Design and Characterization of Chitosan-Based Smart Injectable Hydrogel for Improved Sustained Release of Antinarcotics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Hydrogel
2.2. Fourier Transform Infrared (FT-IR) Spectroscopy
2.3. Thermo-Gravimetric Analysis (TGA)
2.4. Scanning Electron Microscopy (SEM)
2.5. Rheology
2.6. Swelling Analysis
2.7. Biodegradation Analysis
2.8. Drug Loading
2.9. Drug Release
2.10. Drug Release Kinetics
3. Materials and Methods
3.1. Materials
3.2. Preparation of Hydrogel
3.3. Fourier Transform Infrared (FT-IR) Spectroscopy
3.4. Thermo-Gravimetric Analysis (TGA)
3.5. Scanning Electron Microscopy (SEM)
3.6. Rheology
3.7. Swelling Analysis
3.8. Biodegradation Analysis
3.9. Drug Loading
3.10. Drug Release
3.11. Drug Release Kinetics
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeida, C.A.F.; Pereira-Junior, A.A.; Rangel, J.G.; Pereira, B.P.; Costa, K.C.M.; Bruno, V.; Silveira, G.O.; Ceron, C.S.; Yonamine, M.; Camarini, R. Ayahuasca, a psychedelic beverage, modulates neuroplasticity induced by ethanol in mice. Behav. Brain Res. 2022, 416, 113546. [Google Scholar] [CrossRef] [PubMed]
- MacKillop, J.; Agabio, R.; Feldstein Ewing, S.W.; Heilig, M.; Kelly, J.F.; Leggio, L.; Lingford-Hughes, A.; Palmer, A.A.; Parry, C.D.; Ray, L. Hazardous drinking and alcohol use disorders. Nat. Rev. Dis. Primers 2022, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Langman, L.J.; Jannetto, P.J. Toxicology and the clinical laboratory. In Contemporary Practice in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 917–951. [Google Scholar]
- Adhikari, S.; Tulachan, P.; Ojha, S.P.; Chapagai, M.; Dhungana, S.; Pant, S.B. Comparison of disulfiram and naltrexone in cases of alcohol dependence syndrome. J. Nepal Health Res. Counc. 2020, 18, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Mason, B.J. Looking Back, Looking Forward: Current Medications and Innovative Potential Medications to Treat Alcohol Use Disorder. Alcohol Res. Curr. Rev. 2022, 42, 11. [Google Scholar] [CrossRef] [PubMed]
- Zangiabadian, M.; Golmohammadi, S.; Nejadghaderi, S.A.; Zahmatkesh, M.M.; Nasiri, M.J.; Sadeghian, M. The effects of naltrexone on retention in treatment and being opioid-free in opioid-dependent people: A systematic review and meta-analysis. Front. Psychiatry 2022, 13, 1003257. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.M.; O’Neil, J.P.; Janabi, M.; Marks, S.M.; Jagust, W.J.; Fields, H.L. Alcohol consumption induces endogenous opioid release in the human orbitofrontal cortex and nucleus accumbens. Sci. Transl. Med. 2012, 4, 116ra6. [Google Scholar] [CrossRef] [PubMed]
- Krimpuri, R.; Youngs, C.; Emerman, C. Initiation of Medication for Alcohol Use Disorder for Inpatients with Alcohol Withdrawal Syndromes. J. Stud. Alcohol Drugs 2023, 84, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Malone, M.; McDonald, R.; Vittitow, A.; Chen, J.; Obi, R.; Schatz, D.; Tofighi, B.; Garment, A.; Kermack, A.; Goldfeld, K. Extended-release vs. oral naltrexone for alcohol dependence treatment in primary care (XON). Contemp. Clin. Trials 2019, 81, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.E., IV; Wang, R.C.; Montoy, J.C.; Whittaker, E.; Raven, M. Effect of extended-release naltrexone on alcohol consumption: A systematic review and meta-analysis. Addiction 2022, 117, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.; Rae, M.; Dartora, V.F.; Matos, J.K.; Camarini, R.; Lopes, L.B. Bioresponsive nanostructured systems for sustained naltrexone release and treatment of alcohol use disorder: Development and biological evaluation. Int. J. Pharm. 2020, 585, 119474. [Google Scholar] [CrossRef]
- Kamali, H.; Karimi, M.; Abbaspour, M.; Nadim, A.; Hadizadeh, F.; Khodaverdi, E.; Eisvand, F. Comparison of lipid liquid crystal formulation and Vivitrol® for sustained release of Naltrexone: In vitro evaluation and pharmacokinetics in rats. Int. J. Pharm. 2022, 611, 121275. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Li, A.; Ma, L.; Iqbal, S.; Sun, X.; Ma, W.; Li, C.; Zheng, D.; Xu, Z.; Zhao, Z. Nose-to-brain delivery of disulfiram nanoemulsion in situ gel formulation for glioblastoma targeting therapy. Int. J. Pharm. 2021, 597, 120250. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Luo, Q.; Zhang, L.; Qu, X.; Che, X.; Cai, S.; Liu, Y. A disulfiram/copper gluconate co-loaded bi-layered long-term drug delivery system for intraperitoneal treatment of peritoneal carcinomatosis. Colloids Surf. B Biointerfaces 2023, 231, 113558. [Google Scholar] [CrossRef] [PubMed]
- Kedia, S.K.; Ahuja, N.; Dillon, P.J.; Jones, A.; Kumar, S.; Satapathy, S. Efficacy of Extended-Release Injectable Naltrexone on Alcohol Use Disorder Treatment: A Systematic Review. J. Psychoact. Drugs 2023, 55, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Solli, K.K.; Opheim, A.; Latif, Z.e.H.; Krajci, P.; Benth, J.Š.; Kunoe, N.; Tanum, L. Adapting treatment length to opioid-dependent individuals’ needs and preferences: A 2-year follow-up to a 1-year study of extended-release naltrexone. Addiction 2021, 116, 2084–2093. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and applications in biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Akil, H.M. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C 2015, 57, 414–433. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.; Mujtaba, M.; Alghamdi, N.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Clegg, J.R.; Anselmo, A.C.; Mitragotri, S. Hydrogels in the clinic. Bioeng. Transl. Med. 2020, 5, e10158. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, A.; Farooq, M.A.; Parveen, A. Thermosensitive chitosan-based injectable hydrogel as an efficient anticancer drug carrier. ACS Omega 2020, 5, 20450–20460. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, A.; Farooq, M.A.; Parveen, A. Biodegradable and biocompatible polymers for tissue engineering application: A review. Artif. Cells Nanomed. Biotechnol. 2017, 45, 185–192. [Google Scholar]
- Mu, M.; Li, X.; Tong, A.; Guo, G. Multi-functional chitosan-based smart hydrogels mediated biomedical application. Expert Opin. Drug Deliv. 2019, 16, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Nunthanid, J.; Puttipipatkhachorn, S.; Yamamoto, K.; Peck, G.E. Physical properties and molecular behavior of chitosan films. Drug Dev. Ind. Pharm. 2001, 27, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Hudiyanti, D.; Al Khafiz, M.F.; Anam, K.; Siahaan, P.; Christa, S.M. In vitro evaluation of curcumin encapsulation in gum arabic dispersions under different environments. Molecules 2022, 27, 3855. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Hwang, D.S.; Lee, D.W. Intermolecular interactions of chitosan: Degree of acetylation and molecular weight. Carbohydr. Polym. 2021, 259, 117782. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, E.O.; Ighalo, J.O.; Akolo, S.A.; Adeniyi, A.G.; Adepoju, L. Investigation of biomaterial characteristics of chitosan produced from crab shells. Res. Sq. 2020; preprint. [Google Scholar]
- Avaltroni, F.; Bouquerand, P.; Normand, V. Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydr. Polym. 2004, 58, 323–334. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, S.; Wang, H.; Li, Y.; Kishen, A.; Deng, X.; Yang, X.; Wang, Y.; Cong, C.; Wang, H. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS ONE 2015, 10, e0116553. [Google Scholar] [CrossRef] [PubMed]
- Nanaki, S.; Viziridou, A.; Zamboulis, A.; Kostoglou, M.; Papageorgiou, G.Z.; Bikiaris, D.N. New Biodegradable Poly (l-lactide)-Block-Poly (propylene adipate) Copolymer Microparticles for Long-Acting Injectables of Naltrexone Drug. Polymers 2020, 12, 852. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, M.K.; Branton, A.; Trivedi, D.; Nayak, G.; Bairwa, K.; Jana, S. Spectroscopic characterization of disulfiram and nicotinic acid after biofield treatment. J. Anal. Bioanal. Tech. 2015, 6, 2. [Google Scholar]
- Hassan, H.S.; Elkady, M.; El-Shazly, A.; Bamufleh, H.S. Research Article Formulation of Synthesized Zinc Oxide Nanopowder into Hybrid Beads for Dye Separation. J. Nanomater. 2014, 2014, 967492. [Google Scholar]
- Supare, K.; Mahanwar, P. Starch-chitosan hydrogels for the controlled-release of herbicide in agricultural applications: A study on the effect of the concentration of raw materials and crosslinkers. J. Polym. Environ. 2022, 30, 2448–2461. [Google Scholar] [CrossRef]
- Sokker, H.; Ghaffar, A.A.; Gad, Y.; Aly, A. Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release. Carbohydr. Polym. 2009, 75, 222–229. [Google Scholar] [CrossRef]
- Wei, B.; Zou, J.; Pu, Q.; Shi, K.; Xu, B.; Ma, Y. One-step preparation of hydrogel based on different molecular weights of chitosan with citric acid. J. Sci. Food Agric. 2022, 102, 3826–3834. [Google Scholar] [CrossRef]
- Maurya, C.S.; Sarkar, C. Characterization of highly stable water-based magnetorheological gel using OPTIGEL-WX as an additive: The study of magneto-induced rheological and viscoelastic properties. J. Ind. Eng. Chem. 2022, 110, 137–149. [Google Scholar] [CrossRef]
- Cheng, Q.; Ding, S.; Zheng, Y.; Wu, M.; Peng, Y.-Y.; Diaz-Dussan, D.; Shi, Z.; Liu, Y.; Zeng, H.; Cui, Z. Dual cross-linked hydrogels with injectable, self-healing, and antibacterial properties based on the chemical and physical cross-linking. Biomacromolecules 2021, 22, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Emani, S.; Vangala, A.; Buonocore, F.; Yarandi, N.; Calabrese, G. Chitosan hydrogels cross-linked with trimesic acid for the delivery of 5-fluorouracil in cancer therapy. Pharmaceutics 2023, 15, 1084. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019, 7, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Wang, P.-H.; Lee, W.-N.; Li, W.-C.; Wen, T.-C. Chitosan with various degrees of carboxylation as hydrogel electrolyte for pseudo solid-state supercapacitors. J. Power Sources 2021, 494, 229736. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, Y.; Barboiu, M.; Maumus, M.; Noël, D.; Jorgensen, C.; Li, S. Biobased pH-responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold. Carbohydr. Polym. 2020, 244, 116471. [Google Scholar] [CrossRef] [PubMed]
