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Abstract: Cancer remains a formidable global health challenge, with current treatment modalities
such as chemotherapy, radiotherapy, surgery, and targeted therapy often hindered by low efficacy
and adverse side effects. The indole scaffold, a prominent heterocyclic structure, has emerged as a
promising candidate in the fight against cancer. This review consolidates recent advancements in
developing natural and synthetic indolyl analogs, highlighting their antiproliferative activities against
various cancer types over the past five years. These analogs are categorized based on their efficacy
against common cancer types, supported by biochemical assays demonstrating their antiproliferative
properties. In this review, emphasis is placed on elucidating the mechanisms of action of these
compounds. Given the limitations of conventional cancer therapies, developing targeted therapeutics
with enhanced selectivity and reduced side effects remains a critical focus in oncological research.

Keywords: indole; cancer; antiproliferation; synthesis; mode of action

1. Introduction

Cancer is one of the biggest health challenges to mankind, considered the second most
deadly disease, trailing cardiovascular disease [1–4]. Due to its invasive and aggressive
proliferation, cancer may spread into other tissues, causing metastatic capability [5,6].
Despite several tools, therapeutics, and strategies currently developed and applied to
manage the disease, many cancer patients are vulnerable to drug resistance, which reduces
the efficacy of different therapies [7–9]. In this context, the search for safe anticancer agents
with high potency, selectivity, and minimal off-target effects is an urgent demand. Paying
attention to novel therapeutics such as gene [10], immune [11], and photodynamic [12]
therapies is also a noticeable trend to attain effective approaches for combating diverse
cancer types, especially in the advanced phases.

Indole analogs are widely distributed as natural compounds in animals, plants, and
microorganisms [13–15]. Many indole analogs were reported with potential biological prop-
erties, among them anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) [16–22],
anti-malarial [23,24], antimicrobial [25,26], and anti-inflammatory [27–29], in addition to
approved drugs for the treatment of several diseases [30–41] (Table 1).
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Table 1. Indole-containing drugs against different diseases.

Drug Bio-Properties Reference

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 2 of 57 
 

 

Table 1. Indole-containing drugs against different diseases. 

Drug Bio-Properties Reference 

 

Non-steroidal anti-inflammatory drug, “NSAID” [30] 

 

Anti-HIV, “human immunodeficiency virus” [31] 

 

Anti-HIV [32] 

 

Neuroleptic [33] 

 

Analgesic [34] 

Non-steroidal anti-inflammatory drug, “NSAID” [30]

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 2 of 57 
 

 

Table 1. Indole-containing drugs against different diseases. 

Drug Bio-Properties Reference 

 

Non-steroidal anti-inflammatory drug, “NSAID” [30] 

 

Anti-HIV, “human immunodeficiency virus” [31] 

 

Anti-HIV [32] 

 

Neuroleptic [33] 

 

Analgesic [34] 

Anti-HIV, “human immunodeficiency virus” [31]

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 2 of 57 
 

 

Table 1. Indole-containing drugs against different diseases. 

Drug Bio-Properties Reference 

 

Non-steroidal anti-inflammatory drug, “NSAID” [30] 

 

Anti-HIV, “human immunodeficiency virus” [31] 

 

Anti-HIV [32] 

 

Neuroleptic [33] 

 

Analgesic [34] 

Anti-HIV [32]

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 2 of 57 
 

 

Table 1. Indole-containing drugs against different diseases. 

Drug Bio-Properties Reference 

 

Non-steroidal anti-inflammatory drug, “NSAID” [30] 

 

Anti-HIV, “human immunodeficiency virus” [31] 

 

Anti-HIV [32] 

 

Neuroleptic [33] 

 

Analgesic [34] 

Neuroleptic [33]

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 2 of 57 
 

 

Table 1. Indole-containing drugs against different diseases. 

Drug Bio-Properties Reference 

 

Non-steroidal anti-inflammatory drug, “NSAID” [30] 

 

Anti-HIV, “human immunodeficiency virus” [31] 

 

Anti-HIV [32] 

 

Neuroleptic [33] 

 

Analgesic [34] Analgesic [34]



Pharmaceuticals 2024, 17, 922 3 of 53

Table 1. Cont.

Drug Bio-Properties Reference

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 3 of 57 
 

 

 

Antiemetic [35] 

 

Antiviral [36] 

 

For treatment of migraines and cluster headaches [37] 

 

For treatment of symptoms of Parkinson’s disease and rest-
less legs syndrome 

[38] 

 

For treatment of erectile dysfunction, benign prostatic hyper-
plasia, and pulmonary arterial hypertension [39] 

 

For treatment of acute migraine with or without aura in 
adults [40] 

Antiemetic [35]

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 3 of 57 
 

 

 

Antiemetic [35] 

 

Antiviral [36] 

 

For treatment of migraines and cluster headaches [37] 

 

For treatment of symptoms of Parkinson’s disease and rest-
less legs syndrome 

[38] 

 

For treatment of erectile dysfunction, benign prostatic hyper-
plasia, and pulmonary arterial hypertension [39] 

 

For treatment of acute migraine with or without aura in 
adults [40] 

Antiviral [36]

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 3 of 57 
 

 

 

Antiemetic [35] 

 

Antiviral [36] 

 

For treatment of migraines and cluster headaches [37] 

 

For treatment of symptoms of Parkinson’s disease and rest-
less legs syndrome 

[38] 

 

For treatment of erectile dysfunction, benign prostatic hyper-
plasia, and pulmonary arterial hypertension [39] 

 

For treatment of acute migraine with or without aura in 
adults [40] 

For treatment of migraines and cluster headaches [37]

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 3 of 57 
 

 

 

Antiemetic [35] 

 

Antiviral [36] 

 

For treatment of migraines and cluster headaches [37] 

 

For treatment of symptoms of Parkinson’s disease and rest-
less legs syndrome 

[38] 

 

For treatment of erectile dysfunction, benign prostatic hyper-
plasia, and pulmonary arterial hypertension [39] 

 

For treatment of acute migraine with or without aura in 
adults [40] 

For treatment of symptoms of Parkinson’s disease
and restless legs syndrome [38]

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 3 of 57 
 

 

 

Antiemetic [35] 

 

Antiviral [36] 

 

For treatment of migraines and cluster headaches [37] 

 

For treatment of symptoms of Parkinson’s disease and rest-
less legs syndrome 

[38] 

 

For treatment of erectile dysfunction, benign prostatic hyper-
plasia, and pulmonary arterial hypertension [39] 

 

For treatment of acute migraine with or without aura in 
adults [40] 

For treatment of erectile dysfunction, benign
prostatic hyperplasia, and pulmonary arterial
hypertension

[39]



Pharmaceuticals 2024, 17, 922 4 of 53

Table 1. Cont.

Drug Bio-Properties Reference

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 3 of 57 
 

 

 

Antiemetic [35] 

 

Antiviral [36] 

 

For treatment of migraines and cluster headaches [37] 

 

For treatment of symptoms of Parkinson’s disease and rest-
less legs syndrome 

[38] 

 

For treatment of erectile dysfunction, benign prostatic hyper-
plasia, and pulmonary arterial hypertension [39] 

 

For treatment of acute migraine with or without aura in 
adults [40] For treatment of acute migraine with or without

aura in adults [40]
Pharmaceuticals 2024, 17, x FOR PEER REVIEW 4 of 57 
 

 

 

Antihypertensive (β-antagonist) [41] 

Cell death is crucial and fundamental for maintaining tissue balance and eliminating 
potentially harmful cells in multicellular organisms. Accidental cell death (ACD) is typi-
cally caused by unintentional injury, while regulated cell death (RCD) is programmed cell 
death controlled by signaling pathways necessary for an organism’s development and/or 
tissue renewal [42]. Autophagy, necrosis, and apoptosis are significant types of RCD. They 
are potent approaches against cancer progression and metastasis and are important for 
developing potential anticancer agents [43,44]. 

Indole analogs have been recognized as potent anticancer agents targeting RCD and 
related signaling pathways [45,46]. So, they may control cancer cell progression via vari-
ous biological targets, including tubulin polymerization, DNA topoisomerases, tumor 
vascularization, histone deacetylase (HDAC), and sirtuins [46–48]. Moreover, efficacy to-
wards drug sensitivity and resistance in vitro and in vivo were also reported [49]. 

Sunitinib (Sutent®) 13 (Figure 1) is a famous clinically approved drug by the FDA 
against imatinib-resistant gastrointestinal, pancreatic, and high-risk renal cancer in adults. 
Sunitinib inhibits cellular signaling/multi-target tyrosine kinases related to tumor growth, 
angiogenesis, and metastatic progression. The antitumor activity of sunitinib is attributed 
to PDGFR and VEGFR (platelet-derived and vascular endothelial growth factor receptors, 
respectively) inhibition that reduces tumor vascularization and size [50,51]. Nintedanib 
(Ofev®) 14 is an indolinone-derived intracellular tyrosine kinase inhibitor drug awarded 
FDA approval against NSCLC (non-small cell lung cancer) with potential anti-angiogen-
esis properties and inhibitory activity against PDGFR-α, -β; VEGFR-1, -2, -3; and FGFR-1, 
-2, -3 (fibroblast growth factor receptor) [52–57]. Alectinib (AleceNsa®) 15 is usable against 
NSCLC [58–61], panobinostat (FarydaK®) 16 against multiple myeloma [62], osimertinib 
(Tagrisso®) 17 against NSCLC [63], and anlotinib 18 against NSCLC as well as metastatic 
colon cancer [64]. They are also indolyl-containing drugs approved by the FDA (except 
anlotinib, which is approved by the National Medical Products Administration (NMPA) 
of China).  

Antihypertensive (β-antagonist) [41]

Cell death is crucial and fundamental for maintaining tissue balance and eliminating
potentially harmful cells in multicellular organisms. Accidental cell death (ACD) is typically
caused by unintentional injury, while regulated cell death (RCD) is programmed cell death
controlled by signaling pathways necessary for an organism’s development and/or tissue
renewal [42]. Autophagy, necrosis, and apoptosis are significant types of RCD. They
are potent approaches against cancer progression and metastasis and are important for
developing potential anticancer agents [43,44].

Indole analogs have been recognized as potent anticancer agents targeting RCD
and related signaling pathways [45,46]. So, they may control cancer cell progression via
various biological targets, including tubulin polymerization, DNA topoisomerases, tumor
vascularization, histone deacetylase (HDAC), and sirtuins [46–48]. Moreover, efficacy
towards drug sensitivity and resistance in vitro and in vivo were also reported [49].

Sunitinib (Sutent®) 13 (Figure 1) is a famous clinically approved drug by the FDA
against imatinib-resistant gastrointestinal, pancreatic, and high-risk renal cancer in adults.
Sunitinib inhibits cellular signaling/multi-target tyrosine kinases related to tumor growth,
angiogenesis, and metastatic progression. The antitumor activity of sunitinib is attributed
to PDGFR and VEGFR (platelet-derived and vascular endothelial growth factor receptors,
respectively) inhibition that reduces tumor vascularization and size [50,51]. Nintedanib
(Ofev®) 14 is an indolinone-derived intracellular tyrosine kinase inhibitor drug awarded
FDA approval against NSCLC (non-small cell lung cancer) with potential anti-angiogenesis
properties and inhibitory activity against PDGFR-α, -β; VEGFR-1, -2, -3; and FGFR-1, -2,
-3 (fibroblast growth factor receptor) [52–57]. Alectinib (AleceNsa®) 15 is usable against
NSCLC [58–61], panobinostat (FarydaK®) 16 against multiple myeloma [62], osimertinib
(Tagrisso®) 17 against NSCLC [63], and anlotinib 18 against NSCLC as well as metastatic
colon cancer [64]. They are also indolyl-containing drugs approved by the FDA (except
anlotinib, which is approved by the National Medical Products Administration (NMPA)
of China).

