first. Commonly,
introducing an azide group takes place by a diazo-transfer reaction, allowing for the
creation of an azide from a primary amine using the diazo-transfer agents. However,
there is not always a presence of an amine to change to an azide functional group, so other
methods and reactions are possible. Table 3 shows a compilation of reactions and conditions
used for the introduction of an azide or an alkyl end group on copolymer synthesis and
copolymer functionalisation.
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Table 3. Compilation of reactions used for azide—-alkyl functional group introduction in copolymers

for polymersomes’ formation.

Reactions Used for Azide-Alkyl Functional Group Introduction

Entry Azfrd&:el:sliTIZyl End Group Reaction Conditions Ref.
1 WO‘]\/\CI Argon atmosphere, DMF, 65 °C [74]
2" ® Undisclosed yield
©\ 0 (i) TsCl, Et3N, DCM, rt
2 o o (ii) NaN3, DMF, rt [55,56]
n Undisclosed yield
koK
C DME, rt
3 Brl ~ | 89% yield [52]
o .
. o S._Ph
N\\N;tN_ Na+ \O«{’\/ }:‘/\O)Ké; A . \Is]/
) . DME, rt
4 Sodium azide ‘ O 66% yield [75,76]
o
Ov];u DME, 120 °C (4 h)
o) Cl 7
g o™ 99% yield 591
{ R
H,0, 80 °C (24 h)
HO_~ 20,
6 c 80-90% yield 771
_0 cl N, atmosphere, DMF, rt (24 h)
7 {\/\Ot\/ 85% yield 571
N~ | Br
o Nty SiC o 0 TBAF, THEF, rt -
Trimethylsilyl azide Undisclosed yield
N OH
9 N DCC, DMAP, DPTS, DCM, rt [79-81]
(o} 95% yield
Azidoacetic acid
« HCI
o N
10 N°N’3N,\\S\\/<\N] K,CO3, [Cu™S0,] %, Hy0, t (52]
0 Undisclosed yield
Imidazole sulfonyl azide ¥
hydrochloride
NaBH3CN, Acetate buffer, 50 °C (5 days)
1 r Quantitative yield (55,561
///\NHZ (i) MsCl, N, atmosphere, Pyridine, rt
12 ) (if) N, atmosphere, DMF, 65 °C (2 h) [83]
Propargylamine 62% yield
13 NaHCO;3, rt (1.5 h) [82]

Undisclosed yield
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Table 3. Cont.
Reactions Used for Azide-Alkyl Functional Group Introduction
Entry Az]iﬂrdaerli‘liyl End Group Reaction Conditions Ref.
O
(0]
N o
///\)%p NH; DCM, rt (2 h)
14 0 ”Om 97% yield (78]
Pentynoic acid
N-succinimidyl ester
o o
- . 1
15 o o o DMAP, DOWEXOH / MeOH, Pyridine [79-81]
95% yield
///\OH
o}
16 Propargyl Alcohol o) Sn(Oct),, 100 °C (18 h) 9]
Undisclosed yield
~_O OH EDC, DMAP, DCM, rt
17 9 "o \LAO]N 84% yield (52,531
///\)%H N i DIPEA, HBTU, DMF,
o N NH, ’ , | rt
18 Pentynoic acid jo]/\u&/ Undisclosed yield [74]
o NaH, THF, N, atmosphere, rt (2 h)-70 °C (6 h)
19 AN~ o 88% yield [77]
o) (o] (0] O,
Phu- P i —10°
20 z B &mj an @NANQ‘ h e e 751
Propargyl bromide R R A Ph y
OH
\ NaH, THEF, 0 °C (2 h)-rt (18 h)
o)
21 HCl * W 57% yield [76]

* Optional use. DCC: N, N'-Dicyclohexylcarbodiimide; DCM: dichloromethane; DIPEA: N, N-Diisopropylethylamine;
DMAP: 4-Dimethylaminopyridine; DMF: dimethylformamide; DPTS: 1,4-Dimethylpyridinium p-toluenesulfonate;
EDC: 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide; HBTU: Hexafluoro-Phosphate Benzotriazole Tetramethyl Uro-
nium; MsCl: methane sulfonylchloride; rt: room temperature; TBAF: tetra-n-butylammonium fluoride; THF: tetrahy-
drofuran; TsCl: toluenesulfonyl chloride.

One of the first synergic uses of click reactions to functionalise polymersomes was
described in 2007 by Opsteen et al. when PS—polyacrylic acid (PAA) copolymer was
prepared by atom transfer radical polymerisation (ATRP). After the polymerisation, an
azide functional group was placed on the PAA end chain (Table 3, entry 8), and after
the polymersome self-assembly, the CuAAC reaction took place (Figure 5) to introduce a
fluorescent dansyl probe, biotin ligands, and an enhanced green fluorescent protein (EGFP),
previously alkylated (Table 3, entry 14) on the nanoparticle [78].

Dansyl probe or biotin N=N R= O N/ R= HN” ONH
CuSO0y, Sodium Ascorbate PS-PAA PMs—N o \
TBTA, water A R HN-8 Y
1, 24h %J 3 A S
o
dansyl probe biotin
k N=

N
{ H
CuS0,, Sodium Ascorbate PS-PAAPMs—N___ N.
PBS Buffer (pH 7.2) EGFP
1t, 22h

(0]

=0

PS-PAA PMs—N3

Figure 5. Functionalisation of PS-PAA diblock copolymer polymersomes with fluorescent dansyl
probe, biotin ligands, and EGFP.

After this functionalisation report was published, some different approaches were
studied. For example, in 2008 and 2009, van Dongen et al. [52,53] described two similar
techniques using a PEG-PS copolymer with an alkyl end group on the PEG block (Table 3,
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(a)

9:1

9:1

entry 17) to introduce a Candida antarctica Lipase B (CalB) via CuAAC, after the polymer-
some assembly. This biohybrid polymersome showed enzymatic activity (Figure 6a). The
second approach incorporated three enzymes into the polymersome’s structure: glucose
oxidase (GOx) was put into the lumen of the polymersome. At the same time, CalB was
contained inside the polymeric bilayer membrane, and a triazole connected horseradish
peroxidase (HRP) to the polymersome surface (Figure 6b).

<

Figure 6. Functionalisation of PEG-PIAT and PEG-PS (9:1) diblock copolymer polymersomes with
CalB (a) and HRP (b). (i) Azido-functionalised enzyme (2 eq.), CuSO4.5H,0, sodium ascorbate,
bathophenanthroline ligand, phosphate buffer (pH 7.4), 4 °C, 60 h.

More studies about the functionalisation of polymersome surfaces were published. They
englobe dendrimers [79-81], polysaccharides [77], peptides [74], anti-tumoral drugs [83], poly-
mersome immobilisation [82], and the use of polymersomes as nanoreactors [75,76]. More
detailed information about polymersome functionalisation ligands can be found in Table 4.

Table 4. Details about functionalisation reactions, showcasing all different di- and triblock copolymers

used, the ligand connected, and main achievements.

Hydrophilic Hydrophobic . . .
Block Polymer Block Polymer Ligand Main Achievements Ref.
PS
PEG Functionalised polymersomes increased the local
o . Enzymes: CalB, concentration of enzymes, leading to higher [52,53]
/%V J\ GOx, and HRP reaction rates, making it possible to remove ’
" catalytical enzyme species in one single step.
Polymersomes functionalised with the
peptides were more effective in delivering
PEG PBD 6.9
. doxorubicin to colon cancer cells than “naked”
Peptides GRGDSP . L
%\/O and PR b polymersomes. The functionalisation allowed [74]
T 2" - for precise targeting, which is crucial for

minimising off-target effects and maximising
therapeutic efficacy.
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Table 4. Cont.
Hydrophilic Hydrophobic . . .
Block Polymer Block Polymer Ligand Main Achievements Ref.
PS-co-4-VBA
. The hydrophobic layer of polymersomes
P m ™ Copper- allowed for the immobilisation of the metal
/%\/O]\ O ‘ " bis(oxazoline) complex, making the reaction possible to occur [75]
n complexes in an aqueous media instead of an
organic solvent.
N3
Pe-eodVBA The hydrophobic layer of polymersomes
PEG - allowed for the immobilisation of the catalyst,
o n L-Proline catalyst making the reaction possible to occur in an [76]
aqueous media instead of an organic solvent
" and therefore improving the yield,
Ny diastereoselectivity, and enantioselectivity.
The functionalisation of the polymersomes
PEC PE Suears: Fucose and with D-glucoside allowed for better binding
/%\/O]\ N & dlucose and affinity to their lectins [77]
n n (carbohydrate-binding proteins), proving to be
a valuable strategy for targeted drug delivery.
™ ) FI dansyl
uores'cer'lt ansy This work proved that functionalisation of the
n probe, biotin ligands, . . [78]
n outer membrane of polymersomes is possible.
HO X0 and EGFP
The dendritic architecture allowed for the
PEG PBD . . . .
conjugation of multiple functional groups,
/%\/O]\ Dendrons such as chromophores and biologically [79]
n =z " relevant ligands, increasing the
versatility of polymersomes.
o8 poL Surface functionalisation of polymersomes with
PEe o] dendritic groups offered a valuable framework
/%\/O PJ\/\/\/O+ Dendrons for controlling their biological properties [80]
= 2" n without significantly affecting their physical
characteristics, such as size and stability.
With this study, an ideal percentage for azide
PEG PBD . .
polymer in polymersome vesicles was
/f\/o Dendrons determined. Also, it was determined that the [81]
n 2" presence of the dendron group did not alter
the polymersome morphology.
Foxt POMS Immobilisation of polymersomes on a planar
HOV N]/ Sli— o Dyres il FAIN solid structure was shown to be possible for [82]
PN | membranes ducti .
n production, usage, and handling.
6}
PEG PLA . .
Dexamethasone-functionalised polymersomes
Dexamethasone proved to be more effective than “naked” [83]

A

particles in pancreatic cancer cells.

4. Structural Elucidation
4.1. Triazole and Azide—Alkyne Elucidation

It is essential to know how to proceed and synthesise these macromolecules and, more
importantly, to know if we have successfully reached our goal, and that can be achieved by
spectroscopic methods and structure elucidation studies.

Concerning the copper cycloaddition, the general approach used was proton or carbon
nuclear magnetic resonance ('H/'*C NMR) and Fourier transform infrared spectroscopy
(FTIR). The study of Zhang et al. on a polylactide (PLA) polymer gives us a remarkable
insight into these methodologies [84]. Other studies corroborate these values [85-89].
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Overall, the presence of the azide group can easily be confirmed by the presence of an
absorption band in 2090-2160 cm ! (N=N=N stretching) in the IR spectrum. IR and NMR can
confirm the presence of the alkyne. In the IR spectrum, an absorbance band at 2102-2129 cm ™!
due to triple-bond CC stretching and another at 3273-3288 cm ! due to H-C alkyne stretching
can easily be detected. The presence of the alkyne group can also be confirmed by NMR by the
presence of a triplet resonance signal around 2.5-3.3 ppm (-C=CH) in the "H NMR spectrum
and by the presence of two signals around 77-78 ppm (-C=C) in the 3C NMR spectrum.
NMR is very useful to confirm the formation of the triazole by the presence of a singlet at
7.6-7.9 ppm (triazole H) in the 'H NMR spectrum and two signals around 142-145 ppm and
123-128 ppm (triazole C=C) in the '*C NMR spectrum.

4.2. Nanoparticle Assemble Elucidation

To confirm the stability and function of the polymersomes, it is essential to have a
method to analyse and check their integrity status. Given the current characterisation
methods used, the ones used on polymersomes include microscopy, light scattering, and
gel permeation chromatography.

Microscopy methods are easy to use and provide specific and simple visualisations [90].
Visualisation of polymersomes is essential to assess their size, configuration, morphology,
and homogeneity. Two types can be used: light and electron microscopy [41,91]. Polymer-
somes can be directly visualised on an aqueous dispersion for light microscopy, with no
need for modifications for visualisation. However, it is only possible to see large-sized
particles (diameter > 1 pm). In better resolution studies (diameter > 1 nm), it is possible to
use electronic microscopy—scanning electron microscopy (SEM) or transmission electron
microscopy (TEM)—with the disadvantage of requiring drying and staining of the sample
to enhance the contrast.

By the techniques of light scattering, either dynamic (DLS) or static, also known
as laser diffraction (LD), it is possible to measure the size of the particle, e.g., the di-
ameter and the size distribution. With this, it is also possible to study the effect of the
pH/temperature on the vesicle’s conformation, the critical aggregation concentration,
and even the membrane disruption [92]. The DLS method can also determine the outer
membrane’s zeta potential. These characterisation methods are easy, quick, and precise,
requiring only data analysis over the complex surfactant system that the polymersomes are
in [91]. Interestingly, some studies have previously described an increase of 50-100 nm in
diameter of the polymersomes after their functionalisation via click chemistry [75,76,80].
Also, these assays by DLS described that polymersomes have a mean diameter between
100 and 200 nm [55-57,59,75,76,80,82], excluding the polymersomes with a glycosylated
PE-PEG copolymer, which had a diameter of 25-50 um [77].

Other methods using X-ray scattering, such as small-angle X-ray scattering (SAXS)
and wide-angle X-ray scattering (WAXS), are being used to complement and provide
more detailed information about structural characteristics. One specific neutron-scattering
(SANS) was reported to be helpful in investigations of morphology, structure, copolymer
self-assembly, and thermodynamic factors of the polymers [41]. Differential scanning
calorimetry (DSC) is another technique capable of analysing the structure of the copolymers
by thermal behaviour [93,94]. Studies on polymersomes’ copolymers have shown that the
thermal behaviour is altered, either by the presence of an encapsulated drug [23,24] or by
the presence of the triazole group [84].

Additionally, the use of gel permeation chromatography (GPC) can provide insights
into the analysis of size distributions, characterisations of molecular weight distributions,
and polymer quality control. A given size distribution can be used to analyse polymer
clusters in the pre-gel state, which helps to determine the optimal conditions for the
polymersome’s synthesis.

GPC can be used during the development, production, and quality control of poly-
mersomes. This can help to ensure that the polymersomes meet the desired specifications
and are safe for use [95,96].
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5. Conclusions and Future Perspectives

Due to their unique properties and applications, polymersomes have earned some
attention in recent years. These synthetic vesicles have demonstrated remarkable stability,
biocompatibility, and tunability. They have been extensively explored in many biomedical
and nanotechnology applications, including nanoparticle drug delivery.

The integration of click chemistry, particularly the copper(I)-catalysed azide—alkyne
cycloaddition (CuAAC), into polymersome technology has opened up a plethora of possi-
bilities for advancements in biomedical applications.

This review analysed both copolymer synthesis and copolymer functionalisation
through the application of the CuAAC reaction—a powerful tool in various research
fields, such as polymer and materials science, medicinal chemistry, chemical biology, and
pharmaceutical sciences. The CuAAC reaction was used for the formation of copolymers
between hydrophilic polymers PEG and HYA, as well as hydrophobic polymers PS, PIB,
PBLG, PCL, PDPA, and PMPC. Several ligands were also introduced by CuUAAC: enzymes
(CalB, GOx, and HRP), polysaccharides (fucose and glucose), dendrons, peptides (GRGDSP,
PR_b, and EGFP), dye probes, metallic complexes, an anti-tumoral drug, and an L-Proline
catalyst. Also, this review describes the reactions, and their conditions, that were necessary
to introduce the alkyl and azide functional groups in the building blocks, since these
functional groups do not occur naturally in the majority of molecules.

By enabling rapid and precise synthesis, click chemistry can transform industries. By
leveraging the precision and specificity of click reactions, it is possible to easily produce
polymersomes with multiple ligands and functional groups, enhancing their targeting
capabilities and therapeutic efficacy.

Key findings highlight the versatility and efficiency of click reactions, enabling precise
control over molecular structures, the synthesis of complex molecules, and the development
of functional materials. The advancements in click chemistry and polymersome technology
are likely to have a profound impact on the pharmaceutical and material science industries.
The principles of green chemistry inherent in click reactions align with the increasing
demand for sustainable and environmentally friendly processes. Moreover, the ease of
functionalisation and the ability to perform reactions under mild conditions make these
methods highly attractive for large-scale production.

This review proved that ‘Click’ is essential in the design and synthesis of polymer-
some polymers, facilitating targeted drug delivery, controlled release systems, and other
innovative applications.
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