- Rasool, A.; Ata, S.; Islam, A. Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohydr. Polym. 2019, 203, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xue, C.; Mao, X. Chitosan: Structural modification, biological activity and application. Int. J. Biol. Macromol. 2020, 164, 4532–4546. [Google Scholar] [CrossRef] [PubMed]
- Román-Doval, R.; Torres-Arellanes, S.P.; Tenorio-Barajas, A.Y.; Gómez-Sánchez, A.; Valencia-Lazcano, A.A. Chitosan: Properties and its application in agriculture in context of molecular weight. Polymers 2023, 15, 2867. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Akil, H.M.; Rasib, S.Z.M. Functional properties of chitosan built nanohydrogel with enhanced glucose-sensitivity. Int. J. Biol. Macromol. 2016, 83, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Abbas, M.; Kainat, F.; Iqbal, D.N.; Aslam, F.; Kamal, A.; Mohammed, O.A.; Zafar, K.; Alrashidi, A.A.; Alshawwa, S.Z. Efficient drug delivery potential and antimicrobial activity of biocompatible hydrogels of dextrin/Na-alginate/PVA. Heliyon 2024, 10, E29854. [Google Scholar] [CrossRef] [PubMed]
- Farasati Far, B.; Omrani, M.; Naimi Jamal, M.R.; Javanshir, S. Multi-responsive chitosan-based hydrogels for controlled release of vincristine. Commun. Chem. 2023, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Damiri, F.; Bachra, Y.; Bounacir, C.; Laaraibi, A.; Berrada, M. Synthesis and characterization of lyophilized chitosan-based hydrogels cross-linked with benzaldehyde for controlled drug release. J. Chem. 2020, 2020, 8747639. [Google Scholar] [CrossRef]
- Heredia, N.S.; Vizuete, K.; Flores-Calero, M.; Pazmiño, V.K.; Pilaquinga, F.; Kumar, B.; Debut, A. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly (lactic-co-glycolic acid). PLoS ONE 2022, 17, e0264825. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Javed, F.; Othman, M.; Khan, A.; Gul, R.; Ahmad, Z.; Md. Akil1, H. Synthesis and functionalization of chitosan built hydrogel with induced hydrophilicity for extended release of sparingly soluble drugs. J. Biomater. Sci. Polym. Ed. 2018, 29, 376–396. [Google Scholar] [CrossRef] [PubMed]
- Bayer, I.S. Controlled drug release from nanoengineered polysaccharides. Pharmaceutics 2023, 15, 1364. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kanugo, A.; Kaur, T.; Choudhary, D. Formulation and Characterization of Self-Microemulsifying Drug Delivery System (SMEDDS) of Sertraline Hydrochloride. Recent Pat. Nanotechnol. 2024, 18, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Kasiński, A.; Zielińska-Pisklak, M.; Oledzka, E.; Nałęcz-Jawecki, G.; Drobniewska, A.; Sobczak, M. Hydrogels Based on Poly (Ether-Ester) s as Highly Controlled 5-Fluorouracil Delivery Systems—Synthesis and Characterization. Materials 2020, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Rasool, A.; Ata, S.; Islam, A.; Rizwan, M.; Azeem, M.K.; Mehmood, A.; Khan, R.U.; Mahmood, H.A. Kinetics and controlled release of lidocaine from novel carrageenan and alginate-based blend hydrogels. Int. J. Biol. Macromol. 2020, 147, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Yahya, I.; Atif, R.; Ahmed, L.; Eldeen, T.S.; Omara, A.; Eltayeb, M. Polymeric nanoparticles as drug delivery systems for controlled release. Adv. Sci. Eng. Med. 2020, 12, 263–270. [Google Scholar] [CrossRef]
- Fathima, E.; Nallamuthu, I.; Anand, T.; Naika, M.; Khanum, F. Enhanced cellular uptake, transport and oral bioavailability of optimized folic acid-loaded chitosan nanoparticles. Int. J. Biol. Macromol. 2022, 208, 596–610. [Google Scholar] [CrossRef] [PubMed]
- Maiz-Fernández, S.; Guaresti, O.; Pérez-Álvarez, L.; Ruiz-Rubio, L.; Gabilondo, N.; Vilas-Vilela, J.L.; Lanceros-Mendez, S. β-Glycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. Carbohydr. Polym. 2020, 248, 116811. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, D.N.; Shafiq, S.; Khan, S.M.; Ibrahim, S.M.; Abubshait, S.A.; Nazir, A.; Abbas, M.; Iqbal, M. Novel chitosan/guar gum/PVA hydrogel: Preparation, characterization and antimicrobial activity evaluation. Int. J. Biol. Macromol. 2020, 164, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Rojek, B.; Wesolowski, M. A combined differential scanning calorimetry and thermogravimetry approach for the effective assessment of drug substance-excipient compatibility. J. Therm. Anal. Calorim. 2023, 148, 845–858. [Google Scholar] [CrossRef]
- Mahmood, A.; Erum, A.; Mumtaz, S.; Tulain, U.R.; Malik, N.S.; Alqahtani, M.S. Preliminary investigation of Linum usitatissimum mucilage-based hydrogel as possible substitute to synthetic polymer-based hydrogels for sustained release oral drug delivery. Gels 2022, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.M.; Andrade del Olmo, J.; Perez Gonzalez, R.; Saez-Martinez, V. Injectable hydrogels: From laboratory to industrialization. Polymers 2021, 13, 650. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Abraham, T. pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. Int. J. Pharm. 2007, 335, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Feng, G.; Zhang, J.; Xing, J.; Huang, D.; Lian, M.; Zhang, W.; Wu, W.; Hu, Y.; Lu, X. Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation. Int. J. Neurosci. 2021, 131, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Suneetha, M.; Rao, K.M.; Han, S.S. Mussel-inspired cell/tissue-adhesive, hemostatic hydrogels for tissue engineering applications. ACS Omega 2019, 4, 12647–12656. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.A.; Razaq, S.I.A.; Mehboob, H.; Rehman, S.; Al-Arjan, W.S.; Amin, R. Antibacterial and hemocompatible pH-responsive hydrogel for skin wound healing application: In vitro drug release. Polymers 2021, 13, 3703. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Chen, X.; Zhu, W.; Li, L.; Peng, M.; Zhong, Y.; Naeem, A.; Zang, Z.; Guan, Y. Synthesis of gallic acid-loaded chitosan-grafted-2-acrylamido-2-methylpropane sulfonic acid hydrogels for oral controlled drug delivery: In vitro biodegradation, antioxidant, and antibacterial effects. Gels 2022, 8, 806. [Google Scholar] [CrossRef] [PubMed]
Formulation | Release Medium | Zero-Order Kinetics | First-Order Kinetics | Korsemeyer–Peppas Model | Drug Release Mechanism | |||
---|---|---|---|---|---|---|---|---|
R2 | Ko | R2 | K | R2 | n | |||
NTX HMW-CS IH | PBS | 0.9508 | 0.0147 | 0.8631 | 0.0159 | 0.9806 | 0.5773 | Non-Fickian |
NTX LMW-CS IH | PBS | 0.9455 | 0.0152 | 0.8532 | 0.0158 | 0.9776 | 0.5765 | Non-Fickian |
DSF HMW-CS IH | PBS | 0.9455 | 0.0168 | 0.8216 | 0.0203 | 0.9839 | 0.7554 | Non-Fickian |
DSF LMW-CS IH | PBS | 0.9293 | 0.0178 | 0.842 | 0.0188 | 0.9178 | 0.6866 | Non-Fickian |
NTX HMW-CS IH | Ethanol (0.3%) | 0.7381 | 0.0105 | 0.5442 | 0.0109 | 0.8667 | 0.4665 | Non-Fickian |
NTX LMW-CS IH | Ethanol (0.3%) | 0.5965 | 0.0067 | 0.496 | 0.005 | 0.8396 | 0.2202 | Fickian |
DSF HMW-CS IH | Ethanol (0.3%) | 0.6882 | 0.0049 | 0.519 | 0.0074 | 0.8341 | 0.3197 | Fickian |
DSF LMW-CS IH | Ethanol (0.3%) | 0.6951 | 0.0049 | 0.5707 | 0.0063 | 0.8912 | 0.2688 | Fickian |
NTX HMW-CS IH | Ethanol (0.4%) | 0.6319 | 0.0104 | 0.4735 | 0.0103 | 0.8199 | 0.4587 | Non-Fickian |
NTX LMW-CS IH | Ethanol (0.4%) | 0.5183 | 0.0085 | 0.3285 | 0.0077 | 0.6679 | 0.3755 | Fickian |
DSF HMW-CS IH | Ethanol (0.4%) | 0.8263 | 0.0062 | 0.6249 | 0.01 | 0.8875 | 0.4043 | Fickian |
DSF LMW-CS IH | Ethanol (0.4%) | 0.8281 | 0.0064 | 0.6358 | 0.0088 | 0.9153 | 0.3606 | Fickian |
NTX HMW-CS IH | Ethanol (0.5%) | 0.5441 | 0.0099 | 0.3955 | 0.0098 | 0.7483 | 0.4589 | Non-Fickian |
NTX LMW-CS IH | Ethanol (0.5%) | 0.5407 | 0.0087 | 0.3844 | 0.0073 | 0.7367 | 0.3437 | Fickian |
DSF HMW-CS IH | Ethanol (0.5%) | 0.6607 | 0.0067 | 0.5176 | 0.0089 | 0.8571 | 0.3884 | Fickian |
DSF LMW-CS IH | Ethanol (0.5%) | 0.7431 | 0.0069 | 0.6159 | 0.0079 | 0.9204 | 0.3269 | Fickian |
Formulation | Chitosan (CS) | Guar Gum (GG) | Crosslinker | Crosslinking |
---|---|---|---|---|
HMW-CS IH | 125 mg HMW-CS/5 mL 0.1 N HCl | 2 g/5 mL deionized water | Sodium bi phosphate dibasic | Physical crosslinking |
LMW-CS IH | 125 mg LMW-CS/5 mL 0.1 N HCl | 2 g/5 mL deionized water | Sodium bi phosphate dibasic | Physical crosslinking |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aftab, M.; Javed, F.; Haider, S.; Khan, R.; Khan, S.U.; Alam, K.; Amir, A.; Ullah, F.; Shah, N.A. Design and Characterization of Chitosan-Based Smart Injectable Hydrogel for Improved Sustained Release of Antinarcotics. Pharmaceuticals 2024, 17, 749. https://doi.org/10.3390/ph17060749
Aftab M, Javed F, Haider S, Khan R, Khan SU, Alam K, Amir A, Ullah F, Shah NA. Design and Characterization of Chitosan-Based Smart Injectable Hydrogel for Improved Sustained Release of Antinarcotics. Pharmaceuticals. 2024; 17(6):749. https://doi.org/10.3390/ph17060749
Chicago/Turabian StyleAftab, Maryam, Fatima Javed, Sajjad Haider, Rawaiz Khan, Salah Uddin Khan, Kamran Alam, Afreenish Amir, Faheem Ullah, and Naseer Ali Shah. 2024. "Design and Characterization of Chitosan-Based Smart Injectable Hydrogel for Improved Sustained Release of Antinarcotics" Pharmaceuticals 17, no. 6: 749. https://doi.org/10.3390/ph17060749
APA StyleAftab, M., Javed, F., Haider, S., Khan, R., Khan, S. U., Alam, K., Amir, A., Ullah, F., & Shah, N. A. (2024). Design and Characterization of Chitosan-Based Smart Injectable Hydrogel for Improved Sustained Release of Antinarcotics. Pharmaceuticals, 17(6), 749. https://doi.org/10.3390/ph17060749