The current study summarizes the recently reported indolyl analogs, either naturally
isolated or synthetically prepared, with potential antiproliferative activity against different
cancer types within the last five years, utilizing different search engines (Scopus, ScienceDi-
rect, and Pubmed) and specific keywords (indole; cancer; antiproliferation; synthesis; mode
of action). The study adopts the classification of potential indole-containing compounds
against the most common cancer types. The mode of action mentioned for the reported
analogs is one of the main concerns of this study.
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2. Natural Indoles with Potential Antiproliferation Properties

Natural compounds from different resources (plants, animals, or microorganisms)
have significantly revealed therapeutic possibilities for treating different diseases. Many
natural compounds can be used directly or give inspiration for designing/optimizing
potent agents/therapeutics [65]. Despite the obstacles in natural product drug-based
discovery, including the limitation of chemical structure diversity accessed for different
diseases and the low supply relative to the needs [66], continuous progress in technical
screening, isolation, and characterization may increase the number of natural compounds
accessible as potential therapeutical candidates. The potential of natural indole-containing
compounds as promising candidates for cancer treatment, with some structural modifica-
tions or in their monomeric forms, is an inspiring and motivating prospect for the future of
cancer research [67,68].

Indole is an essential branch of alkaloids widely presented in many natural resources
and other alkaloid subsets with various biological properties [14,42,69]. It has been reported
that indole alkaloids can control cell death by regulating signal pathways responsible for
the death mechanism, thus exerting promising anticancer efficacy [45]. Vinca alkaloids
have shown broad-spectrum antitumor properties alone or in combination with other
agents. Vinblastine 19, vincristine 20, vinorelbine 21, and vinflunine 22 are capable of
interfering with microtubule function, inhibiting angiogenesis, and causing cell cycle arrest
and cell death [45] (Figure 2). Vinblastine (Velban) (against lymphoma, testicular, and
breast cancers) and vincristine (against lymphoma and neuroblastoma cancers) are tubulin
polymerase inhibitors that have been clinically approved as antitumor drugs [47,70–74].
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2.1. Breast Cancer

Breast cancer is one of the most common causes of death among women’s cancer types
globally. It is categorized into receptor-positive and triple-negative types [75]. Treatment
options include surgery, radiotherapy, chemotherapy, hormone therapy, and immunother-
apy [76,77]. Metastasis poses another challenge: the disease can spread to vital organs such
as the lungs and bones or lead to lymphoma [77].

Harmine 23 (Figure 3) is an apoptosis-inducing indolyl analog isolated from the
seeds of Peganum harmala. The antiproliferation and control of the migration of breast
cancer cells (MDA-MB-231 “triple-negative” and MCF-7) by harmine were reported. Its
capability for controlling/downregulating the overexpression of TAZ (PDZ binding motif)
was also mentioned. Additionally, inhibition of proteins including p-Erk (phosphorylated
extracellular signal-regulated kinase), p-Akt (protein kinase B), and Bcl-2 (B-cell lymphoma
2) was reported [78].
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Figure 3. Chemical structure of indole alkaloids 23–25 with antiproliferation properties against
breast cancer.

Mukonal 24 (obtained from Murraya koenigii) (Figure 3) exhibits potential antipro-
liferation properties against SK-BR-3 and MDA-MB-231 breast cancer cell lines with an
IC50 value of 7.5 µM (MTT “3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bro-
mide” assay) and safety behavior against normal breast cells (MB-157). The antitumor
effect was attributed to its apoptosis capability, which was supported by its role in the
enhancement of the cleavage of PARP and caspase-3, as well as controlling the Bcl-2 level.
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Enhancement of the expression of autophagy proteins (Beclin-1, LC3-I, and LC3-II) also
emphasizes/justifies the anti-breast cancer properties. The in vivo study (xenografted
mouse models) demonstrated that mukonal significantly decreased tumor weight and
volume [79].

[11]-Chaetoglobosin B 25 (isolated from the fermentation of Pseudeurotium bakeri fun-
gus) (Figure 3) exhibits promising cytotoxic activity against the MCF-7 cell line relative to
that of doxorubicin hydrochloride (IC50 = 6.2 and 1.2 µM, respectively). Arrest of the cell
cycle at G2/M was achieved via flow cytometric assay. Moreover, the apoptotic activity
was supported due to the increment of the Bax and CyT-c levels, the cleavage of caspase-3
and PARP, and the decrease in Bcl-2 expression (Western blotting technique) [80].

2.2. Lung Cancer

Lung cancer is a leading cause of worldwide mortality. Many environmental risk
factors, along with smoking, are associated with lung cancer [81–83]. NSCLC is an aggres-
sive type [81]. Surgery and chemotherapy are preferred options for early-stage patients,
but detecting the disease early is challenging. Prevention through dietary changes and
avoiding tobacco smoking is important [84].

Indole-3-carbinol 26 (Figure 4) (found at high levels in Cruciferous vegetables) displays
anticancer activity against H1299 lung (NSCLC) cancer cell with IC50 = 449.5 µM (MTT
assay) and safe behavior against CCD-18Co, a normal cell. It also increases the expression
of ROS (reactive oxygen species) and activates apoptosis-related signals. Furthermore, it
enhances pro-apoptosis expression and blocks anti-apoptosis proteins (FOXO3/Bim/Bax
and Bcl-2/Bcl-xL, respectively) [84].
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Chaetoglobosin G 27 (Figure 4) is a secondary metabolite in the Chaetomium globosum
fungus. It possesses antiproliferation activity against lung (NSCLC) cancer A549 cells (MTT
assay). The mechanistic study revealed that it enhances the autophagic effect via inhibition
of p-EGFR, p-MEK, and p-ERK proteins and incrementally increases the LC3-II protein
level. Flow cytometry supports its ability for apoptosis induction and cell cycle arrest at the
G2/M phase. Controlling/downregulating cyclin B1 protein and enhancing p21 protein
are also reported [85].

Vincamine 28 (Figure 4), isolated from the Vinca minor leaves and used as a diet
for aging combat, was reported as an apoptosis inducer. Its antiproliferation properties
against the A549 cell line (IC50 = 309.7 µM) were mentioned (MTT assay). In addition to the
potential change in mitochondrial membrane potential, the potential activity towards ROS
and caspase-3 was the mode of action mentioned that supported the anticancer activity
revealed [86].

2.3. Gastric Cancer

The fifth most common cancer in the world is gastric cancer, which is also known as
stomach cancer [87]. Usually, surgery and chemotherapy are the options considered for
diagnosed patients with stomach cancer [88].
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Bufothionine 29 (Figure 5) isolated from the toad Bufo bufogargarizans reveals inhibition
of the gastric cancer cell lines MKN28 and AGS (CCK-8 assay) with apoptosis induction
(supported by flow cytometric analysis). It facilitates caspase-3/8/9 apoptosis in both
cell lines in addition to upregulating Bcl-2 and downregulating Bax proteins. In vivo, a
gastric cancer xenograft mouse model supported its ability to suppress tumor growth and
weight [89].
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3,3′-Diindolylmethane 30 (Figure 5) obtained from Cruciferous plants has been demon-
strated to induce ferroptosis in BGC-823 gastric cancer cells through the upregulation of
lipid-ROS levels and a decrease in GSH generation [90].

2.4. Colorectal Cancer

The second most frequent cancer-related cause of death in the US and the third one
globally is colorectal cancer [91,92]. Recurrence and metastasis reduce the survival rate for
this disease [92]. It has been reported that colon polyps are the main cause of the disease,
in addition to heredity/family history and colitis [93]. Surgery is the first option for the
disease; meanwhile, chemotherapy is appropriate for metastasis [94].

Brucine 31 and strychnine 32 (Figure 6) were obtained from the seeds of Strychnos
nux-vomica L., used as a traditional medication for tumor treatment. Brucine and strychnine
exhibit inhibitory effects on the growth of human colorectal cancer cells DLD1, SW480,
and Lovo (MTT assay). The Wnt/β-catenin singling pathway is involved in the activity
since both induce an apoptosis effect through DKK1 and APC expression and downreg-
ulate the β-catenin, c-Myc, and p-LRP6 levels. In vivo studies (nude mice) support their
effect/suppression of DLD1 tumors [95].
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Flavopereirine 33 (Figure 6) is a β-carboline alkaloid extracted from Geissospermum
vellosii. It affects the viability of different malignant stages of colorectal cell lines (SW480,
SW620, DLD1, HCT116, and HT29, with IC50 = 15.33, 10.52, 10.76, 8.15, and 9.58 µM, respec-
tively). Its activation of p53 and p21 protein expression justifies the growth suppression
and apoptotic cell death of colorectal cancer [96].
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2.5. Pancreatic Cancer

Worldwide, pancreatic cancer ranks as the 12th most common male cancer and the 11th
most common female cancer [97]. Pancreatic cancer is classified into two categories based
on its origin: exocrine or neuroendocrine; the latter is less common but more accessible in
prognosis [98].

Staurosporine 34 (Figure 7), an alkaloid obtained from Streptomyces staurosporeus, can
induce apoptosis in pancreatic cancer cells (PaTu 8988t and Panc-1). Activation of caspase-9
in both cells was reported (Western blotting analysis). Additionally, both Bcl-2 and Bad
expression were mentioned in PaTu 8988T cells [99].
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pancreatic cancer.

Indole-based alkaloids were obtained from Ravenia spectabilis Engl. (leaf extract),
revealing noticeable antiproliferation properties against various cancer cell lines, including
HeLa, A549, and MIA PaCa-2, with a safety index against the normal cell line WI-38. 3,5-
Diprenyl indole 35 (Figure 7) is the most promising cytotoxic agent observed against MIA
PaCa-2 (a human pancreatic adenocarcinoma cancer cell line) with an IC50 = 9.5 ± 2.2 µM,
comparable to the positive drug/control gemcitabine 0.6 ± 0.4 µM (MTT assay) [100].

2.6. Liver Cancer

It is the third-most deadly cause of mortality among many cancer types. The chance of
its diagnosis is almost three times higher for men than for women [101]. Although surgical
resection is an appropriate option for liver cancer patients, its accessibility is limited due to
many serious factors, including easy recurrence and metastasis. Chemotherapy is also an
important clinical pathway with or without surgery against this disease [102].

Dehydrocrenatidine 36 (Figure 8) is a β-carboline alkaloid isolated from the stem of
Picrasma quassioides. It exhibits promising growth inhibitory effects against hepatocellular
carcinoma in vitro and in vivo, with potent antiproliferation properties (MTT assay) against
HepG2 and Hep3B cell lines (IC50 = 3.5 and 5.87 µM, respectively). Effects on apoptosis-
related proteins such as Bax and Bcl-xl, mitochondrial dysfunction, and a decrease in the
mitochondrial membrane were reported to cause apoptosis induction in hepatocellular
cancer cells [103].
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Evodiamine 37 (Figure 8), obtained from fructus Evodiae, exhibits antiproliferation
activity against liver cancer cell lines HepG2 and SMMC-7721 (IC50 ≈ 1 µM for both
cell lines). Evodiae arrests the cell cycle at G2/M (flow cytometric analysis) and induces



Pharmaceuticals 2024, 17, 922 10 of 53

apoptosis via upregulation of p53 and Bax, decreasing the Bcl-2, CyclinB1, and cdc2 protein
levels. Furthermore, it enhances apoptosis through NOD1 signaling suppression [104].

2.7. Cervical Cancer

It is one of the most severe cancer diseases in women. It is usually caused by the
infection of a specific type(s) of human papillomavirus (HPV) [105,106]. Two types of
cervical cancer were identified: ectocervix and endocervix, which are the outer and inner
parts of the cervix, respectively [107].

Sclerotiamides C 38 (Figure 9) is a notoamide-type alkaloid obtained from the marine
fungus Aspergillus sclerotiorum. It has been demonstrated to stop cell division and trig-
ger cell death in HeLa cells via elevation of the phosphorylation of JNK, ERK, and p38.
Sclerotiamides C can potentially stimulate the activation of apoptosis-associated proteins,
including Cyt-c, Bax, and p53. Demonstrating the MAPK pathway is also mentioned as
influencing cell growth and death in HeLa cells [108,109].
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Nauclefine 39 (Figure 9) is an indolyl alkaloid analog obtained from the bark of
Nauclea subdita with potent cytotoxicity against HeLa cells (IC50 < 10 nM). Additionally, in
HeLa cells, nauclefine triggers the PDE3A-SLFN12-dependent (phosphodiesterase family
member) pathway, inducing apoptosis [110].

Phranisine A 40 and phranisine B 41 (Figure 9) are natural indolyl alkaloids isolated
from the roots of Phragmites australis. Both exhibit moderate cytotoxicity against Hela
cancer cells, with phranisine A having lower efficacy (IC50 = 54 µM) than that of phranisine
B (IC50 = 19 µM) [111].

2.8. Ovarian Cancer

The eighth most frequent cancer type in women and the 18th most frequent cancer
overall is ovarian cancer [112]. 9-Hydroxycanthin-6-one 42 (Figure 10) is a natural β-
carboline alkaloid (isolated from the stem bark of Ailanthus altissima), revealing promising
antiproliferation properties (MTT assay) against three ovarian cancer cells, including A2780,
SKOV3, and OVCAR-3 (IC50 = 17.4 ± 1.1, 13.8 ± 0.6, and 18.8 ± 0.7 µM, respectively).
It triggers apoptosis by activating caspase-3, -8, and -9, increasing the intercellular ROS-
dependent level [113].
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2.9. Leukemia

Leukemia is one of the most prevalent diseases in children (less than 15 years old) and
usually affects elderly individuals [114,115]. Based on the affected white blood cell type,
leukemia is divided into two categories/classes: lymphocytic/lymphoid and myeloid,
which may be either acute or chronic [116,117].

The marine alkaloid 3,10-dibromofascaplysin 43 (Figure 11) (obtained from Fascaplysinopsis
reticulate) exerts anticancer activity on several myeloid leukemia cells (K562, THP-1, MV4-
11, and U937; IC50 = 318.2, 329.6, 233.8, and 318.1 nM, respectively). It induces apoptosis by
upregulating the expression of genes encoding the leukemia cell survival proteins, such as
E2F1, and by downregulating the expression of FLT3 genes. It can arrest the S and G2 cell
cycle phases (9-hydroxycanthin-6-one flow cytometry study) [118].
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Figure 11. Chemical structure of indole alkaloids 43–46 with antiproliferation properties against
leukemia.

Jerantinine B 44 (Figure 11) extracted from the Tabernaemontana corymbosa leaf re-
veals potential antiproliferation properties (IC50 = 0.3, 0.4, and 0.8 µM against MV4-11,
HL-60, and KG1a cells, respectively) and apoptosis in acute myelocytic leukemia cells with
activation of the c-Jun/JNK pathway [119].

11-Methoxytabersonine 45 (Figure 11), extracted from Melodinus cochinchinensis, dis-
plays promising antiproliferation properties against acute lymphoblastic leukemia (MOLT-4)
and pro-myeloid leukemia (HL-60) cells (IC50 = 0.71 and 1.10 µM, respectively). Its antipro-
liferation properties were attributed to cell death via ROS accumulation and calcium level
increases by inhibiting the PI3K/Akt/mTOR pathway in MOLT-4 cells [120].

2,2-Bis(6-bromo-3-indolyl) ethylamine 46 (Figure 11) is found in both Didemnum
candidum and the New Caledonian sponge Orina. It induces apoptosis in U937 (human
myelomonocytic lymphoma cells) by inhibiting Bcl-2 and Bcl-xL and elevating Bax protein
levels [121].

3. Synthesized Indoles with Potential Antiproliferation Properties

Synthesized compounds/heterocycles are uniquely positioned in drug discovery
programs, providing potent agents and clinically accessible drugs. Many of the synthe-
sized analogs developed are inspired by natural compounds due to the considerable
bio-observations revealed. Different medicinal chemical techniques are accessible for de-
signing the targeted hits/leads in addition to the various computational methods, including
QSAR, pharmacophoric analysis, docking, and molecular dynamic simulation [122–128].



Pharmaceuticals 2024, 17, 922 12 of 53

3.1. Breast Cancer

A series of pyridyl-indolyl-based chalcones incorporating the sulfonamide group
were synthesized through Knoevenagel condensation of indol-3-carboxaldehyde 47 with
4-acetylpyridine 48 in the presence of piperidine (refluxing MeOH), giving the correspond-
ing chalcone 49. Treatment of chalcone 49 with sulfonyl chlorides in THF/H2O (50%)
containing Na2CO3 (stirring at room temperature) produced the corresponding sulfon-
amide analogues 50 (Scheme 1). The antiproliferation properties of chalcones 50 were
determined against MCF-7 (breast), HepG-2 (hepatoma), and HEK293 (embryonic kid-
ney) cancer cell lines (MTT assay). Among the synthesized agents, two conjugates with
R = 2,4-Cl2 and 4-NO2 possess effective properties against the MCF-7 cancer cell line
(IC50 = 12.2 and 14.5 µM, respectively), which is more potent than that of the reference
drug doxorubicin (IC50 = 20.2 µM). These analogs revealed promising antiproliferation
properties (IC50 = 14.8 and 18.3 µM, respectively) against HepG2 relative to the standard
drug, doxorubicin (IC50 = 18.7 µM). Significant induced apoptosis in the MCF-7 cancer cell
line was reported during the apoptosis assay study. No considerable antiproliferation prop-
erties against the HEK293 cell line were noticed by the synthesized agents (IC50 > 150 µM).
Inhibitory properties against human carbonic anhydrases (hCA IX, hCA II) were experimen-
tally supported as the mode of action of the constructed agents (Supplementary Figure S1).
Molecular modeling (Autodock 4.2 software) utilizing PDB ID: 3IAI was considered for
explaining the observed enzymatic inhibitory properties [129].
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Scheme 1. Synthetic route towards pyridyl-indole-based chalcones incorporated in sulfonamide
group 50.

Harmine is a natural compound called “9H-pyrido[3,4-b] indole analog” with potential
antitumor properties; however, its clinical accessibility is hindered due to the associated
toxicological effects. Conjugation of harmine with chalcone scaffolds was considered
for enhancement of antitumor properties and toxicity reduction. The targeted agents 54
and 55 were obtained via condensation of the appropriate aldehyde with the correspond-
ing harmine-based analog 53 in the presence of ethanolic NaOH at room temperature
(Scheme 2). Considerable antiproliferation properties of the targeted agents 54 and 55 were
investigated against MCF-7, MDA-MB-231 (breast), HepG2 (liver), HT29 (colorectal), A549
(lung), and PC-3 (pancreatic) cancer cell lines and compared with L02 (normal cell line)
utilizing the MTT assay (Supplementary Figure S2). The most potent agent observed was
54 (R = H, R’ = 3-NO2-4-Cl; IC50 = 0.34, 0.98, 1.61, 0.57, 2.02, 1.17, and 9.61 µM, respectively).
Induction of apoptosis against MCF7 (breast cancer) was attributed to its ability to decrease
Bcl-2 and increase Bax, PARP, and phosphorylated Bim proteins. Additionally, suppression
and migration of the breast cancer cell (MCF7) due to downregulation of the MMP-2 protein
were mentioned. Inhibition of topoisomerase I was supported and justified as the mode of
action against cancer. Molecular docking was used to explain the estimated mode of action
relative to that of camptothecin (a co-crystallized ligand of PDB ID: 1T8I, Discovery Studio
2016 software) [130].
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Scheme 2. Synthetic route towards harmine–chalcone conjugates 54 and 55.

A set of indole-benzimidazole conjugates 58 was synthesized as selective estrogen
receptor modulators. The targeted compounds were obtained by the cyclocondensation re-
action of 1H-indole-2-carbaldehyde 56 with different ortho-diamines 57 (EtOH/TEA) [131]
(Scheme 3).
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Scheme 3. Synthetic route towards indole–benzimidazole derivatives 58.

Amongst all the synthesized agents, two bromo-substituted analogs possess promising
antiproliferation properties against the estrogen-sensitive breast cancer (T47D) cell line
(Figure 12, Supplementary Figure S3). Both conjugates were found to decrease mRNA and
ER-α (estrogen receptor-α) activity. The binding activity of both conjugates towards ER-α
(PDB ID: 4XI3) was reported to be in the same way as bazedoxifene (an FDA-approved
drug to treat osteoporosis and breast cancer, Maestro 9.6 software) [131].

Indole-2-carbohydrazones 60 were obtained through a reaction of indole-2-carbohyd
razides 59 with the appropriate aromatic aldehyde. The reaction 60 with thioglycolic acid
in refluxing benzene afforded the corresponding thiazolidines 61 (Scheme 4). Some of
the synthesized hydrazones 60 (X = Cl, R1 = CF3, R2 = H) and (X = Cl, R1 = CN, R2 = H)
showed good antiproliferation properties against the MCF-7 cell line (IC50 = 0.42 ± 0.06
and 0.17 ± 0.02 µM, respectively; SRB “sulforhodamine B” assay), relative to the ref-
erence standard, combretastatin A-4 (IC50 = 0.016 ± 0.003 µM). The tubulin polymer-
ization inhibition revealed by the promising agents discovered (IC50 = 1.7 ± 0.6 and
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1.4 ± 0.02 µM, respectively) is close to that of the reference standard, combretastatin A-4
(IC50 = 1.2 ± 0.08 µM) [132].
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Scheme 4. Synthetic route towards indole-2-carbohydrazides 60 and thiazolidines 61.

Indolyl sulfonohydrazones 66 bearing morpholinyl scaffold were synthesized through
a condensation reaction (EtOH/AcOH, 80 ◦C) of sulfonyl hydrazides 65 with 3-indolecarbox
aldehyde 64 (obtained from the reaction of 62 with chloroethyl morpholine 63 in the pres-
ence of K2CO3/CH3CN at room temperature) (Scheme 5). Antiproliferative properties
were investigated (MTT assay) against MCF7 (estrogen receptor-positive) and MDA-MB-
468 (triple-negative) breast cancer cell lines. Some of the synthesized agents revealed
considerable anti-breast cancer properties, of which the p-chlorophenyl-containing analog
(R = 4-ClC6H4) showed promising properties (IC50 = 13.2 and 8.2 µM against MCF-7 and
MDA-MB-468, respectively) compared with doxorubicin (positive drug control, IC50 = 0.06
and 0.08 µM, respectively). All the tested compounds behaved safely toward HEK 293, a
non-cancer cell, in concentrations up to 100 µM [133] (Supplementary Figure S4).
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Various thiazolyl hydrazones linked to indolyl scaffold 71 were synthesized by re-
acting the appropriate 3-indolecarboxaldehyde 68 with thiosemicarbazide (EtOH, room
temperature). The reaction of the resulting thiosemicarbazones 69 with the appropriate
phenacyl bromide 70 produced the targeted hydrazones 71 (Scheme 6). The antiprolif-
eration and tubulin polymerization inhibitory properties of the synthesized agents were
studied (Supplementary Figure S5). The most promising agent observed is that of R1 = H,
R2 = OMe, and R3 = 3-Br (IC50 = 0.46, 0.21, and 0.32 µM against MCF-7 (breast), A549 (lung),
and Hela (cervical) cell lines, respectively; with tubulin polymerization inhibitory proper-
ties IC50 = 1.68 µM) relative to colchicine and combretastatin A-4 “CA-4” (IC50 = 0.75, 0.68,
and 0.72; 0.52, 0.24, and 0.48 µM against MCF-7, A549, and Hela cell lines; with tubulin
polymerization inhibitory properties IC50 = 3.28 and 2.12 µM, respectively). Its ability
to induce apoptosis and arrest the cell cycle at the G2/M phase was supported by flow
cytometric analysis/study. Docking studies (PDB ID: 1SA0, Discovery Studio 3.5 software)
were utilized to explain the mode of action considered [134].

Indole-triazole conjugates 74 and 75 were obtained through the reaction of indolyl-
triazolethione 73 with allyl bromide and 1-bromopropan-2-ol (stirring in dry Me2CO
containing K2CO3 at room temperature overnight), respectively (Scheme 7). Conjugate 75
reveals better activity/inhibitory properties than that of 74 against PARP-1 “poly(ADP-
ribose) polymerase-1” (IC50 = 0.35 ± 0.05 and 0.33 ± 0.10 µM ± SD, respectively) relative
to olaparib (standard reference/drug IC50 = 1.8 × 10−3 ± 0.0001 µM) (Figure 13). PARP-1
is a key enzyme in DNA repair. It represents an important target in combating oncology in
breast cancer cells and is safe against normal cells with lethal mode selectivity [135].
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Scheme 7. Synthetic route towards indole-triazol congugates 74 and 75.

A short library of 3-amido indoles 80 was synthesized via hydrolysis (NaOH in
refluxing aqueous EtOH) of the corresponding 1-ethyl carbonyl indoles 78, giving the
N-unsubstituted indoles 79, followed by acylation with 3,4,5-trimethoxybenzoyl chloride
in anhydrous THF containing TEA (triethylamine) at room temperature (Scheme 8). Some
of the synthesized agents revealed considerable antiproliferation properties (MTT assay)
against breast cancer cell lines MCF-7, MDA-MB-231, BT549, T47D, MDA-MB-468, and
HS578T. The most promising is that with R1 = Cl, R2 = 4-ClC6H4 displays considerable
activity with tubulin polymerization inhibitory properties (IC50 = 10.87, 6.43, 3.17, 0.04,
and 7.92 µM against MCF-7, MDA-MB-231, BT549, T47D, and MDA-MB-468, respectively;
IC50 = 9.5 µM against tubulin polymerization) relative to combretastatin A-4 (CA-4, refer-
ence agent, IC50 = 3.00, 3.17, 1.71, 1.89, and 1.55 nM against MCF-7, MDA-MB-231, BT549,
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T47D, and MDA-MB-468, respectively; IC50 = 4.22 µM against tubulin polymerization)
(Supplementary Figure S6). Its flow cytometric studies evidenced the cell cycle arrest at the
G2/M phase. Molecular docking studies (PDB ID: 5lyj; SURFLEX module of SYBYL 7.3)
revealed its interaction in the colchicine binding active site [136].
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Scheme 8. Synthetic route towards 3-amidoindoles 80.

3-Arylthio-1H-indoles 83 bearing heterocyclic rings at positions 5, 6, or 7 of the indolyl
nucleus were synthesized through the reaction of the appropriate indole 81 with bis(3,4,5-
trimethoxyphenyl)disulfide 82 in anhydrous DMF containing NaH (microwave “MW”
radiation, 120 W, 130 ◦C) (Scheme 9). Potent antiproliferative properties against MCF-7
(a non-metastatic breast cancer cell line, MTT assay) were exhibited (IC50 in nanomolar
value). Compounds 83, where R = 6-thiophen-3-yl and 7-thiophen-2-yl, are the most potent
agents revealed (IC50 = 4.5 and 29 nM, respectively) relative to the reference drug CA-4
(IC50 = 13 nM). Additionally, tubulin polymerization inhibition is promising (IC50 = 0.58
and 0.57 µM, respectively) compared to CA-4 (IC50 = 1.0 µM).

The role of the sulfur bridging atom was studied by constructing an 85-containing
carbonyl function. The 3-aroyl-1H-indoles 85 were obtained through a reaction of the
appropriate indole 81 with 3,4,5-trimethoxybenzoyl chloride 84 in the presence of di-
ethylaluminum chloride in CH2Cl2 (inert atmosphere at −78 ◦C). Although promising
antiproliferation properties were observed by some of the synthesized agents against the
MCF-7 cell line, a dramatic drop was exhibited due to the analogs with sulfur bridging
mentioned upon utilizing carbonyl function (IC50 = 18 and 550 nM for R = 6-thiophen-3-yl
and 7-thiophen-2-yl, respectively) (Supplementary Figure S7). Molecular docking stud-
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ies (PDB ID: 1SA0) were considered for compounds with potent tubulin polymerization
inhibition for understanding and explaining the mode of action shown [137].
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Friedel-Craft acylation of 6-bromoindole 86 using 3,4,5-trimethoxylbenzoyl chloride 
87 afforded the corresponding 3-aroyl indole 88 (HFIP (hexafluoroisopropanol) at room 
temperature is an adequate condition for inter- and intramolecular Friedel-Craft acyla-
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Friedel-Craft acylation of 6-bromoindole 86 using 3,4,5-trimethoxylbenzoyl chloride
87 afforded the corresponding 3-aroyl indole 88 (HFIP (hexafluoroisopropanol) at room
temperature is an adequate condition for inter- and intramolecular Friedel-Craft acyla-
tion) [138,139]. The Suzuki coupling reaction of 88 with various aryl boronic acids produced
the targeted 6-aryl indoles 89 in DME (dimethoxyethane)/H2O under microwave irradia-
tion conditions [138] (Scheme 10). Antiproliferation properties (SRB assay) and inhibitory
tubulin polymerization against breast cancer cell lines (MCF-7 and MDA-MB-231) were ob-
served for the targeted agents 89 relative to those of CA-4 (Supplementary Figure S8). The
most promising analog (R1 = H, R2 = OH) discovered can arrest the cell cycle at the G2/M
phase in the MDA-MB-231 cell (flow cytometry), disrupt the microtubule structure, and
inhibit cell migration. Molecular docking studies revealed valuable insights regarding key
interactions towards the colchicine site (PDB ID: 1SA0, Discovery Studio 4.5 software) [138].
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Molecular conjugation is an important and famous approach intensively used in medi-
cal chemistry for designing/optimizing highly promising hits/leads against different dis-
eases. This usually takes place by connecting biologically active functional group(s) and/or
scaffold(s) to each other with or without a linker [140–144]. Indolyl-arylaminopropenone
conjugates 93 were prepared by reacting indole-3-carboxaldehydes 90 with ethynyl magne-
sium bromide, producing the corresponding arylprop-2-yn-1-ols 91. Oxidation of the latter
alcohols using 2-iodoxybenzoic acid (IBX) in DMSO yielded the corresponding alkynes
92, which were subjected to reaction with various anilines (EtOH, r.t.), giving the targeted
conjugates indolyl-arylaminopropenones 93 (Scheme 11). The antiproliferation properties
(MTT assay) of 93 were determined against MCF-7, HeLa, A549, and DU145 (breast, cer-
vical, lung, and prostate cell lines, respectively). Among them, synthesized conjugates
[R = H, R1 = 4-chlorobenzyl, R2 = 3,4,5-(OMe)3] and [R = H, R1 = benzyl, R2 = 3,4,5-(OMe)3]
exhibited considerable properties against the MCF-7 cell line (IC50 = 2.3 and 1.9 µM, respec-
tively) relative to doxorubicin (IC50 = 0.8 µM) (Supplementary Figure S9). Both compounds
showed cell cycle arrest at G0/G1 (flow cytometry) and induction of cell death apoptosis.
Molecular docking (PDB ID: 4AQ3, Schrodinger suite 2014–3) observations of the most
promising agents discovered support the Bcl-2 protein (anti-apoptotic protein) interactions
and bio-properties revealed [145].
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Scheme 11. Synthetic route towards indolyl-arylaminopropenone conjugates 93.

1,3,4-Oxadiazole-indole 98 and 1,3,4-triazole-indole conjugates 99 were synthesized in
a multi-step reaction sequence. 3-Indolyl-2-oxoacetyl chloride 95 was obtained from the
reaction of indole 94 and oxalyl chloride, which was further subjected to the reaction with
hydrazine hydrate, yielding the corresponding oxoacetohydrazide 96. Refluxing the hy-
drazide 96 with isothiocyanates produced the corresponding thiosemicarbazides 97. Cyclization
of the latter with either EDC.HCl (N-ethyl-N’-(3-dimethylaminopropyl)carbodiimide hydrochlo-
ride) or HOBt (hydroxybenzotriazole) produced the 1,3,4-oxadiazole-indole conjugates 98.
However, cyclization of 97 with 2N NaOH afforded the corresponding 1,3,4-triazole-indole
conjugates 99 (Scheme 12). Antiproliferation properties (MTT assay) revealed the promis-
ing anti-MCF-7 activity of some synthesized oxadiazole 98 (R = 4-NO2C6H4, 2-FC6H4,
and 3-ClC6H4; IC50 = 5.98, 2.42, and 8.11 µM, respectively) and triazole conjugates 99
(R = 4-FC6H4 and 3-BrC6H4; IC50 = 3.06 and 3.30 µM, respectively) relative to doxorubicin
and CA-4 (IC50 = 6.31 and 2.16 µM, respectively). Furthermore, the potent synthesized
oxadiazole hybrid 98 (R = 2-FC6H4) shows cell cycle arrest in the G0/G1 phase (flow
cytometry), disruption of the mitochondrial membrane, and reduction in cell migration.
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Additionally, tubulin polymerization inhibitory properties (IC50 = 3.89 µM) relative to those
of nocodazole (IC50 = 2.49 µM) (Figure 14) were supported by in vitro studies. Molecular
modeling studies (PDB ID: 1SA0) were utilized to explain the β-tubulin and antiprolifera-
tion properties [146].
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Figure 14. Chemical structure of nocodazole, an antineoplastic agent that exerts its activity by
interfering with the polymerization of microtubules.

A set of 3-pyrrolylisatin-triazole conjugates 104 was obtained through the reaction of
4-hydroxyproline 103 with 1,2,3-triazole-isatine analogs 102 (obtained from the click reac-
tion of N-indole alkynes 100 with substituted azides 101) in EtOH (80 ◦C) containing InCl3
(indium (III) chloride) as a Lewis acid catalyst (Scheme 13). Antiproliferative properties
(MTT assay) of the targeted agents 104 against breast cancer (MCF-7 and MDA-MB-231)
cell lines demonstrated that some of them have more potent activity than that of tamoxifen
(an approved drug for breast cancer treatment, Figure 15), with similar behavior against
the normal cell line HEK-293 (human embryonic) (Supplementary Figure S10). Molecular
docking studies have evidenced the potential binding interaction of the potent agents
synthesized and tamoxifen with topoisomerase II (PDB ID: 1ZXM) [147].

Spirochromenocarbazols linked to 1,2,3-triazole 106 were obtained through a multi-
component click reaction of N-propargyl isatin 100, malononitrile, 4-hydroxycarbazole 105,
sodium azide, and alkyl bromides using Cell-CuI NPs (cellulose-supported CuI nanoparti-
cles) catalysis in DMF-H2O (1:2 v/v) at 70 ◦C (Scheme 14). The antiproliferation properties
(MTT assay) were determined against MCF7, MDA-MB-231 (breast), HeLa (cervical), A549
(lung), PANC-1 (pancreatic), and THP-1 (leukemia) cell lines (Supplementary Figure S11).
Some synthesized spiro-analogs showed promising antiproliferative properties against
MCF-7, MDA-MB-231, and HeLa cancer cells. The most effective agents are those with
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R = H and R1 = 4-NO2C6H5 (IC50 = 2.13 µM), revealing more enhanced properties than
those of doxorubicin (IC50 = 4.63 µM) against MCF7, with a satisfied safety profile towards
HUVEC (umbilical vein endothelial/non-cancerous cell). Apoptotic cell death was sug-
gested to be the leading cause of the reduced proliferation of breast cancer cells, which
was supported by AO (acridine orange)/EtBrz (ethidium bromide) stains and fluorescence
microscopy [148].
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A series comprising tetrahydro-β-carboline and isatin scaffolds connected by 1H-1,2,3-
triazolyl heterocycle 109 was synthesized through click cycloaddition of the azide-alkyne
isatins 107 and the corresponding carboline 108 in the presence of CuSO4/sodium ascorbate
in EtOH at room temperature (Scheme 15). The antiproliferation properties (MTT) of 109
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were studied against MCF-7 and MDA-MB-231 cell lines (Supplementary Figure S12). Few
of the synthesized agents revealed promising antitumor properties against MCF7. The
most promising is that with R = R1 = H, n = 2 (IC50 = 37.42 µM) relative to peganumine
A (β-carboline analog, obtained from Peganum harmala) and tamoxifen (IC50 = 38.5 and
50 µM, respectively). The docking study (PDB ID: 3ERT, Autodock Vina software, V 1.5.6)
explained the bio-properties exhibited [149].
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Scheme 15. Synthetic route towards 1H-1,2,3-triazole connecting tetrahydro-β-carboline and isatin
scaffolds 109.

A group of ospemifene-isatins 116 and ospemifene-spiroisatins 117 conjugates linked
through a 1H-1,2,3-triazolyl heterocycle was synthesized via click cycloaddition (CuSO4,
sodium ascorbate in EtOH/H2O) of the appropriate azide-containing indoles 114/115
with alkynes containing ospemifene 113 (Scheme 16). Antiproliferation properties (MTT
assay) were studied against breast cancer (MCF-7 and MDA-MB-231) cell lines. Some of the
synthesized conjugates revealed considerable anti-MCF7 properties. The most promising
is the conjugate 116 (R = R1 = Br, n = 1; IC50 = 1.56 µM) relative to that of the standard
references (IC50 = 55 and 50 µM of ospemifene and tamoxifen, respectively). It has been
noticed that when a more extended spacer/alkyl group was considered (n = 2 or 3), the
anti-MCF-7 properties were drastically reduced (IC50 = 16.54 and 10.99 µM, respectively)
(Supplementary Figure S13). Molecular docking studies (PDB ID: 3ERT, ERα active site,
Autodock Vina software V 1.5.6) explained the biological properties exhibited [150].

A series of spiroxindoles bearing 2-furanyl heterocycle 121, prepared from the azome-
thine ylide reaction (obtained from isatins 119 and amino acids 120) with furanyl-containing
chalcones 118 in refluxing MeOH (Scheme 17), showed promising results. The antiprolifer-
ation properties (MTT technique) of 121 were assessed against the MCF7 cell line. Amongst
all, the analog derived from chalcone with R1 = 4-BrC6H4, R2 = 2-(4-ClC6H4)-5-furyl,
6-chloroisatin, and octahydro-1H-indole-2-carboxylic acid (Figure 16) exhibited potent ac-
tivity (IC50 = 4.3 µM/mL) compared with the standard staurosporine (IC50 = 17.8 µM/mL)
(Supplementary Figure S14). The molecular modeling of the potent agent suggested a dual
mode of action against EGFR and CDK-2 (PDB ID: 1M17 and 2A4L, respectively; AutoDock
Vina software V 1.5.6) [151], indicating the potential for further development.

Spiroxindoles 124 were obtained through a multi-component condensation reaction of
isatins 119, aroylacetonitriles 122, and 5-aminopyrazole 123 (Scheme 18). Some targeted
agents 124 exhibited mild antiproliferation properties (MTT assay) against the MDA-MB-
231 cell line (Supplementary Figure S15). The most promising are those with R/R’ = H/Ph,
Cl/Ph, and Br/Ph (IC50 = 6.70, 6.40, and 6.70 µM, respectively) relative to doxorubicin (adri-
amycin, IC50 = 0.12 µM). Safety behavior against WI-38 (lung normal cell) was evidenced
for the effective agents discovered (IC50 = 78.1, 43.2, and 39.3 µM for compounds 124 with
R/R’ = H/Ph, Cl/Ph, and Br/Ph, respectively). Upregulation of Bax and downregulation
of Bcl-2 proteins in addition to elevation of caspase-3 levels evidenced the induction of
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apoptosis of the effective agents discovered (effect = 405.5, 353.7, and 0.80; 0.3958, 0.7449,
and 2.692; 0.3501, 0.4058, and 0.0111 pg/mL for compounds 124 with R/R’ = H/Ph and
Cl/Ph against Bax, Bcl-2, and caspase-3, respectively). Inhibition of EGFR was reported as
the mode of action for the promising agents discovered relative to erlotinib [152].
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Scheme 18. Synthetic route towards spiroxindoles 124.

N-(1H-indole-6-yl) benzamides 127 and their benzene sulfonamide analogs 128 were
obtained through acylation/sulfonylation of 6-aminoindole 126. The latter was synthesized
via reduction (SnCl2/HCl/AcOH) of the corresponding 6-nitroindole 125 (Scheme 19). Cell
viability assays of the synthesized compounds against breast cancer cell lines (MCF7 and
T47D) were studied (Supplementary Figure S16). The most promising was 127, where
R = 3-CF3 (IC50 = 28.23 and 30.63 µM) relative to tamoxifen (IC50 = 34.42 and 42.40 µM)
against the T47D and MCF7 cell lines, respectively. A reduction in tumor size in Ehrlich
ascites carcinoma (EAC)-bearing mice was observed by compounds 127 (R = 3-CF3) and
128 (R = F), supporting their potential necrosis effect and decrease in ER-α expression in
tumor sections [153].
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[1,3]Thiazino[3,2-a]indol-4-ones 131 were obtained from the reaction of indoline-2-
thiones 129 and propiolic acid esters 130 in aqueous medium by KOH/H2O (Scheme 20).
The antiproliferative properties (MTT assay) against the MDA 231 and MDA 468 cell lines
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were studied (Supplementary Figure S17). Two of the synthesized agents (R/R1 = H/CH3
and 5-CH3/n-C3H7, IC50 = 302 and 116; 330 and 97 µM against MDA-231 and MDA-468,
respectively) displayed considerable antiproliferation properties [154].
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Podophyllotoxin 132 is an important agent with antiproliferation properties against
diverse cancer cell lines, exhibiting affinity at the colchicine binding site and identifying
tubulin polymerization inhibitory properties. A series of indole-podophyllotoxin con-
jugates 133 was developed via the halogenation reaction of 132 using KI and BF3OEt2
in MeCN, affording the 4β-iodopodophyllotoxin, which was subjected to nucleophilic
attack of the indolyl derivative using BaCO3 and triethylamine (TEA) in tetrahydrofuran
(THF), affording the targeted conjugates 133 (Scheme 21). Potent tubulin polymerization
inhibition was revealed by 133c (GI50 < 0.1 µM). Moreover, 133c displayed outstanding
antiproliferation properties (MTT method) against HepG-2, HeLa, A549, and MCF-7 cell
lines (IC50 = 0.07–0.1 µM) relative to nocodazole (IC50 = 0.2–0.4 µM) (Supplementary Figure
S18). In vivo studies demonstrated that 133c reduced tumor volume in the nude mouse
xenograft MCF-7 cell model, supporting the idea that it can be considered a promising vi-
able anticancer agent with tubulin polymerization inhibitory properties. Molecular docking
studies (PDB ID: 5JCB, Discovery Studio software) were considered to explain the observed
mode of action [155].
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3.2. Lung Cancer

Indolylthiosemicarbazones 139 were obtained through condensation of indole-3-
carboxaldehydes 137 (obtained from the Fischer reaction of acetophenones 134 with
phenyl hydrazine 135 followed by the Vilsmeier formylation reaction) with the appro-
priate thiosemicarbazides 138 (Scheme 22). One of the synthesized agents 139 (R = 4-OMe,
R1 = Me) revealed potent antiproliferation properties (MTT method) against the lung
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A549 cell line (IC50 = 12.50 µM), i.e., about three-fold more potency than the reference
drug etoposide (IC50 = 34.25 µM) (Supplementary Figure S19). Apoptosis induction was
reported for the potent agent discovered based on morphological and flow cytometric stud-
ies. Molecular modeling studies (PDB ID: 1S0 and 1ZXM, Discovery Studio 4.1 software)
were considered for assigning the tubulin polymerization and topoisomerase II inhibitory
properties, respectively [156].
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Scheme 22. Synthetic route towards indolylthiosemicarbazones 139.

Microtubule assembly plays a crucial role in cellular division. For this reason, anti-
tubulin/microtubule polymerization inhibition is one of the most effective approaches
for combating many cancer types. Bis(indolyl)hydrazide-hydrazones 142 as tubulin poly-
merization inhibitors were designed. The targeted agents were obtained by refluxing a
mixture of indolylcarboxylic acid hydrazides 140 with indole-3-carboxaldehydes 141 in
EtOH containing a catalytic amount of AcOH (Scheme 23). The antiproliferation properties
(MTT method) of 142 were evaluated against the lung cancer (A549) cell line, revealing
that the compound with R1 = R2 = R4 = H and R3 = OMe was the most effective analog
relative to colchicine (IC50 = 2 and 0.02 µM, respectively) in arresting the cell cycle at the
G2/M phase (flow cytometry) and tubulin polymerization inhibition (IC50 ∼ 7.5 µM) [157]
(Supplementary Figure S20).
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Tambjamine is a natural compound obtained from marine invertebrates with the
ability to compromise cell survival. Indole-based tambjamine analogs 144 were synthe-
sized as natural-based antitumor active agents by condensing the aldehydic analog 143
with the appropriate amine (Scheme 24). A potent inhibitory effect of the synthesized
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analogs against lung cancer cell lines relative to cisplatin was observed (Supplementary
Figure S21). The synthesized compounds introduced several gene expressions demonstrat-
ing induced cell death/apoptosis in addition to ROS (reactive oxygen species)-induced
cellular stress [158]. It has also been mentioned that 144 with R = (CH2)5CH3 can block
Janus kinase/signal transducers, supported by a reduction in survivin protein levels and
confirming the potential anti-lung efficacy through STAT3 inhibition [159].
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Scheme 24. Synthetic route towards indole-based tambjamine analogs 144.

Indirubin 145 is a natural compound with potential anti-leukemia activity in many plants
and some protein kinase (CDK and GSK-3β) inhibitory properties. Indirubin-piperidine
conjugate 147 was synthesized via alkylation of 145 with 1-(2-chloroethyl)piperidine HCl,
followed by condensation with NH2OH-HCl. The HCl salt 148 was formed by the effect of
EtOH/HCl on 147 (Scheme 25). Promising antiproliferation properties were revealed by the
synthesized conjugate 147 and its HCl salt 148 against SW480, A549, HepG2, and B16F10
(colorectal, lung, liver, and melanoma cell lines, respectively; MTT technique) relative to
bortezomib (Supplementary Figure S22). A better or more enhanced tumor reduction was
exhibited through the in vivo testing (mouse model with skin cancer) of 148 compared to
the standard (bortezomib) [160].
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Piperlongumine 149 is a natural alkaloid found in Piper longum L. with various bio-
logical properties (Figure 17). Conjugation of indolyl scaffold with the pharmacophoric
unit of piperlongumine was considered for assigning promising antitumor active agents.
The reaction of acyl chlorides 150 (obtained from the action of oxalyl chloride on the corre-
sponding carboxylic acids) with lactams 151 (dry THF, TEA, 0 ◦C) produced the targeted
conjugates 152 (Scheme 26) [161]. In vitro, cytotoxicity against A54, HCT116, ZR-75-30, and
MDAMB-231 (lung, colon, breast ductal, and breast carcinoma, respectively) in addition
to MRC-5 (normal) cell lines was studied (Supplementary Figure S23). Enhanced antipro-
liferation properties (MTT method) were noticed by the synthesized analogs 152 relative
to the precursor piperlongumine 149, with safe behavior against the normal lung cell line
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(MRC-5). The most promising agents synthesized are R = Me and R1 = Cl, which exhibit
induced apoptosis against the lung (A549) cancer cell line (flow cytometry), arresting the
cell cycle at the G2/M phase. Furthermore, in vivo studies (BALB/C mice with lung cancer,
A549 cells) of the promising agent (2 mg/kg/day, i.p., 14 days) revealed inhibition of tumor
growth/volume (54.6%) compared with the parent piperlongumine 149 and doxorubicin
(38.3 and 53.3%, utilizing 2 and 10 mg/kg/day for 149 and doxorubicin, respectively) [161].
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Discoidin domain receptors (DDRs), like many tyrosine kinases (TKs), have a unique
place in cancer chemotherapy due to their role in cellular proliferation/differentiation.
Inhibition of DDRs is an effective pathway for controlling many diseases, including cancer.
A group of indole-containing compounds linked to urea function 156 was designed as
inhibitors of DDRs employing virtual screening (molecular docking, PDB ID: 4CKR). The
targeted agents 156 were prepared in a multi-step reaction sequence. The 3-formyl-1-indole
acetate 153 was allowed to react with the appropriate amine in the presence of EDC [N-ethyl-
N-(3-dimethylaminopropyl)carbodiimide] and HOBt (hydroxybenzotriazole), affording the
corresponding 3-formyl-1-(2-amino-2-oxo-ethyl)-1H-indoles 154. The reaction of the latter
with NH2OH (EtOH/H2O) then NiCl2·6H2O was added, followed by NaBH4 producing the
2-[3-(aminomethyl)-1H-indol-1-yl)ethan-1-ones 155, which were subjected to the reaction
with the appropriate phenyl isocyanate (CHCl3, TEA, room temperature), affording the tar-
geted 156 (Scheme 27). Some of the synthesized conjugates revealed considerable DDR1/2
and TK-A/-B/-C inhibitory properties (Supplementary Figure S24). The most promising
agent observed was that with R1 = F, R2 = 1-methyl-4-piperazinyl, and R3 = 2,4-F2, which
was subjected to an antiproliferation properties investigation against lung (A549, SPC-A-1,
and H1975) cancer cell lines relative to that of dasatinib (IC50 = 1.84, 3.51, and 1.87; 2.55,
2.46, and 1.26 µM, respectively). Additionally, the in vivo testing (30 mg/kg dose, mouse
model) evidenced its capability for inhibition of bleomycin-induced lung injury [162].

EGFR (epidermal growth factor receptor) is an important category of tyrosine kinases,
occupying a unique place in cancer chemotherapy. Overexpression of the EGFR is associ-
ated with cellular proliferation and many other activities. Many agents have been identified
as EGFR inhibitors, and some of them have been chemotherapeutically approved against
various cancer types. Several quinazoline-containing compounds were developed with
EGFR inhibitory properties and approved against different types of cancers (Figure 18).
Conjugation of quinazoline with indole scaffolds was considered for attaining potential
EGFR inhibitors. The reaction of 4-chloroquinazolines 158 (obtained through chlorination
“thionyl chloride, 90 ◦C” of the corresponding quinazolinones 157) with the appropriate in-
doles using HFIP (hexafluoroisopropanol) and Tf2NH [bis(trifluoromethane sulfonimide)]
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in a sealed tube at 100 ◦C produced the corresponding conjugates 159–161 (Scheme 28).
Enzymatic inhibitory properties of the synthesized conjugates were assayed against the
EGFR [L858R] (Supplementary Figure S25). The most promising was 161 with R3 = Et,
R4 = Ph, and R5 = H, revealing potent EGFR inhibitory activity [IC50 = 5.2, 9.6, and 1.9 nM,
against EGFR(WT), EGFR(d746-750), and EGFR(L858R), respectively], antiproliferation
properties (IC50 = 4.1, 0.5, and 2.1 µM against A549, PC-9, and A431, respectively), arresting
the cell cycle at the G0/G1 phases (flow cytometry), and apoptosis induction, in addition
to tumor growth suppression evidenced by in vivo testing (BALB/c nude mouse model,
oral administration) [163].
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methylindole 164 (obtained from alkylation of 5-nitroindole 162, followed by a reduction 
in the nitro group) with 4-bromocoumarin 166 (formed from bromination of coumarin 
165), followed by alkylation (Scheme 29). The antiproliferation properties of 168 were 
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Scheme 28. Synthetic route towards quinazoline-indole conjugates 159–161.

A series of coumarin-indole conjugates 168 was synthesized through dehydrohalo-
genation (DMF containing DIPEA “N,N-diisopropylethylamine”, 110 ◦C) of 5-amino-1-
methylindole 164 (obtained from alkylation of 5-nitroindole 162, followed by a reduction
in the nitro group) with 4-bromocoumarin 166 (formed from bromination of coumarin 165),
followed by alkylation (Scheme 29). The antiproliferation properties of 168 were studied
against A549, HepG2, and MCF7 cell lines. The most promising agent discovered was that
with R = Me against lung cancer cell line A549 (IC50 = 1.79 × 10−3 µM) relative to that of
cisplatin and colchicine (IC50 = 5.62 and 0.01 µM, respectively) (Supplementary Figure S26).
The most promising agent discovered revealed cell cycle arrest of A549 at the G2/M phase
with induction of apoptosis and presumed tubulin polymerization inhibition, as evidenced
by molecular docking studies (PDB ID: 1SA0, Autodock Vina software) [164].
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3.3. Gastric Cancer

A series of thiochromeno[4,3-c]pyrazole-indole conjugates 173 were obtained through
Aldol condensation of thiochroman-4-ones 171 with indole-3-carbaldehydes (ethane-1,2-
diol, piperidine, 110 ◦C), followed by cyclocondensation with phenyl hydrazine (EtOH,
TEA, room temperature) (Scheme 30). Antripliferation properties (MTT methodology)
against MGC-803, Hela, MCF-7, Bel-7404 (gastric, cervical, breast, and liver cancer), and
L929 (normal) cell lines were studied (Supplementary Figure S27). Some synthesized
hybrids revealed considerable bio-properties relative to etoposide and cisplatin (standard
references). The most promising against MGC-803 were those exhibited in Figure 19,
which were subjected to a topoisomerase I/II inhibitory assay, revealing selective inhibition
against topoisomerase II and no efficacy against topoisomerase I until 100 µM. This behavior
was supported by docking studies (PDB ID: 5GWK, Glide XP of Maestro software). They
also showed cell cycle arrest (MGC-803 cell) at the G2/M phase [165].

A series of N-arylsulfonylindoles 175 was obtained through condensation of the appro-
priate 3-aldehydic/ketonic indoles 174 with aminoguanidine, semicarbazide, or thiosemi-
carbazide (Scheme 31). Some of the synthesized indolylhydrazine-1-carboximidamides
175 (X = NH) displayed considerable antiproliferation properties against SGC7901 and
A590 (gastric and lung) cancer cell lines (Supplementary Figure S28). The most promising
was that with R = 5-Br, R1 = 4-Me, and R2 = Me, with safe behavior against the normal



Pharmaceuticals 2024, 17, 922 32 of 53

HEK 293T cell line (IC50 = 1.51, 4.44, and 56.39 µM, against SGC7901, A590, and HEK 293T,
respectively) [166].
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3.4. Colorectal Cancer

A variety of 2-oxo-3-indolylidene-2-indolecarbohydrazones 179 was prepared through
condensation (refluxing EtOH containing AcOH in a catalytic amount) of the appropriate
isatin with 3-indolecarhydrazides 178 (Scheme 32). The antiproliferative properties of the
prepared hydrazones 179 against HT-29, ZR-75, and A-549 (colon, breast, and lung) cancer
cell lines were studied (Supplementary Figure S29). The most promising agent is X = Cl
and R = CH2C6H5, comparable to sunitinib (IC50 = 2.02, 0.74, and 0.76; 10.14, 8.31, and
5.87 µM, respectively). It was also noted that the most promising agent discovered arrested
cell cycle at the G1 and G2 phases of the A549 testing cell. Western blot studies revealed
the enhancement of BTG1, cdc-2, BAX (B cell translocation gene 1, cyclin-dependent kinase
1, and Bcl-2-associated X protein, respectively), and caspase-3 proteins [167].
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Scheme 32. Synthetic route towards isatin–indole conjugates 179.

A series of 1-(indole-2-carbonyl)thiosemicarbazides collaborating with a sulfonamide
group 182 was obtained via a reaction of the 2-indolocarbazole 180 with the appropriate
isothiocyanate 181 in refluxing ethanol (Scheme 33). A few of the synthesized agents
showed mild to considerable antiproliferation properties against HT-29 (colorectal) and
skin normal (CCD-86Sk) cell lines (MTT method). The most promising is that with R = H,
R1 = 4-F, and n = 0 (IC50 = 53.32 and 74.64 µM, respectively) relative to doxorubicin
(IC50 = 17.20 and 0.17, respectively). Carbonic anhydrase inhibitory properties against hCA
I, hCA II, hCA IX, and hCA XII exhibited the high potency of some of the synthesized
agents. The most effective agents are R = H/H, R1 = 3-SO2NH2/4-SO2NH2, and n = 0
(ki = 78.7/75.9, 38.0/19.5, 2.1/1.4, and 0.69/0.87 nM, respectively) relative to acetazolamide
(reference standard, ki = 250.0, 12.5, 25.0, and 5.7, respectively) (Supplementary Figure S30).
Molecular docking (Maestro software v2022-3, PDB ID: 3B4F) and molecular dynamic
studies were considered to explain the inhibitory behavior against carbonic anhydrases of
the promising agents observed [168].
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Scheme 33. Synthetic route towards 1-(indole-2-carbonyl)thiosemicarbazides 182.

Thiazolidinone-indoles 184 were synthesized through a base-catalyzed condition
(refluxing EtOH in the presence of piperidine) of thiazolidinediones 183 with indole-3-
carboxaldehyde 90 (Scheme 34). Some synthesized hybrids revealed considerable antipro-
liferation properties (MTT method, A549, NCI-H460, lung; HCT-29, HCT-15, colon; and
MDA-MB-231, breast cancer cell lines). The most promising is that with n = 2, R1 = 4-OMe,
R2 = Br, and R3 = H relative to podophyllotoxin with safe behavior against normal lung cell
L132 (IC50 = 0.92 and 0.029; 10.84 and 0.021 µM, against HCT-15 and L132, respectively)
(Supplementary Figure S31). Tubulin polymerization inhibition was the molecular target
for the most promising agent discovered (IC50 = 2.92 µM), with cell cycle arrest at the
sub-G1 and G2/M phases. Furthermore, a decrease in mitochondrial membrane potential
was observed with an increased intracellular ROS level [169].
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Scheme 34. Synthetic route towards thiazolidinone-indole hybrids 184.

Spiro[indoline-3,3′-pyrrolizin]-2-ones 186 were obtained in diastereoselectivity through
a catalyst-free cycloaddition reaction of isatin 119, L-proline 43, and indolyl-bearing chal-
cones 185 in boiling MeOH (Scheme 35). Some analogs synthesized displayed promising
activity (MTT method) against the HCT116 (colon) cancer cell line, of which R = 3-MeC6H4,
3-BrC6H4, 4-CF3C6H4, and 2,4-Cl2C6H3 relative to cisplatin (IC50 = 7.0, 9.0, 9.0, 9.0, and
12.5 µM, respectively) (Supplementary Figure S32). Phosphodiesterase 1 (PD-1) inhibitory
properties were observed by one of the promising agents observed (R = 2,4-Cl2C6H3),
revealing activity at 2 µM with 74.2%, which is explained by molecular docking (PDB
ID:1NOP, OpenEye software version 4.1.2) studies [170].

Spiroindoles 187 were similarly obtained upon utilizing L-thioproline instead of
L-proline (Figure 20). A few synthesized compounds showed considerable antiprolif-
eration properties. The most promising is that with R = 4-F3CC6H4 compared to cisplatin
(IC50 = 7.0, 5.5, and 6.0; 12.6, 5.5, and 5.0 µM against HCT116, HepG2, and PC-3, respec-
tively) (Supplementary Figure S33). Inhibition of the MDM2-P53 interaction was mentioned
as the mode of action of the synthesized agents based on theoretical/computational studies
(molecular docking, PDB ID: 5law, OpenEye software version 2.2.5) [171].
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3.5. Pancreatic Cancer

Qin et al. reported the efficacy of 2-methylindole 188 against pancreatic cancer, re-
vealing apoptosis and exhibiting antiproliferation properties (Figure 21). Suppression of
capan-1, aspc-1, and MIApaCa-2 was mentioned as the apoptotic mode of action. Down-
regulation of ZFX led to the deactivation of P13K, and AKT phosphorylation was also
mentioned [172].
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Figure 21. Chemical strucure of 2-methylindole 188.

Spiroindoles 192 were synthesized through a one-pot reaction of 3,5-diylidene-4-
piperidones attached to sulfonyl function 190 with isatins 119 and sarcosine 191 (azome-
thine cycloaddition) (Scheme 36). The antiproliferation properties (MTT method) of 192
were assessed against PaCa2, MCF7, HCT116, and A431 (pancreatic, breast, colon, and
skin) cancer cell lines. Promising properties, relative to the standard drugs (sunitinib and
5-fluorouracil) with inhibitory properties (western blotting study), were observed against
VEGFR-2 and the EGFR (Supplementary Figure S34). The most promising against PaCa2
is that with R = 4-BrC6H4, R1 = Me, and R2 = H (IC50 = 12.500 µM), which is more potent
than sunitinib (an FDA-approved drug against pancreatic cancer) (IC50 = 16.91 µM). The
safety index of 192 was assigned by studying the cytotoxicity against the normal RPE1 cell
line [20].
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The reaction of sulfonated acetophenones 194 with isatins 119 (EtOH/Et2NH) pro-
duced the corresponding 3-hydroxy-2-oxoindolines 195. Acid dehydration (EtOH/HCl,
room temperature) of 195 afforded the targeted 3-alkenyl-2-oxindoles bearing the sulfonate
group 196 (Scheme 37). Applying similar reaction sequences/conditions, 3-alkenyl-2-
oxindoles bearing the sulfonamide group 200 were obtained (Scheme 38). 3-Alkenyl-2-
oxindoles 196 (R = Et, R1 = Cl) and 200 (R = Et, R1 = H) are the most promising antiprolifera-
tive agents, displaying efficiency against PaCa2 of about 3.4 and 3.3 folds to that of sunitinib
(IC50 = 4.99, 5.08, and 16.91 µM, respectively). Anti-angiogenic capabilities close to those of
sunitinib were supported by CAM (chick chorioallantoic membrane) experiments revealing
qualitative and quantitative reductions in blood vessels. Considerable properties were also
noticed against MCF7 and HCT116. Inhibitory properties of kinases (VEGFR-2 and c-kit)
were noticed by the targeted agents, supporting their mode of action as multi-targeted
inhibitors [21] (Supplementary Figure S35).
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Scheme 38. Synthetic route towards 3-alkenyl-2-oxindoles 200.

Indole linked to imidazo[2,1-b][1,3,4]thiadiazoles 203 was obtained through the reac-
tion of indole-3-carbonitriles 201 with thiosemicarbazide in CF3CO2H at 60 ◦C, producing
the corresponding 2-aminothiadiazols 202. The reaction of phenacyl bromides 70 with 202
(refluxing EtOH) yielded the targeted agents 203 as hydrobromide salts (Scheme 39). A few
of the synthesized 203 exhibited cytotoxic properties against pancreatic cancer cell lines
(SUIT-2, Capan-1, and Panc-1; SRB method) (Supplementary Figure S36). A decrease in the
tested cell migration in the scratch wound-healing assay was also observed [173].
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3.6. Liver Cancer

The reaction of 5-morphilinosulfonylisatin 204 with the appropriate acetophenone
134 under basic conditions (MeOH, Et2NH) followed by acidic dehydration (AcOH, HCl,
reflux) produced the corresponding 5-(morpholinosulfonyl)-2-indoline 206 (Scheme 40).
Two of the synthesized 206 (R = 3-NHCOCH3 and 4-OCOCH3) exhibited promising an-
tiproliferation properties against MCF-7, HepG-2, and HCT-116 cell lines (SRB method)
relative to doxorubicin. Considerable EGFR inhibitory properties of 206 (R = 3-NHCOCH3)
were noticed relative to lapatinib (IC50 = 0.0191 and 0.0283 µM, respectively). Additionally,
condensation of the isatin analog 204 with active methylenes 207 (MeOH, TEA, r.t.) pro-
duced the corresponding ylidenes 208, which also revealed considerable antiproliferation
and EGFR inhibitory properties (Supplementary Figure S37). Molecular docking (PDB
ID: 1M17, MOE software 10.2008) was considered for explaining the EGFR inhibitory
observations [174].
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Sophoridine 209 is a traditional Chinese medication useful for combating a few can-
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with the appropriate indole-3-carboxyaldehyde 90 (NaH, dry THF, reflux, 48 h) (Scheme 
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discovered was R1 = OMe, R2 = H, and R3 = 4-BnOBn (IC50 = 1.96, 4670, and 6.08 µM for the 
potent agents discovered, sophoridine 209 and camptothecin “CPT, natural origin topoi-
somerase inhibitor”, respectively). Moreover, promising properties were also noticed by 
this analog against hepatocellular (SMMC-7721), cervical (Hela, CNE1, CNE2), and breast 
(MCF7) carcinoma cell lines (Supplementary Figure S38). Apoptosis induction of the 
promising agent discovered was supported by the biochemical observations due to acti-
vation of caspase-3, increment/upregulation of the cleaved caspase-3 and Bax, and down-
regulation/decreasing of Bcl (i.e., reduction in the Bcl-2/Bax ratio). Molecular docking re-
vealed its ability to inhibit topoisomerase I (PDB ID: 1k4t, MOE software version 2008). In 
vivo (mouse model) studies showed the suppression of the HepG-2 xenograph with no 
side effects observed [175]. 
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Sophoridine 209 is a traditional Chinese medication useful for combating a few cancer
types (lung, liver, and gastric) in combination with other chemotherapeutics. Sophoridine-
indole conjugates 210 were obtained by the Aldol condensation reaction of 209 with the
appropriate indole-3-carboxyaldehyde 90 (NaH, dry THF, reflux, 48 h) (Scheme 41). No-
ticeable antiproliferation properties (MTT method) against HepG2 were observed by 210
relative to sophoridine and camptothecin. The most promising anti-HepG2 agent discov-
ered was R1 = OMe, R2 = H, and R3 = 4-BnOBn (IC50 = 1.96, 4670, and 6.08 µM for the potent
agents discovered, sophoridine 209 and camptothecin “CPT, natural origin topoisomerase
inhibitor”, respectively). Moreover, promising properties were also noticed by this analog
against hepatocellular (SMMC-7721), cervical (Hela, CNE1, CNE2), and breast (MCF7) car-
cinoma cell lines (Supplementary Figure S38). Apoptosis induction of the promising agent
discovered was supported by the biochemical observations due to activation of caspase-3,
increment/upregulation of the cleaved caspase-3 and Bax, and downregulation/decreasing
of Bcl (i.e., reduction in the Bcl-2/Bax ratio). Molecular docking revealed its ability to inhibit
topoisomerase I (PDB ID: 1k4t, MOE software version 2008). In vivo (mouse model) studies
showed the suppression of the HepG-2 xenograph with no side effects observed [175].

A variety of spirooxindoles 213 was obtained through a reaction of 2-hydroxy-1,4-
naphthoquinone 211, isatins 119, and 5-amino tetrazole 212 in refluxing acetic acid (Scheme 42).
Some of the synthesized analogs displayed noticeable antiproliferative properties (MTT
methodology) against HepG-2 and safe behavior against normal LO2 cancer cell lines
(Supplementary Figure S39). The most promising agents are those with R = 5-F, 7-Cl, and
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7-CF3 (IC50 = 2.86, 3.03, and 7.9 µM, respectively) relative to the positive control tanshinon
IIA (TSA “natural cytotoxic agent isolated from Salvia miltiorrhiza”, IC50 = 23.85 µM) [176].
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3.7. Prostate Cancer

In an attempt to determine the role of COX (cyclooxygenase) and 5-LOX (5-lipoxygenase) as
hypothesized biochemical pathways potentially correlated in cancer inhibition/antiproliferation,
a set of 1,2,3-triazole-indole-3-glyoxamides 216 and 218 was designed and explored for
their potential properties against the targeted anti-inflammatory and antitumor enzymes.
The reaction of indole-3-glyoxalyl chloride 214 with propargyl amine produced the cor-
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responding propargylated agent 215. The click reaction of 215 with azide analogs (in
tert-BuOH—H2O “1:1 v/v” using CuSO4.5H2O, sodium ascorbate) yielded the correspond-
ing indole-triazole conjugates 216. Similarly, the indole-triazole conjugates bearing the
sulfonyl group 218 were also synthesized (Scheme 43). The antiproliferation properties
of the synthesized agents were assessed against SKOV3, DU145, and HELA (ovarian,
prostate, and cervical, respectively) cell lines (MTT assay). A few of the synthesized agents
216 (R = 4-C2H5C6H5 and R = 4-FC6H5) showed promising antiproliferation properties
relative to etoposide (VP16) against the DU145 cell line (IC50 = 8.17, 8.69, and 9.80 µM,
respectively). Tubulin polymerization inhibition was evidenced for the promising agent
discovered 216 (R = 4-C2H5C6H5). Promising COX-2 and 5-LOS inhibitory properties were
revealed for the synthesized agent discovered 216 (R = 4-C2H5C6H5, IC50 = 0.12 and 7.73,
respectively), relative to the anti-inflammatory drugs indomethacin and celecoxib (IC50
against COX-2 = 0.049 and 0.041 µM, respectively), and norhihydroguaiaretic acid (NDGA,
IC50 against 5-LOX = 7.31 µM) (Supplementary Figures S40 and S41). Molecular docking
studies (PDB ID: 4RRX, 3V99, Maestro version 9.6 implemented from Schrodinger software
suite) evidenced the observations against COX and 5-LOX bio-properties. Additionally, in
silico studies (PDB ID: 4O2B) supported the ability of the promising agent(s) discovered for
mapping in the colchicine binding site. Anti-inflammatory properties were supported for
the promising agents discovered through in-vivo testing in rats (carrageenan paw edema
method) with no gastric ulceration [177].
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3.8. Cervical Cancer

A set of 3-[(indeno[1,2-c]pyrazole-3-yl)methylene]indolin-2-ones 221 was assessed as
tubulin polymerization inhibitors. The targeted agents 221 were synthesized through Kno-
evenagel condensation of indolin-2-ones 220 with indeno[1,2-c]pyrazole-3-carbaldehydes
219 in refluxing EtOH using piperidine as a basic catalyst (Scheme 44). The antiproliferation
properties (SRB assay) of the targeted compounds against HeLa, A549, and MDA-MB-231
(cervical, lung, and breast) cancer cell lines and compared to non-cancer HEK-293 cell lines
were studied relative to combretastatin A-4 (CA-4) (Supplementary Figure S42). Amongst
all, analog 221 with R1 = OMe, R2 = 5-OCH3, and R3 = 6-Cl exhibited promising properties
relative to CA-4 (IC50 = 1.33 and 1.43 µM, respectively). It also increased the checkpoint
protein levels (cyclin B1 and CDK1), exhibiting cell cycle arrest in HeLa at the G2/M phase
(leading to apoptosis, flow cytometry). Upregulation of tumor suppressor proteins (p53,
p21, and pro-apoptotic Bax) was also observed. Tubulin polymerization inhibition was
evidenced via the occupation of the colchicine binding pocket in molecular docking studies
(PDB ID: 1SA0, Autodock 4 software) [178].
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Sets of nicotinoyl/isonicotinyl pyrazolines featuring indolyl heterocycle 223 were
designed as tubulin polymerization inhibitors. The targeted compounds were obtained
through the reaction of indolyl chalcones 222 with hydrazine hydrate in refluxing EtOH.
Then, the pyrazolinyl intermediates were allowed to react with nicotinic or isonicotinic
acid in an inert atmosphere immediately, without any purification (Scheme 45). The
antiproliferative properties of the targeted agents were assessed against four cancer cell
lines (MTT technique). Promising antiproliferative properties were noticed by some of the
synthesized agents. The most promising is that with R1 = OMe, R2 = 3-OMe, R3 = 6-Me,
X = N, and Y = C against the tested cell lines MCF-7, A549, HepG2, and HeLa relative to
CA-4 (GI50 = 0.09, 0.59, 0.029, and 0.034; 0.14, 0.31, 017, and 0.092 µM, respectively) with safe
observations against the non-cancer 293T cell line (CC50 = > 300 µM for both). Remarkable
tubulin polymerization inhibition was noticed by the promising agent discovered relative
to that of CA-4 (IC50 = 1.6 and 2.1 µM, respectively) (Supplementary Figure S43). In vivo
testing (HeLa-xenograft mouse model) of the promising agent revealed evidence of better
tumor inhibition without weight loss or tissue damage relative to the standard CA-4 (%
inhibition = 61.52 and 59.92, respectively). Molecular docking (PDB ID: 1SA0, Discovery
Studio 3.5 software) and molecular dynamics (Desmond, Schrödinger software) supported
the mode of action mentioned [179].

A set of indoles 225 and pyranoindole 226 has been explored as anticancer agents with
tubulin polymerization inhibitory properties. Esterification of 5-hydroxyindoles 224 with
the appropriate carboxylic acid (pent-2-ynoic acid, es-2-ynoic acid, or phenylpropiolic acid)
afforded the corresponding esters 225. The intramolecular cyclization reaction of 225 under
reflux in the presence of PtCl4 as a catalyst produced the corresponding pyranoindoles
226 (Scheme 46). Some of the synthesized agents showed considerable antiproliferation
properties (MTT method), of which 225 with R = H and R1 = Ph relative to vinblastine
against the HeLa cell line (IC50 = 3.6 and 6.7 × 10−2 µM, respectively) showed tubulin
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polymerization inhibition (Supplementary Figure S44). In silico/docking studies (PDB ID:
5J2T, Autodock v 4.2.2. software) explained the mode of action [180].
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3.9. Ovarian Cancer

A set of 1H-benzo[e]indole-2(3H)-one spirocyclic derivatives 229 was designed as
pyroptosis inducers and synthesized through greenish technique in a one-pot reaction of
isatins 119, 2-naphthylamine 227, and 1,3-dicarbonyl compounds (including barbituric
acid, 1,3-dimethylbarbituric acid, thiobarbituric acid, 1,3-cyclohexanone, 5,5-dimethyl-1,3-
cyclohexanone, and 2,4-dimethylbenzopyranone) 228 utilizing free-catalyst conditions and
using water as a solvent containing SDS (sodium dodecyl sulfate and cationic surfactant,
10 w%) at 80 ◦C. X-ray studies have evidenced the structure of 229 (Scheme 47). Antiprolif-
erative properties (MTT assay) were determined against ovarian cancer cell lines (CP70 and
AGS). Some of the synthesized agents (Figure 22) revealed considerable antiproliferation
properties against the tested cell lines relative to the standard references (5-fluorouracil and
oxaliplatin, IC50 = 55.90 ± 0.08 and 4.01 ± 0.67; 35.81 ± 0.77 and 1.76 ± 0.68 µM against
CP70 and AGS cell lines, respectively). The most promising agent, 229a, was subjected to
further pharmacological studies, observing its ability to hinder the formation of colonies,
migration, and invasion of ovarian carcinoma cells. Upregulation of the expression of
GSDME-N (pyroptosis-related proteins) in ovarian cancer cells tested (CP70 and A2780)
was also evidenced by Western blotting studies. A reduction in ovarian cancer volume and
weight was noticed through in vivo studies (mouse xenograft model) [181].
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3.10. Leukemia

A set of indole-isoxazole conjugates as histone deacetylases (HDACs)/BRD4 (bromodo
main-containing protein) dual inhibitors was designed and synthesized as promising anti-
cancer agents. The targeted conjugates 235 were obtained through the acylation reaction of
5-bromoindole 230, giving the intermediates 231, which, via the hydrogenation reaction
(LiAlH4, THF), afforded the corresponding indolyl derivatives 232. Coupling 232 with
3,5-dimethylisoxazole-4-boronic acid and pinacol ester, followed by alkylation, produced
234. Ammonolysis of 234 (NH2OH, NaOH, and MeOH/H2O) afforded the targeted hy-
droxamic conjugates 235 (Scheme 48). Moderate antiproliferation properties of the targeted
conjugates 235 against the THP-1 (leukemia) cell line with promising inhibition of HDAC
and BRD4 were exhibited (Supplementary Figure S45). The most promising agent 235
discovered is that with n = 1, m = 6, and R = 4-F (IC50 = 5 nM against HDAC3 and the
% inhibition of BRD4 = 88% at 10 µM). The downregulation of the c-Myc protein and the
upregulation of acetylated histone H3 (Ac-H3) are in accordance with the tumor growth
inhibitory effect [182].

3,6-Disubstituted-2-carboxyindoles 241 were reported as anti-leukemic agents. The tar-
geted agents 241 were synthesized through Heck-Matsuda arylation of methyl acrylate 236
with arenediazonium salts 237 in the presence of palladium acetate as a catalyst, producing
cinnamates 238. The Heck-Matsuda reaction with a 2 mol equivalent of arenediazonium
salt 239 under the same catalytic reaction conditions afforded β,β-diarylacrylates 240.
Cadogan-Sundberg reductive cyclization of 240, promoted by P(OEt)3, furnished the final
targets 241 (Scheme 49). The cytotoxic properties of 241 (MTT assay) against CEM, RS4, and
11 (leukemia) cancer cell lines were studied (Supplementary Figure S46). Indolyl analog
241 with R = OMe and R1 = CF3 displayed the most promising properties (IC50 = 0.20
and 0.30 µM, respectively), with tubulin polymerization inhibition targeting/arresting
the G2/M phase in addition to DNA damage and apoptosis induction. In vivo studies
(xenograft mouse, i.p. 10 mg/kg × 5 per week) evidenced overall animal survival [183].
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4. Conclusions

In conclusion, the indole scaffold has emerged as a promising foundation for develop-
ing potential anticancer agents, providing numerous opportunities for future research and
therapeutic applications. Indole derivatives exhibit diverse chemical structures and versa-
tile pharmacological activities, making them attractive drug discovery and development
candidates. The indole scaffold possesses several inherent properties, contributing to its
potential as an anticancer agent. It demonstrates favorable drug-like characteristics such as
good oral bioavailability, metabolic stability, and cell permeability. Furthermore, indole
derivatives have displayed various mechanisms of action, including inhibition of cell pro-
liferation, induction of apoptosis, and interference with key signaling pathways involved
in cancer development and progression. A significant advantage of the indole scaffold
is its structural flexibility, which allows for extensive modifications and optimization of
drug-like properties. Researchers can explore different synthetic strategies to introduce
functional groups, alter substitution patterns, and fine-tune the physicochemical proper-
ties of indole-based compounds. This enables the design of highly potent and selective
anticancer agents with improved efficacy and reduced toxicity. Additionally, the indole
scaffold shows promise in targeting specific molecular targets crucial for cancer cell survival
and proliferation, such as enzymes like kinases, histone deacetylases, and topoisomerases.
Indole-based compounds have demonstrated potent anticancer activity in preclinical stud-
ies by selectively inhibiting these targets. Furthermore, aside from their direct anticancer
effects, indole derivatives have the potential to modulate multidrug resistance in cancer
cells, a common challenge in cancer treatment, by inhibiting efflux pumps and enhancing
the intracellular accumulation of chemotherapeutic agents, thus overcoming resistance and
sensitizing cancer cells to treatment.

Indole-based compounds are poised to play a significant role in anticancer research in
the future. Continual advancements in synthetic chemistry, computational modeling, and
high-throughput screening techniques are expected to uncover new indole derivatives with
improved potency, selectivity, and pharmacokinetic properties. Moreover, breakthroughs
in personalized medicine and identifying specific biomarkers linked to the response to
indole-based compounds will facilitate targeted therapy and enhance patient outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https:
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5-LOX 5-Lipoxygenase
AAZ Acetazolamide
ACD Accidental cell death
BAX Bcl-2-associated X protein
Bcl-2 B-cell lymphoma 2
BRD Bromodomain-containing protein
BTG1 B cell translocation gene 1
CA-4 Combretastatin A-4
cdc-2 Cyclin-dependent kinase 1
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Cell-CuI NPs Cellulose-supported CuI nanoparticles
COX Cyclooxygenase
CPT Camptothecin
DDR Discoidin domain receptors
DIPEA N,N-Diisopropylethylamine
DME Dimethoxyethane)
EDC N-Ethyl-N-(3-dimethylaminopropyl)carbodiimide
EGF Epidermal growth factor
ER-α Estrogen receptor-α
FGFR Fibroblast growth factor receptor
hCA Human carbonic anhydrases
HDAC Histone deacetylase
HDACs Histone deacetylases
HFIP Hexafluoroisopropanol
HFIP Hexafluoroisopropanol
HIV Human immunodeficiency virus
HOBt Hydroxybenzotriazole
HPV Human papillomavirus
IBX Iodoxybenzoic acid
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
NMPA National Medical Products Administration
NSAID Non-steroidal anti-inflammatory drug
NSCLC Non-small cell lung cancer
PARP-1 Poly(ADP-ribose) polymerase-1
PD-1 Phosphodiesterase 1
PDGFR Platelet-derived growth factor receptor
p-Erk Phosphorylated extracellular signal-regulate kinase
RCD Regulated cell death
ROS Reactive oxygen species
ROS Reactive oxygen species
SARS-CoV-2 Severe acute respiratory syndrome coronavirus-2
SDS Sodium dodecyl sulfate
SRB Sulforhodamine B
TEBA Benzyltriethylammonium chloride
Tf2NH Bis(trifluoromethane sulfonimide)
TK tyrosine kinase
VEGFR Vascular endothelial growth factor receptor
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