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Abstract: SHP2 belongs to a cytoplasmic non-receptor protein tyrosine phosphatase class. It plays
a critical role in the development of various cancers, such as gastric cancer, leukemia, and breast
cancer. Thus, SHP2 has gained the interest of researchers as a potential target for inhibiting tumor
cell proliferation in SHP2-dependent cancers. This study employed pharmacophore-based virtual
screening, molecular docking, molecular dynamic (MD) simulations, MM/PBSA, and principal
component analysis (PCA), followed by ADME prediction. We selected three potential hits from a
collective database of more than one million chemical compounds. The stability of these selected hit–
protein complexes was analyzed using 500 ns MD simulations and binding free energy calculations.
The identified hits Lig_1, Lig_6, and Lig_14 demonstrated binding free energies of −161.49 kJ/mol,
−151.28 kJ/mol, and −107.13 kJ/mol, respectively, compared to the reference molecule (SHP099)
with a ∆G of −71.48 kJ/mol. Our results showed that the identified compounds could be used as
promising candidates for selective SHP2 allosteric inhibition in cancer.

Keywords: SHP2; receptor-based pharmacophore modeling; molecular docking; molecular dynamic
simulations; cancer; MM-PBSA; PCA

1. Introduction

The Src homology protein tyrosine phosphatase 2 (SHP2) is a 595 amino acid residue
containing non-receptor protein tyrosine phosphatase (PTPase) encoded by the PTPN11
gene [1,2]. SHP2 is critical in multiple signaling cascade pathways, including Ras/MAPK,
JAK/STAT, and PI3K/AKT. SHP2 is also a well-known downstream effector of the pro-
grammed cell death protein 1 (PD-1) immune checkpoint receptor and regulator of immune
cell function in the tumor microenvironment. The SHP2 protein consists of two SH2 do-
mains (N-SH2 and C-SH2) present in the N-terminal and a PTP domain with two tyrosine
residues (Y542 and Y580) as phosphorylation sites in the C-terminal [3,4]. N-SH2 is a key
regulator of conformational switch in the activation of SHP2. The N-SH2 domain contains
2–104 amino acids. On the contrary, the C-SH2 domain contains 112–215 residues responsi-
ble for the binding energy of SHP2. The PTP catalytic domain comprises 220–525 residues,
of which C459 is a highly active conserved amino acid with essential catalytic functions [5,6].
The phosphorylation of C-terminal tail residues (Y542 and Y580) occurs upon extracellular
stimulation upon the binding of phosphorylating ligands like growth factors or cytokine
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(Figure 1). SHP2 maintains an auto-inhibited state by the intermolecular interaction of
the N-SH2 and PTP domain at the basal level with deficient catalytic activity [5]. The
dysregulation of the delicate balance between the phosphorylation and dephosphorylation
of signaling molecules mediated by protein tyrosine kinases and protein tyrosine phos-
phatases (PTPs), respectively, is a distinctive feature of many cancers [7]. Mutations in
the PTPN11 gene that encodes SHP2 have been associated with various human diseases,
primarily through their effects on signaling pathways. Noonan Syndrome (NS) and Noo-
nan Syndrome with Multiple Lentigines (NSML) are genetic disorders characterized by
distinctive facial features, short stature, heart defects, and other developmental abnor-
malities [5,8]. These mutations can lead to an aberrant activation of signaling pathways,
such as the RAS-MAPK pathway, contributing to uncontrolled cell growth and malignancy.
Additionally, the downstream signaling of SHP2 induces cell survival and proliferation
due to the Ras/Raf pathway [9–11]. In addition to leukemia, SHP2 mutations have been
studied in various solid tumors, including lung, breast, and colorectal cancer [10–13]. The
most common mutation in various tumors is SHP2E76K/D, which is crucial for increasing
SHP2’s basal phosphatase activity by 20-fold [8,14]. Previous studies suggested that the role
of SHP2 mutation in various diseases and cancers depends on the position and function
of mutation, as E76K and E76D are the most common and active mutations observed in
tumor cases [15].
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Figure 1. (A) The Ras/Raf pathway induces cell survival and proliferation due to the downstream 
signaling of SHP2. (B) A schematic representation of the SHP2 protein’s domains. The widely oc-
curring mutation is highlighted with a red circle; among them, the E76K /D mutation was signifi-
cantly observed in colorectal and breast cancer. (C) In the surface model of SHP2, the promising 
allosteric sites responsible for SHP2 inhibition are highlighted in blue and orange. (D) The key res-
idues responsible for interacting with the known allosteric inhibitor SHP099 are shown in the stick 
model. 
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odology employed summarizes the workflow. The results of this work are explained in 
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Figure 1. (A) The Ras/Raf pathway induces cell survival and proliferation due to the downstream
signaling of SHP2. (B) A schematic representation of the SHP2 protein’s domains. The widely occur-
ring mutation is highlighted with a red circle; among them, the E76K /D mutation was significantly
observed in colorectal and breast cancer. (C) In the surface model of SHP2, the promising allosteric
sites responsible for SHP2 inhibition are highlighted in blue and orange. (D) The key residues
responsible for interacting with the known allosteric inhibitor SHP099 are shown in the stick model.

The PTP domain of SHP2 is positively charged, and it has been proven previously that
targeting the active site of SHP2 for developing selective inhibitors is more difficult than
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targeting the allosteric site [16]. Various allosteric inhibitors are still in clinical trials; SHP099
is a selective allosteric inhibitor that inhibits SHP2 at its auto-inhibited conformation and
blocks its phosphatase activity [14,17,18].

In the present study, our efforts to discover novel allosteric site1 SHP2 inhibitors
began with the building receptor-based pharmacophore model using SHP2E76Dprotein
(PDB:6CMR) in complex with selective allosteric inhibitor SHP099 [19]. The pharmacophore
model was further validated using the Güner–Henry (GH) approach and utilized for
the virtual screening of four databases to discover the drug-like compounds. Then, the
virtually screened compounds were docked at the allosteric site1 of SHP2, followed by
500ns molecular dynamic simulations and MM-PBSA calculation. Our findings suggest
that the obtained hit compounds named Lig_1, Lig_6, and Lig_14 have the potential to
inhibit SHP2 and can be useful for developing novel allosteric SHP2 inhibitors in cancer
(Figure 1).

2. Results

In this research, we implemented a structure-based pharmacophore modeling ap-
proach to discover novel inhibitors of SHP2. A detailed schematic overview of the method-
ology employed summarizes the workflow. The results of this work are explained in detail
in the following sections (Figure 2).
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inhibitors. Receptor–ligand-based pharmacophore generation from the PDB: 6CMR. The drug-like
database generation step is shown on the left side of the image.
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2.1. Generation of Receptor-Based Pharmacophore Model

The SHP099-bound crystal structure of the SHP2 E76D protein (PDB: 6CMR) was
obtained from the PDB database. The literature suggests that the SHP099 inhibitor can
limit cancers with the SHP2 E76D mutation, making this complex a promising candidate
for pharmacophore modeling [19]. The SHP099-SHP2 complex was imported to DS and
subsequently submitted for the pharmacophore model generations using the module
Receptor–Ligand Pharmacophore Generation in the Pharmacophore section of DS. A total of
ten pharmacophore models were generated. Out of the ten, the top-ranked pharmacophore
model with the highest selectivity score was selected as a potential candidate (Table S1).
The selected PM displayed a selectivity score of 10.99 generated from the SHP2-SHP099
complex. The initially selected PM displayed five different features: one hydrogen bond
donor (HBD), one hydrogen bond acceptor (HBA), two were hydrophobic (HYP), and one
was positive ionizable (PI). The prepared PM and the respective interfeature distance are
shown in Figure 3A,B.
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Figure 3. The chemical characterization and interfeature distance of the selected pharmacophore
model. (A) Magenta, cyan, green, and red colors represent hydrogen bond donor (HBD), hydrophobic
(HYP), hydrogen bond acceptor (HBA), and positive ionizable (PI) features, respectively. (B) The
interfeature distance of the selected model is displayed in Å.

2.2. Pharmacophore Model Validation

The Güner–Henry (GH) and Enrichment factor (EF) approach was used to validate the
selected pharmacophore model to evaluate its efficiency [20,21]. The GH method, also known
as the goodness of hit list, is the linear combination of two dependent variables, the percent
yield of actives and the percent ratio of the actives in the hit list (Table 1). The EF indicates
the enrichment of the hit list concerning the database. A decoy dataset was compiled using
250 inactive (IC50 ≥ 100 nm) and 20 active (IC50 ≤ 100 nm) compounds. Subsequently, the
prepared decoy dataset was screened on Hypo1 using the Ligand Pharmacophore Mapping
module of DS to validate the pharmacophore. The mapping results demonstrated that Hypo1
effectively mapped 95% of active compounds with an acceptable GH score of 0.81 and EF
value of 10.68. To be an ideally acceptable model, the pharmacophore model must have a GH
score above 0.60 [21,22]. Other parameters employed for pharmacophore validation, such as
the percentage yield of actives, percentage ratio of actives, false positives, and false negatives,
are included in the decoy dataset (Table 1). The validation results strongly suggested that
Hypo1 can efficiently differentiate between active and inactive compounds against SHP2 and,
therefore, can be utilized for further virtual screening.
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Table 1. Pharmacophore validation result from GH method using decoy test set.

Sr. No. Parameters Calculated Values

1 Total no. of molecules in the database (D) 270
2 Total number of active molecules in the database (A) 20
3 Total number of active molecules in the retrieved hits (Ht) 24
4 Number of retrieved hits by pharmacophore (Ha) 19
5 % Yield of actives [(Ha/Ht) × 100] 79.16%
6 % Ratio of actives [(Ha/A × 100)] 95%
7 False negative [A-Ha] 1
8 False positive [Ht-Ha] 5
9 Goodness of fit 0.81
10 Enrichment factor (EF) 10.68

The pharmacophore model (PM) overlay on the SHP2–inhibitor complex indicates
that the PM effectively maps the key residues of the binding pocket (Figure 4A). The
detailed insights reveal that the dichloro substituents from the chlorophenyl ring of SHP099
(REF) mapped to the HYP feature. The amine group present in the pyrazin ring mapped
to the HBD feature, the nitrogen group present in the pyrazin ring mapped to the HBA
feature, and the amino group substituted at the fourth position of the piperidin ring
accommodated to the PI feature (Figure 4B). The protein residue mapping site of the
pharmacophore model aligns with binding site residues such as R111 and E250, via bond
acceptor (HBA) and hydrogen bond donor (HBD) features, respectively. Notably, these
residues have been reported as crucial for substrate recognition and SHP2 activation. Based
on the pharmacophore model’s alignment with allosteric site residues of SHP2, we believe
drug-like compounds matching these highlighted residues could target SHP2 with high
specificity and selectivity (Figure 4B).
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Figure 4. Receptor–ligand-based pharmacophore model. (A) Detailed domain structure of SHP2 PDB:
6CMR, allosteric sites are shown in blue and red colors. (B) The final pharmacophore model mapped
with co-crystalized drug SHP099 (REF) is shown in a gray color with a ball-and-stick model. The key
residues R111 and E250 were mapped with hydrogen bond acceptor and donor features, respectively.

2.3. Virtual Screening

For the pharmacophore-based virtual screening, we used four different chemical
databases including ZINC natural (144,766), Eximed (86,640), InterBioScreen natural
(505,304), and Marvin supernatural (325,319). The prepared databases were filtered based
on their physicochemical and pharmacokinetic properties by applying Lipinski’s Rule of
Five (Ro5) and the ADMET descriptors module available in DS (Table S2). In the ADMET
descriptors, specific values such as level 0 for absorption indicate good intestinal absorption,
solubility level 3 indicates good solubility, and a blood–brain barrier (BBB) level of 3 was set
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to ensure low penetration into brain cells. After applying the Ro5 and ADMET descriptors
filters, we identified 31,277 compounds suitable for further pharmacophore-based screen-
ing. The Ligand Pharmacophore Mapping protocol (LPM) available in DS was used to
screen the obtained compounds. SHP099 (REF), showing a fit value of 4.43, was applied as
a criterion to reduce the resulting compounds further. In ligand pharmacophore mapping,
the “Fit value” refers to a numerical score that quantifies how well a particular ligand fits
into the pharmacophore features of the selected hypothesis. A total of 6536 compounds
were successively mapped to Hypo1 through LPM. As a result, 518 compounds with a fit
value higher than REF (fit value > 4.43) were chosen for the molecular docking study.

2.4. Molecular Docking

The 3D structure of the SHP2 protein with the E76D mutant (PDB ID: 6CMR) was
taken as a receptor for the docking study [19]. The structure was prepared using DS by
deleting the heteroatoms. Subsequently, the binding site was defined using the Define
and Edit Binding Site module available in DS (v2023) within the cavity of bound inhibitor
SHP099 (REF). The XYZ coordinates were set as −1.38, 12.93, and 21.13, and the radius of the
identified docking sphere was defined within 8 Å. For the molecular docking of compounds
obtained through pharmacophore-based virtual screening, we used Genetic Optimization
of Ligand Docking (GOLDv5.2.2). Docking validation was conducted by redocking REF
(SHP099) in the same cavity before actual MD studies (Figure S1). The selective inhibitor
REF was also docked during the MD experiment, and 518 compounds were used using
the SHP2 receptor. The final hit compounds were sorted based on default docking scores
(GoldScore and ChemScore) provided in GOLD. The results of our MD study demonstrated
that REF displayed a score of 55.33 and Chemscore −28.35. Therefore, compounds having
a docking score greater than REF were selected as potential SHP2 binders, and based on
the compound’s detailed molecular interactions with the key residues for inhibiting SHP2
allosterically, a total of 71 compounds were shortlisted. We further analyzed each. Fifteen
compounds showing hydrogen bond interaction with R111, E250, and other key residues
were selected for further calculation. The 2D representation of corresponding molecules
and their MD scores are shown in Table S3.

2.5. Molecular Dynamics Simulation

Molecular dynamic simulations (MDSs) provide insights into the dynamic behavior of
molecular systems, such as proteins, nucleic acids, and small molecules, at atomic-level
detail [23]. Initially, a 50 ns MDS run was performed for all 15 selected complexes obtained
from the MD experiment to save time and expenses. The stability analysis of the simulated
trajectories was studied using root-mean-square deviation (RMSD) and root-mean-square
fluctuations (RMSFs). The potential ligands were ranked based on their binding free energy
calculated using MM-PBSA in the next step. The potential five simulation systems were
further selected and prepared using the GROMACS program for simulation run until
500 ns. The final three hits (Lig_1, Lig_6, and Lig_14) were chosen based on stability,
binding affinity, and key molecular interactions.

2.5.1. Stability Assessment of Simulated Complexes

The MDS results were analyzed through RMSD, RMSF, potential energy, hydrogen
bond analysis, and binding mode analysis. MDS trajectories were used to analyze the
system stability throughout the simulation run. Over the period of the 500 ns simulation
run, the RMSD values of the identified hits and REF were observed within the range
of threshold fluctuation of <0.3 nm. Interestingly, Lig_14 displayed significantly low
RMSD values of 0.24 nm, followed by Lig_6 at 0.27 nm, Lig_1 at 0.28, and REF at 0.31 nm
which suggests that our identified hits showed stable behavior throughout the simulation
run compared to REF (Figure 5A). The root-mean-square fluctuation (RMSF) signifies
the protein’s residual flexibility during the simulation run. In the present work, the
RMSFs of the SHP2 backbone atoms were observed for 500 ns, and we observed that



Pharmaceuticals 2024, 17, 935 7 of 19

the major fluctuations occurred in the C-SH2 domain, ranging between residue numbers
112 and 216. The other domain responsible for atomic fluctuations was the PTP domain
(221–525aa). We observed the overall RMSF average values, and they were <0.3 nm in all the
simulated complexes, indicating the stability of the systems (Figure 5B). The hydrogen bond
analysis was performed along with other MDS calculations to obtain a more comprehensive
understanding of each system’s dynamics and function. The hydrogen bond analysis of
selected simulated complexes revealed that identified hits form a more prominent and
greater number of hydrogen bonds than REF (Figure 5C) and can bind to the receptor more
tightly. Further, the potential energy plots suggested that the identified hits showed steady
behavior during the 500 ns MDS run compared to REF (Figure 5D and Table 2).
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Table 2. The details of molecular docking and molecular dynamics simulation analysis after 500 ns of
the selected hit compounds.

Systems
Docking Score RMSD (nm) RMSF (nm) Potential Energy

(kJ/mol)
Number of

Hydrogen Bonds
Binding Free Energy

(∆Gbinding kJ/mol)Goldscore Chemscore Backbone Atoms Backbone Atoms

REF 55.28 −28.35 0.31 0.12 −1,019,870 1.53 −71.48
Lig_1 79.37 −37.47 0.28 0.12 −1,019,239 3.57 −151.28
Lig_6 73.16 −20.03 0.27 0.11 −1,020,092 1.08 −161.49

Lig_14 68.37 −26.43 0.24 0.12 −1,019,950 2.49 −107.13

2.5.2. MM-PBSA Calculation

The binding affinity of the hit candidates for the SHP2 receptor was inferred by
calculating the binding free energy (∆G) using the MM-PBSA method. The last 100 ns
trajectory files were used for calculating the ∆G values. The observed average binding free
energy value was for Lig_1 −161.49 kJ/mol, Lig_6 −151.28 kJ/mol, Lig_14 −107.13 kJ/mol,
and for REF, a binding free energy of −71.48 kJ/mol was observed (Figure 6A). The ∆G
values emphasized that the identified hits have a greater binding affinity towards SHP2
than REF.
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Figure 6. (A) Calculation of binding free energy for REF and identified hit molecules Lig_1, Lig_6, and
Lig_14, calculated using MM-PBSA method. (B) Per residue energy decomposition of REF and hits.

The per-residue contribution is an important approach for understanding detailed
protein inhibitor interactions and each residue’s role in the macromolecule’s stability.
Figure 6B shows that the REF inhibitor (SHP099) and selected hits target similar residues,
but their energetics differ. In particular, E15, E121, E128, E139, E195, E232, E249, E258, E313,
and D489 are the key contributors to ligand binding via forming hydrophobic interactions.
On the other hand, residues placed on the upper part of the graph, such as R5, R46, K55,
R111, G130, K199, R229, K235, K242, K260, K317, K405, R465, and R527, contribute to
polar interactions.

2.5.3. Principal Component Analysis

Principal component analysis (PCA) is commonly used to investigate the coordinated
movements in protein–ligand complexes by focusing on the c-alpha atoms [24,25]. The
PCA of the selected SHP2–ligand complexes revealed that the first few eigenvectors play
a crucial role in the overall motion. Figure 7A displays the superimposed plot of the first
50 eigenvectors from the SHP2-REF, SHP2-Lig_1, SHP2-Lig_6, and SHP2-Lig_14 complexes.
The comparative analysis indicated that the SHP2-Lig_6 complex might exhibit greater
conformational variability, whereas the SHP2-Lig_14 complex displayed the least motions
compared to the other complexes. Additionally, we examined the dynamics of protein–
ligand systems through 2D projection plots of the first two PC1 and PC2 prime contributing
eigenvectors. The overlay of these plots showed that all hit compound-bound complexes
were located in a region similar to that of the SHP2-REF complex (Figure 7B). Consistent
with the eigenvector analysis, Lig_14 exhibited the most stable clustering; this was followed
by REF, Lig_1, and Lig_6, respectively. The analysis of the GFE landscape based on PC1 and
PC2 revealed that energy values spanned from 0 to 16.8 kJ/mol for REF, 0 to 15.7 kJ/mol
for Lig_1, 0 to 17.2 kJ/mol for Lig_6, and 0 to 16 kJ/mol for Lig_14. The energy values
indicated that Lig_1 and Lig_14 displayed lower free energy values than REF, suggesting
that these complexes might be thermodynamically more stable. Lig_6 indicated slightly
higher energy values than REF and a lower minimum energy state, as shown in blue
(Figure 7C–F). Collectively, PCA and GFE landscape energy analysis revealed that the
selected hit compounds displayed comparable or better results than the REF inhibitor and,
therefore, can act as a good candidate against the SHP2 inhibition program.
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2.6. Binding Mode Analysis

The binding affinity of the selected hits for the SHP2 allosteric site was analyzed using
the average complex obtained from the last 5 ns MDS trajectories (Figure S2). In super-
imposing the protein–ligand complexes, we observed that the identified hit compounds
have a similar binding mode to the REF inhibitor SHP099 (Figure 8). The allosteric site1 of
the SHP2 protein is located at the C-SH2-PTP interface, contributing to the stability of the
auto-inhibited conformation of SHP2. Previous work conducted on SHP2 suggested that
E110 present at allosteric site1, R265 at allosteric site2, and R501 located at the Q loop are
the key residues that participate in the stabilization of the auto-inhibited conformation of
SHP2 [26]. On the other hand, R111 is involved in substrate recognition; it can interact by
forming an H-bond, an electrostatic bond with the target that inhibits phosphatase activity,
depending on the inhibitors. The SHP2-SHP099 co-crystalized structure (PDB: 6CMR)
shows the H-bond interaction with T108, E110, R111, E249, and E250 [19]. By analyzing
the molecular interaction pattern of the docked pose of REF with SHP2 after 500ns MDS, it
was observed that REF is making hydrogen bond interaction with the residues P113 and
E250 of the target protein (Figure 8A,B). Based on REF molecular interaction, we selected
only those hits that target T108, E110, R111, E249, and E250 via hydrogen preferably or
hydrophobic interactions.

The detailed analysis of the binding mode explains that the average structure of the
SHP2-Lig_1 complex displayed five hydrogen bond interactions. The benzofuran ring of
Lig_1 forms hydrogen bonds with residues R111, F113, and H114 (Table 3). Residue E232
forms a hydrogen bond with the piperazine ring of Lig_1 and Q495, making hydrogen bond
interactions with the methyl benzoate ring (Figure 8C). Additionally, E250 stabilizes the
protein by forming a π–cation interaction. Lig_1 displayed significant π–alkyl interactions
with residues L216, E250, L254, K492, and P491 (Figure 8D). Molecular interactions were
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also supported via various van der Waals interactions with E110, H114, T219, K242, E249,
D489, K492, and Q495 (Table 3). The hit, Lig_6, displayed one hydrogen bond with
residue R111 (Figure 8E). F113, N217, T219, T253, L254, Q257, L261, P491, Q495, and M499
contribute to van der Waal interactions (Figure 8F). The π–alkyl interactions were observed
with residues similar to Hit1. Similarly, the benzene sulfonamide ring of Lig_14 forms
three hydrogen bonds with the residues H114, T218, and T219 (Figure 8G). It was also
observed that the residue H114 makes the protein–ligand complex stable by forming a
salt bridge interaction. Residues L254 and P491 form π–alkyl interactions, whereas R111,
F113, H116, L216, N217, R229, E250, and T253 are responsible for making van der Waals
interactions (Figure 8H). The binding pattern of the identified hits and REF are shown in
(Figure S2). The 2D structure of identified hits along with the SMILE ID and the IUPAC
name are mentioned in Table 4.
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Table 3. The detailed binding mode analysis of the identified hits and REF.

Name
Hydrogen Bond Interactions

van der Waals Interactions π-π/π–Alkyl
InteractionsAmino Acid Amino Acid Atom Ligand Atom Distance (<3.5 Å)

Lig_1

Arg111 HE O1 2.13

Glu110, His114, Thr219, Lys242,
Glu249, Asp489, Lys492, Gln495

Leu216, Glu250,
Leu254, Lys492,

Pro491

Phe113 O H43 2.76
His114 ND1 H43 1.93
Glu232 O H62 1.80
Gln495 HE21 O28 2.18

Lig_6 Arg111 O H41 2.05
Phe113, Asn217, Thr219, Thr253,
Leu254, Gln257, Leu261, Pro491,

Gln495, Met499

His114, Glu249,
Glu250, Lys492

Lig_14 His114 HE2 O9 2.89 Arg111, Phe113, His116, Leu216,
Asn217, Arg229, Glu250, Thr253

Glu232, