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Abstract: In this study, we evaluated the physicochemical properties related to the previously
reported anticancer activity of a dataset comprising thirty 1,2-dihydropyridine derivatives. We
utilized Principal Component Analysis (PCA) to identify the most significant influencing factors.
The PCA analysis showed that the first two principal components accounted for 59.91% of the total
variance, indicating a strong correlation between the molecules and specific descriptors. Among
the 239 descriptors analyzed, 18 were positively correlated with anticancer activity, clustering with
the 12 most active compounds based on their ICsy values. Six of these variables—LogP, Csp3,
b_1rotN, LogS, TPSA, and lip_don—are related to drug-likeness potential. Thus, we then ranked
the 12 compounds according to these six variables and excluded those violating the drug-likeness
criteria, resulting in a shortlist of nine compounds. Next, we investigated the binding affinity of
these nine shortlisted compounds with the use of molecular docking towards the PIM-1 Kinase
enzyme (PDB: 20B]J), which is overexpressed in various cancer cells. Compound 6 exhibited the best
docking score among the docked compounds, with a docking score of —11.77 kcal/mol, compared
to —12.08 kcal/mol for the reference PIM-1 kinase inhibitor, 6-(5-bromo-2-hydroxyphenyl)-2-oxo-4-
phenyl-1,2-dihydropyridine-3-carbonitrile. To discover new PIM-1 kinase inhibitors, we designed
nine novel compounds featuring hybrid structures of compound 6 and the reference inhibitor. Among
these, compound 31 displayed the best binding affinity, with a docking score of —13.11 kcal/mol.
Additionally, we performed PubChem database mining using the structure of compound 6 and the
similarity search tool, identifying 16 structurally related compounds with various reported biological
properties. Among these, compound 52 exhibited the best binding affinity, with a docking score of
—13.03 kcal /mol. Finally, molecular dynamics (MD) studies were conducted to confirm the stability
of the protein-ligand complexes obtained from docking the studied compounds to PIM-1 kinase,
validating the potential of these compounds as PIM-1 kinase inhibitors.

Keywords: PCA; 1,2-dihydropyridine; molecular docking; anti-colorectal tumor activity; molecular
dynamics; database mining

1. Introduction

Derivatives with 1,2-dihydropyridine scaffold are attracting a lot of attention owing to
the readiness of their organic synthesis using several types of multi-component reactions
(MCRs) and their various reported biological activities [1,2]. In the current era, where
a premium is put on speed, efficacy, and diversity in the drug discovery process, large
libraries of these compounds can be established efficiently in a relatively short period of time
through the aid of conventional and microwave-assisted MCRs, and have become available
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for high-throughput biological screening [3]. Several studies have reported on the many
pharmacological activities of 1,2-dihydropyridine derivatives including antimicrobial [4],
cardiotonic [5], antidepressant [6], and anticancer activities [7,8].

There is much interest in the anticancer activity of these compounds due to their ability
to interfere with some biological targets that are significantly associated with the pathophys-
iological progress of cancer, such as the PIM-1 kinase (proto-oncogene serine/threonine-
protein kinase), survivin, and phosphodiesterase family of enzymes [7,9,10]. PIM-1 is an
enzyme responsible for the phosphorylation, and hence the activation, of a large number
of endogenous substrates that control cell cycle, proliferation, and apoptosis, suggesting
that the enzyme plays a central regulatory role in cell division, survival, and differentia-
tion processes. The oncogenic potential of PIM-1 has been demonstrated in B-cell tumors,
prostate cancer, and erythroleukemia. Recent studies proved that the expression of PIM-1
is elevated in colorectal and pancreatic cancers, and the most fierce triple-negative breast
cancer [9,11].

Statistical machine-learning techniques have seen widespread use in various chemistry
domains [12-17]. Advances in algorithms, data availability, and computational power have
contributed to the remarkable growth of this field [14,17]. By utilizing carefully curated
databases and extending high-throughput methods, supervised learning approaches have
successfully established connections between the chemical structure of molecules and their
physical properties. Moreover, these approaches are employed in several applications
in chemical synthesis, such as enabling the simulation of structural transformations at a
reduced cost compared to the classic standard first-principles techniques [13,15,16,18].

From the panel of unsupervised machine learning techniques, principal component
analysis (PCA) has been extensively utilized for data size reduction in large analytical chem-
istry datasets [19-22]. Other studies have also employed PCA to explore environmental
contexts [23-26]. In this study, we aimed to couple PCA with a dataset comprising 239 differ-
ent electronic, physical, and chemical properties (descriptors) of thirty 1,2-dihydropyridine
derivatives. These derivatives have previously demonstrated in vitro anticancer activity
against human colorectal tumor cell lines (HT-29) [27]. The objective was to identify the
descriptors directly linked to the biological activity and rank the compounds based on these
identified descriptors. Additionally, molecular docking was employed to assess the binding
affinity of these derivatives towards a potential protein target, PIM-1 kinase. The combined
results were utilized to identify the most promising candidates in terms of drug-likeness,
biological activity, and binding affinity to the target protein.

Furthermore, the compound that showed the best profile with respect to the previously
mentioned analyses was utilized to propose nine novel 1,2-dihydropyridine derivatives,
and was also employed in the mining of the PubChem database to identify small organic
molecules with a similar chemical scaffold while retaining a reported curation effect. All the
proposed and obtained compounds were subject to a second round of molecular docking to
determine those with the best binding affinity towards the PIM1-Kinase. Finally, molecular
dynamics simulations studies were conducted to confirm the stability of the ligand—protein
complexes obtained by the top ranked compounds.

Table 1 provides an overview of the general scaffold of the 1,2-dihydropyridine deriva-
tives employed in this study, along with their inhibitory activity regarding tumor cell
growth.
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Table 1. The general scaffold and the chemical structures of thirty previously reported 1,2-

dihydropyridine derivatives and their inhibitory tumor cell growth activity [27].

HT-29 HT-29
Fluoro Gr'oxjv!h Fluoro Gr.ov.v!h
Compound Position R X Inhibition Compound Position R X Inhibition
IC59 = SD IC5p = SD
(uM) (uM)
1 4-F 2-methoxyphenyl @) >50 16 3-F 2-ethoxyphenyl NH 1.50 £ 0.1
2 4-F 2-methoxyphenyl =~ NH 6.30 £0.8 17 3-F 2-furanyl (@) >50
3 4-F 2-hydroxyphenyl ©) 425+1 18 3-F 2-furanyl NH 1.26 0.2
4 4-F 2-hydroxyphenyl NH 1270+£0.7 19 3-F 3,4-dichlorophenyl (@) >50
5 4-F 2-ethoxyphenyl o >50 20 3-F 3,4-dichlorophenyl ~ NH 3.96 £ 0.5
6 4-F 2-ethoxyphenyl NH 0.70+0.1 21 2-F 2-hydroxyphenyl o >50
7 4-F 2-furanyl O >50 22 2-F 2-hydroxyphenyl NH >50
8 4-F 2-furanyl NH 3.46+0.2 23 2-F 2-methoxyphenyl @) >50
9 4-F 3,4-dichlorophenyl o >50 24 2-F 2-methoxyphenyl ~ NH  10.50 £ 0.4
10 4-F 3,4-dichlorophenyl ~ NH 218 £ 0.1 25 2-F 2-ethoxyphenyl O 12.30 = 1.0
11 3-F 2-hydroxyphenyl o >50 26 2-F 2-ethoxyphenyl NH 2.50 £0.3
12 3-F 2-hydroxyphenyl NH >50 27 2-F 2-furanyl O >50
13 3-F 2-methoxyphenyl o 1270 £ 1.2 28 2-F 2-furanyl NH 8.82
14 3-F 2-methoxyphenyl =~ NH 9.30+0.8 29 2-F 3,4-dichlorophenyl O >50
15 3-F 2-ethoxyphenyl O 1020 £ 1.2 30 2-F 3,4-dichlorophenyl ~ NH 574 + 0.4

2. Results and Discussion

2.1. PCA

PCA is a statistical method that simplifies a large dataset by reducing the number

of variables while keeping most of the important information. It converts the original
variables into a new set of uncorrelated variables called principal components. These
components are arranged so that the first few capture the most significant variations in
the data.

The PCA bi-plot in Figure 1 provides a visual representation of how the different
electronic, physical, and chemical properties of the thirty investigated 1,2-dihydropyridine
derivatives (Table 1) relate to each other and to the principal components.

The first two principal components (PCs) explain a significant portion of the total
variance, accounting for 56.79% (34.28% for PC1 and 22.51% for PC2). This means that
there is a good correlation among the different molecules studied. Looking at the variables
(descriptors), it is clear that they are well distributed and aligned with the first two principal
components.

In terms of the individuals (the investigated molecules), distinct clusters can be ob-
served. It is intriguing that these clusters demonstrate a strong correlation with different
factors, indicating varying degrees of influence on the individuals.

The grey cluster comprises molecules 9, 10, 19, 20, 29, and 30, showing a slight positive
correlation along PC1 and a significant positive correlation along PC2. The blue cluster
includes molecules 1, 2, 5, 6, 13, 14, 15, 16, 23, 24, 25, and 26, exhibiting a slight positive
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correlation along PC1 and a moderate negative correlation along PC2. The yellow cluster
contains molecules 3, 4, 11, 12, 21, and 22, exhibiting a negative correlation along both
PCs. Finally, the green cluster comprises molecules 7, 8,17, 18, 27, and 28, demonstrating
a pronounced negative correlation along PC1 and a slight positive correlation along PC2.
These observations highlight the discrepancy among the four groups (clusters) of molecules
regarding a wide range of electronic, chemical, and physical properties. This indicates that
the individuals (molecules) gathered in each cluster are similar in terms of their chemical
and physical properties, along with their biological activities.

All dataset

::céo

o

OO

Principal Component 2 (22.51%)
o

-1 -0.6 0.2 0.2 0.6 1
Principal Component 1 (34.28%)

Figure 1. PCA bi-plot of the 30 investigated molecules (individuals) following 239 variables (descrip-
tors); the big red bullets present the individuals and the small white bullets present the factors.

To further explore the characteristics of the drug candidates, a more focused approach
was employed. Another PCA analysis was conducted, exclusively incorporating descriptors
that were found from the first PCA analysis to be strongly related to the physicochemical
properties and drug likeness of the candidates. Figure 2a displays the second PCA bi-
plot, in which the first two principal components (PCs) explain a significant portion of
the total variance, accounting for 59.91% (30.14% for PC1 and 29.77% for PC2). Notably,
the variance observed in this analysis is similar to that seen when including the entire
dataset (Figure 1). These findings suggest a strong correlation between the molecules
and these specific descriptors. This indicates the higher efficiency of the method used in
this analysis and reveals more distinct differences among the variables. Consequently,
comparing different molecules becomes more reliable.

Among the variables, ‘mr’ and ‘vol’ contributed the most to PC1, accounting for
14.46% and 13.83%, respectively (Figure 2b). ‘LogP” and “TPSA’ also showed moderate
contributions to PC1, accounting for 8.69% and 8.54%, respectively. For PC2, the high-
est contributions came from ‘"MNDO_HOMO’ and ‘h_pKDb’, accounting for 15.614% and
13.21%, respectively. ‘"MNDO_LUMO’ and ‘h_pKa’ exhibit an average influence along
PC2, contributing 10.96% and 10.15%, respectively. Interestingly, variables that showed a
moderate to high correlation along PC1 demonstrated a low to no correlation along PC2
and vice versa. This suggests that the different trends observed among the molecules are
independent of each other, and each set of clustered molecules is distinct and independent.

In Figure 2a, the blue cluster consists of molecules 1, 3, 5, 9, 11, 13, 15, 19, 21, 23, 25,
and 29, and shows a strong positive correlation with variables such as solvation energy
(E_sol), the number of hydrogen bond acceptors (a_acc), torsional energy (E_tor), and
basicity (h_pKb). In contrast, the yellow cluster includes molecules 7, 17, and 27, which
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do not exhibit a high correlation with any specific variable. The green cluster comprises
molecules 4, 8, 12, 18, 22, and 28, demonstrating a strong positive correlation with water
solubility (logS), total polar surface area (TPSA), the energy of the most stable conformer
(E_str), and the number of hydrogen bond donors (lip_don). The grey cluster consists of
molecules 2, 6, 10, 14, 16, 20, 24, 26, and 30, which show a strong positive correlation with
variables such as Van Der Waals energy (E_vdw), partition coefficient (logP), Van Der Waals
volume (vol), the fraction of sp3-hybridized carbon atoms (Csp3), molar refractivity (mr),
and the number of rotatable bonds (b_1rotN).

(a)
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Figure 2. (a) PCA bi-plot of the 30 investigated molecules (individuals) following the 18 hand-picked
variables (descriptors); the big red bullets present the variables, and the small black bullets present
the individuals. (b) Contribution of the investigated factors toward the first two PCs.

Remarkably, the compounds found in the grey cluster, along with compounds 8, 18,
and 28 from the green cluster, exhibit potent anticancer activity against HT-29 colorectal
tumor cells (IC50: <10 pM; IC50 for compound 24 = 10.5 uM), as discovered by Abdel-
Fattah et al. [27]. These findings suggest that the variables highlighted in the grey and
green clusters likely play a significant role in determining the biological activity of the
compounds. ‘MNDO_HOMO’, ' MNDO_LUMO’, and ‘h_pKa’ are positioned between the
grey and green clusters, indicating their moderate influence on both clusters. ‘logS” and
‘E” were positioned on the negative sides of both PCs. This suggests that a lower ‘logS’
(indicating higher hydrophobicity) and a lower ‘E’ (energy) are associated with a higher
probability of compounds exhibiting a potent effect against HT-29 tumor cells.

2.2. Drug Likeness

The PCA provided insights into the key variables (descriptors) that influence the
anticancer activity of the compounds under investigation. These variables included ‘LogP”’,
‘Csp3’, and ‘b_1rotN’, which have a significant impact on the compounds in the grey cluster,
and ‘LogS’, “TPSA’, and ‘lip_don’, which strongly influence the compounds in the green
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cluster. These variables are closely associated with the drug likeness potential of newly
designed drug candidates, as indicated in previous studies [28,29]. The biologically active
compounds in the grey cluster (consisting of nine compounds) and green cluster (consisting
of three compounds), were then ranked based on the standard values of the aforementioned
descriptors, as shown in Table 2. This ranking helped to identify the compounds that not
only exhibit potent in vitro anticancer activity against HT-29 colorectal tumor cells, but also
show promising bioavailability and pharmacokinetic properties.

Table 2. Drug-likeness data of the biologically active compounds gathered in the grey and green clusters.

Drug Likeness-Related Descriptors

Compound -
LogP Csp3 b_1rotN LogS TPSA lip_don
2 4.095 0.05 3 —5.467 68.9 2
6 4.436 0.1 4 —5.794 68.9 2
8 2.856 0 2 -5.168 72.81 2
10 5.360 0 2 —6.885 59.67 2
14 4.132 0.05 3 —5.467 68.9 2
16 4473 0.1 4 —-5.794 68.9 2
18 2.893 0 2 —5.168 72.81 2
20 5.397 0 2 —6.885 59.67 2
24 4.093 0.05 3 —5.467 68.9 2
26 4.434 0.1 4 —5.794 68.9 2
28 2.854 0 2 —5.168 72.81 2
30 5.358 0 2 —6.885 59.67 2

According to Lipinski’s rule of five, compounds that have a molecular weight below
500, a partition coefficient (LogP) lower than 5, fewer than 5 hydrogen bond donors
(lip_don), and fewer than 10 hydrogen bond acceptors (lip_acc) are more likely to exhibit
good oral bioavailability [28]. Additionally, two more criteria could be considered according
to Veber’s rule, which include a total polar surface area (TPSA) of less than 140 A2 and a
number of rotatable bonds (b_1rotN) fewer than 10 [29]. Another factor that affects drug
likeness is the fraction of sp3-hybridized carbon atoms (Csp3), which is the fraction or the
number of the sp3 carbon atoms out of the total carbon count. This parameter reflects the
carbon saturation of molecules and characterizes the complexity of their spatial structure.
Compounds with zero Csp3 are completely planar and tend to have poor absorption
and bioavailability [30]. Similarly, water solubility (LogS) plays a significant role in the
absorption of newly designed drugs across biological membranes. Drug candidates with a
LogS value around —4 or higher are more likely to have good oral bioavailability [31].

Among the compounds listed in Table 2, compounds 10, 20, and 30 violated the criteria
for "‘LogP” and ‘Csp3’. Additionally, their ‘LogS” values deviated significantly from —4
compared to the other compounds. Compounds 8, 18, and 28 violated only the ‘Csp3’
criterion. On the other hand, compounds 2, 6, 14, 16, 24, and 26 did not violate any of the
investigated drug-likeness criteria, suggesting that they are expected to have favorable
bioavailability in addition to their previously reported potent in vitro anticancer activity
against HT-29 cells.

2.3. Molecular Docking

The PCA and drug likeness analyses played a crucial role in guiding our selection
process for compounds that were to be investigated further through molecular docking.
Based on the PCA results, we specifically targeted compounds that belonged to both the
grey and green clusters, resulting in a total of 12 compounds. To prioritize our focus,
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we ranked these 12 compounds based on drug likeness-related descriptors. As a result,
only nine compounds met the criteria and were selected for subsequent investigation
using molecular docking, which helped to explore the binding affinities of the shortlisted
compounds to the PIM-1 kinase (PDB ID: 20BJ). This enzyme has been identified as a
significant molecular target in cancer management and treatment. The overexpression
of PIM-1 kinase has been associated with various cancer-related processes, including cell
proliferation, cell cycle progression, apoptosis, invasion, and glycolysis [9]. Some 1,2-
dihydropyridine derivatives were reported to have an appreciable inhibitory potential
against PIM-1 kinase enzyme [9]. Among them was (6-(5-bromo-2-hydroxyphenyl)-2-oxo-
4-phenyl-1,2-dihydropyridine-3-carbonitrile), which exhibited an ICs value of 0.05 uM and
was also co-crystallized and bound to the enzyme (PDB ID: 20B]J). In the current study, we
used this compound as a reference inhibitor of PIM-1 kinase in our in silico studies, so that
we could conduct effective comparisons and prioritize the newly proposed compounds for
further testing.

As depicted in Table 3, all nine docked 1,2-dihydropyridine derivatives demonstrated
a favorable fit within the binding site of the PIM-1 kinase enzyme, exhibiting binding
affinities comparable to that of the co-crystallized reference ligand (ref). The docking
scores of the compounds ranged from —11.77 to —9.27 kcal /mol, while the co-crystallized
ligand scored —12.08 kcal/mol. The compounds successfully recapitulated a significant
number of the interactions observed with the co-crystallized ligand, including the arene-H
hydrophobic interaction with Val52 and the H-bonding interactions with Lys67, Glu89, and
Asp186. Noteworthy, the most significant interaction, as per Cheney et al., was the H-bond
formed between the carbonyl group of the ligand’s pyridone ring with the Lys67 side chain
in the binding site [9]. Additionally, the arene-H interaction between the Val52 side chain
and the bromophenol moiety of the ligand confers extra stability to the complex. Figure 3
illustrates the 2D and 3D interactions between compound 6 and the amino acid residues
within the binding site of the PIM-1 kinase.

Table 3. Docking scores and amino acids interactions obtained upon docking the shortlisted 1,2-
dihydropyridine derivatives to the PIM-1 kinase enzyme.

Compound Docking Score (kcal/mol) Types of Interactions

Val52 (arene-H)

Lys67 (H-bond)

Co-crystallized ligand —12.08 11e185 (arene-H)
Glu89 (H-bond)

Asp186 (H-bond)

Val52 (arene-H)
Lys67 (H-bond)

Leu44 (arene-H)
Leul74 (arene-H)
Glu89 (H-bond)
Asp186 (H-bond)

Val52 (arene-H)
16 —11.26 Lys67 (H-bond)
Leul74 (arene-H)

Val52 (H-bond)
24 —11.06 Lys67 (H-bond)
Leul74 (arene-H)

Val52 (arene-H)
2 —10.99 Lys67 (H-bond)
Leul74 (arene-H)

6 —-11.77

14 —11.33




Pharmaceuticals 2024, 17, 880

8 of 20

Table 3. Cont.

Compound Docking Score (kcal/mol) Types of Interactions

Leu44 (arene-H)
Val52 (H-bond)
Lys67 (H-bond)

Leul74 (arene-H)

Leu44 (arene-H)
18 —9.83 Val52 (H-bond)
Lys67 (H-bond)

Leu44 (arene-H)
28 —9.44 Val52 (arene-H)
Lys67 (H-bond)

Leu44 (arene-H)
—9.27 Val52 (H-bond)
Lys67 (H-bond)

26 —10.41

[e ]

Figure 3. The 2D (left) and 3D (right) interactions of compound 6 with the amino acid residues in the
binding site of PIM-1 kinase.

Based on the docking results presented in Table 3, compounds 6, 14, and 16 exhibited
the highest binding affinities, as evidenced by their lower docking scores, and exhibited
profound anticancer activity against HT-29 cells as per their previously reported ICsg values
of 0.7,9.3, and 1.5 uM, respectively, along with appreciable drug likeness potential.

Furthermore, we utilized the chemical scaffold of compound 6 and that of the ligand
inhibitor that was co-crystallized with PIM-1 kinase (PDB: 20B]J) to design nine novel
compounds (31-39) bearing the hybrid structural features of the previously mentioned two
compounds, as shown in Table 4.

These nine proposed designs, derived from compound 6 and the co-crystallized ligand,
were shown to fulfill the drug-likeness criteria according to Lipinski’s and Veber’s rules
compared to the previous candidates listed in Table 2. Upon docking compounds 31-39 to
the PIM-1 kinase enzyme (20B]J), they were found to fit properly in the binding site, with
docking score values ranging from —13.11 to —11.73 kcal/mol (Table 5). These compounds
exhibited a similar amino acid interaction pattern to that of compound 6, indicating an
appreciable PIM-1 kinase inhibitory potential. Compound 31 exhibited the best binding
affinity to the target enzyme, with a docking score of —13.11 kcal/mol compared to the
—12.08 kcal/mol obtained by the co-crystallized ligand inhibitor, as shown in Figure 4.

We subsequently employed the similarity search tool in the PubChem database to iden-
tify other compounds with similar chemical scaffolds to compound 6 that also possess re-
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ported curation effects. This approach allowed us to investigate the PIM-1 kinase-inhibitory
potential of existing structurally similar compounds. Such an investigation highlights the
importance of database mining in drug discovery, as it enables the identification of new
clinical applications for these known compounds.

In this context, we applied the fingerprint Tanimoto-based two-dimensional similarity
search with a similarity threshold of 90%. Upon excluding the homologues of compound
6, sixteen compounds were finally retained (compounds 40-55). Table 6 illustrates the
chemical structure of these compounds along with their reported curation effect(s).

The sixteen selected compounds were subject to molecular docking to the PIM-1
Kinase enzyme (20B]J). Similarly, these compounds were found to fit properly in the
binding site of the target enzyme, with docking score values ranging from —13.03 to
—8.28 kcal/mol (Table 7), with quite similar amino acid interactions patterns to compound
6, which indicates an appreciable PIM-1 kinase inhibitory potential as well. Compound 52
exhibited the best binding affinity to the enzyme, with a docking score of —13.03 kcal /mol
compared to —12.08 kcal/mol for the co-crystallized ligand inhibitor, as shown in Figure 5.

Figure 4. The 2D (left) and 3D (right) interactions of compound 31 with the amino acid residues in
the binding site of PIM-1 kinase.

Table 4. The general scaffold of the newly designed 1,2-dihydropyridine derivatives.

Compound R1 R2
31 H 5-Br
32 CHj; 5-Br
33 CH,CH3 5-Br
34 H 5-F
35 CH; 5-F
36 CH,CHj3 5-F
37 H 4-F
38 CHj; 4-F

39 CH,CH, 4-F
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Table 5. Docking scores and amino acid interactions obtained upon docking the proposed 1,2-
dihydropyridine designs (31-39) to the PIM-1 kinase enzyme.

Compound Docking Score (kcal/mol) Types of Interactions

Leu44 (arene-H)
Asp128 (H-bond)
Leul74 (H-bond)
Asp186 (H-bond)

Val52 (arene-H)
32 —-11.97 Asp128 (H-bond)
Lys67 (H-bond)

VAI52 (arene-H)
Phe49 (H-bond)

Val52 (arene-H)
Lys67 (H-bond)
Asp128 (H-bond)
Asn172 (H-bond)

Val52 (arene-H)
Lys67 (H-bond)
Asp128 (H-bond)
Leul74 (arene-H)

Leu44 (H-bond)
36 —-11.73 Val52 (arene-H)
Lys67 (H-bond)

Val52 (arene-H)
Lys67 (H-bond)
Asp128 (H-bond)
Leul74 (arene-H)

Val52 (arene-H)
Lys67 (H-bond)
Asp128 (H-bond)
Leul74 (arene-H)

Val52 (arene-H)
Lys67 (H-bond)
Asp128 (H-bond)
Leul74 (arene-H)

31 —-13.11

33 -12.75

34 —11.79

35 —12.43

37 —12.17

38 —12.05

39 —12.34

Table 6. The chemical structures of compounds 40-55 and their reported curation effect(s).

Compound Structure Curation Effect Reference

Mitogen-activated protein
Kinase-activated protein Kinase-2 [32]
inhibitors.

40
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Table 6. Cont.

Compound Structure Curation Effect Reference

Inhibitors of Lassa virus’ entry 133]

41 into cells.

Mitogen-activated protein
Kinase-activated protein Kinase-2 [34]
inhibitors.

42

Beta-secretase inhibitors for the [35]

4 . .
3 treatment of Alzheimer’s disease.

Treatment of diseases associated with
44 ¢N NF-kB activity, in particular for the [36]
s treatment of inflammatory diseases.

/ N IV, such as diabetes, particularly [37]
= non-insulin-dependent diabetes -
mellitus, and impaired
glucose tolerance.

O Treatment and/or prophylaxis of
0/ diseases which are associated with DPP
45
X
P
N
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Table 6. Cont.
Compound Structure Curation Effect Reference
Inhibitor of nuclear factor kappa-B
46 kinase subunit beta, and inhibitor of [38]
Mycobacterium tuberculosis growth.
Treatment or prophylaxis of cognitive
47 impairment, Alzheimer’s disease, [39]
neurodegeneration, and dementia.
= |
F X i

48 N NH, Sodium channel blockers. [40]

o N

Treating neuro-degenerative and
49 Lo [41]
neuropsychiatric disorders.
NH,

° Treating neuro-degenerative and

50 L o [41]
neuropsychiatric disorders.
NH,

51 Anti-inflammatory activity. [42]
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Table 6. Cont.

Compound Structure Curation Effect Reference

Inhibitors of sodium—calcium exchange

5 to be used for the prevention and/or [43]
management of
cardiovascular diseases.

| Inhibit the growth of Mycobacterium

53 . [38]
tuberculosis.
(o] NH,
Treatment of cardiovascular and
54 . . . [44]
cardio-metabolic pathologies.

55 Neuropeptide FF receptor antagonists [45]

NH,

Table 7. Docking scores and amino acids interactions obtained upon the docking of compounds

(40-55) to the PIM-1 kinase enzyme.

Compound

Docking Score (kcal/mol)

Types of Interactions

40

—10.33

Val52 (arene-H)
Lys 67 (H-bond)

41

—10.69

Val52 (arene-H)
Lys 67 (H-bond)

42

—8.634

Val52 (arene-H)
Lys 67 (H-bond)
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Table 7. Cont.

Compound Docking Score (kcal/mol) Types of Interactions
Val52 (arene-H)
43 —9.87 Asp128 (H-bond)
Leu44 (arene-H)
44 —10.47 Val52 (arene-H)
Lys 67 (H-bond)
45 _945 Val52 (arene-H)

11e185 (arene-H)
Val52 (arene-H)

46 —9.51 Lys67 (H-bond)
Leul74 (arene-H)

47 —11.62 Lys67 (H-bond)
B Leul74 (arene-H)

8 973 Asp186 (H-bond)

49 —9.64 Val52 (arene-H)
Leul74 (arene-H)

50 —9.82 11e185 (arene-H)

51 —11.03 Val52 (arene-H)

Val52 (arene-H)

52 —13.03 Lys67 (H-bond)

Leul74 (arene-H)
Val52 (arene-H)

53 ~8.28 Leul74 (arene-H)
Val52 (arene-H)

54 —9.38 Asp128 (H-bond)
11e185 (arene-H)

55 —9.06 Val52 (arene-H)

Figure 5. The 2D (left) and 3D (right) interactions of compound 52 with the amino acid residues in
the binding site of PIM-1 kinase.

2.4. Molecular Dynamics (MD)

To confirm the stability of the protein-ligand complexes obtained upon docking the
studied compounds to PIM-1 kinase (20B]J), we performed molecular dynamics stud-
ies on compounds 6 (which had the best docking score among the original thirty 1,2-
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dihydropyridine derivatives), 31 (which had the best docking score among the nine pro-
posed designs), and 52 (which the best docking score among compounds with similar
structures to the 1,2-dihydropyridine derivatives with curation effects), along with the co-
crystallized reference ligand (ref). These compounds were identified as the top candidates
based on the previous analyses.

Molecular dynamics simulations showed that the studied compounds afforded more
H-bond interactions than those retained in the molecular docking. For example, compound
6 showed only two crucial interactions with Lys67 and Val52 upon docking; however,
it showed more H-bond interactions with Leu44 and Glu89 (Figure 6e). This outcome
is expected, as the MD simulations provide a more dynamic and realistic picture of the
protein-ligand complex over time. These interactions can change as the complex undergoes
conformational changes or obtains different degrees of flexibility, offering insights into the
dynamics of H-bond formation when compared to what occurs in the docking simulations,
which are often static and based on a limited number of conformations.

Figure 6 shows the MD simulation analysis of the protein-compound (cpd) complexes
20BJ-cpd6 (red), 20BJ-cpd31 (green), 20BJ-cpd52 (purple), and 20B]-ref (black). The four
complexes were shown to be stable based on an analysis of the total number of H-bonds
(6a), SASA (6b), RMSD (6c), and RoG (6d) in the production phase of MD simulation. The
results showed that the three compounds exhibited a stable binding mode in the binding
site of the PIM-1 kinase, similarly to the co-crystallized ligand (ref), and maintained their
initial docking poses. The root mean square deviation (RMSD) curves indicate equilibration
of the four systems after 20 ns, with average RMSD values of 2.10, 2.04, 2.23, 2.48 A for
20B]J-cpd6, 20BJ-cpd31, 20BJ-cpd52, and 20BJ-ref complexes, respectively. The RMSD
values of the 20BJ-cpd6, 20B]-cpd31, 20BJ-cpd52 complexes were slightly lower than the
reference, which means that these ligands would not disrupt the stability of the protein and
the function of the enzyme would not be altered. Notably, it was observed that, at 70 ns, the
RMSD value of the 20B]-ref complex showed a slight elevation, which may be attributed
to the free rotation of its unsubstituted phenyl ring (as was seen upon visual inspection
of the MD trajectory). Similar results were obtained by Akintemi et al. upon studying the
molecular dynamic simulations of the complexes between Sulfonylurea Receptor 1 (SUR1)
and the polyphenols Galagin and Quercetin [46]: Galagin possesses an unsubstituted
phenyl group and is characterized by a higher RMSD in comparison with Quercetin, which
has the same structure as Galagin with a substituted phenyl group. Additionally, the
numbers of the radius of gyration (RoG), the solvent-accessible surface area (SASA), and
hydrogen bonds (H-bonds) average at around 19.4 A, 14,500 A2, and 80, respectively. The
per-residue root mean square fluctuations (RMSFs) for the enzyme chain (6e) were plotted
for the four complexes. The RMSF curves of the four complexes showed an almost identical
fluctuation pattern. The highest fluctuations occurred around the Val52 and Lys67, which
are the crucial residues involved in the binding pattern of the co-crystallized ligand to the
PIM-1 kinase.

Furthermore, free energy calculations (based on Van der Waals, and electrostatic
interactions) for the four complexes were conducted based on the NAMD output using
MolAICal version 1.3 [47,48], as follows:

AG = Gcomplex - Gligand - Gprotein

where G = E, g4, + Egjec, With solvation correction included in the Egj. term as described in
the MolAICal methodology [47,48].

Based on the AG analysis shown in Table 8, it was confirmed that the four complexes
are stable, with complex 20B]J-cpd31 being the most stable among them.
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Figure 6. Molecular dynamics simulation data analysis for 20BJ-cpd6, 20BJ-cpd31, 20B]J-cpd52,
and 20B]J-ref complexes. (a—d) show the H-bonds, SASA, RMSD, RoG and for the 20B]J-cpd6 (red),
20B]J-cpd31 (green), 20BJ-cpd52 (purple), and 20B]J-ref (black) complexes versus the simulation time
in ns. (e) shows the per-residue RMSF from the protein sequence of 20BJ-cpd6 (red), 20BJ-cpd31
(green), 20BJ-cpd52 (purple), and 20B]-ref (black) complexes.

Table 8. AG values of the four PIM-1 kinase-ligand complexes.

Complex Complex Complex Protein Protein Ligand Ligand AG
Name E(vdW) E(Elec) 1 E(vdW) E(Elec) 1 E(vdW) E(Elec) 1 (kcal/mol)
20B]J-cpd31 —1309.626 —11,259.7506 —1269.751 —11,125.7145 9.8251 —119.6795 —64.06
20BJ-cpd6 —1298.2813 —11,220.477 —1272.5471 —11,127.3604 10.6892 —106.0379 —23.5
20B]-ref —1274.8976 —11,169.5821 —1280.6223 —11,071.7319 12.1326 —98.3834 —5.87
20B]J-cpd52 —1285.4504 —11,176.3037 —1269.4016 —11,088.5128 11.7883 —100.4193 —15.21

1 Solvation correction included in EElec term as described in the Mol AICal methodology [47,48].

3. Methods
3.1. Computing the Descriptors of the 1,2-Dihydropyridine Derivatives

The chemical structures of the previously reported 1,2-dihydropyridine derivatives
(Table 1) were drawn using the builder tool of the molecular operating environment soft-
ware (Molecular Operating Environment (MOE), 2022.02 Chemical Computing Group ULC,
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1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, MOE2022.v11.18.1)
and compiled into one database. Then, all the 239 2D and 3D descriptors listed by MOE
related to electronic, physical, and chemical properties were computed using the descriptor
calculator tool of the software.

3.2. Principal Component Analysis (PCA)

The PCA methodology adopted for this study is the same as that used in the work
by Younes and Grasset [24]. It was performed using XLSTAT 2014. PCA is the bedrock
technique for dimensionality reductions and is commonly used in different scientific and
engineering fields. It was employed to reveal a lower-dimensional pattern that is most
likely representative of the whole dataset. This will help create models that best interpret
the scientific concept at hand. From a statistical perspective, PCA is the mathematical
presentation of singular value decomposition (SVD). It will, specifically, yield a new data-
driven coordinates system that represents the statistical variations in the investigated
dataset. In another sense, it reveals the highest variance based on projections of the given
data [19,49].

3.3. Molecular Docking

The target protein PIM-1 kinase was downloaded from the protein databank (PDB ID:
20B]). Molecular Operating Environment (MOE), 2022.02 was used to perform the docking
runs and visualize the docking poses and interactions. The protein structures were prepared
with the help of the Quickprep tool in MOE. The chemical structure of the co-crystallized
ligand was drawn using the MOE builder tool and added to the compounds database to be
docked among the compounds for the purpose of docking protocol validation. The energy
of all ligands was minimized, and they were prepared using the database wash tool to
adjust their formal charges. The default docking protocol adopting the triangle matcher as a
placement method and London dG as a scoring function was applied. The output docking
poses were explored and ranked according to their scores and the interactions they exhibited
with the amino acid residues at the binding site. Self-docking of the co-crystallized ligand
showed root mean square deviation (RMSD) values of less than two [50].

3.4. Molecular Dynamics (MD) Simulations

MD simulations of the four complexes were performed using the NAMD 2.13 software
installed on the HPC platform in the American University of the Middle East (AUM),
Kuwait. The calculations were performed utilizing Amber10: EHT force field [Ref.] for the
protein-ligand complex and the TIP3P water model. The complex was first minimized,
followed by heating to 310 K, then equilibration (at 1 atm, and 310 K) for 200 ps, and
finally the production phase (for 100 ns). A 0.1 M NaCl was added to the protein-water
solution [51,52]. The periodic boundary condition was utilized with a cubic simulation
box. After the simulation, the trajectories were clustered and analyzed, as will be shown
in the results section using VMD 1.9.3 software and in-house codes [53]. A free energy
calculation (based on Van der Waals and electrostatic interactions) of the four complexes
was conducted based on NAMD output files using the MolAICal protocol [47,48].

4. Conclusions

In conclusion, our study successfully identified key physicochemical properties corre-
lated with the anticancer activity of thirty 1,2-dihydropyridine derivatives using Principal
Component Analysis (PCA). By focusing on descriptors related to drug-likeness, we re-
fined our dataset to nine promising candidates. Among these, compound 6 demonstrated
the best binding affinity towards the PIM-1 kinase enzyme in terms of its docking score
value. Further exploration led to the design of nine novel compounds, with compound
31 exhibiting the highest binding affinity. Additionally, data mining using the PubChem
database revealed structurally related compounds, with compound 52 showing significant
binding affinity towards the PIM-1 kinase. Molecular dynamics studies confirmed the
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stability of the protein-ligand complexes, reinforcing the therapeutic potential of these
compounds. The complex between compound 31 and the PIM-1 kinase was shown to
be the most stable in terms of AG values. This comprehensive approach highlights the
critical role of data mining in discovering new potential anticancer drugs, underscoring the
effectiveness of integrating machine learning, database mining, and molecular modeling
in the drug discovery process, and paving the way for the development of innovative
anticancer therapies targeting PIM-1 kinase. Moving forward, we aim to synthesize the
proposed compounds and conduct further bioassays to confirm their inhibitory potential
against the target enzyme.
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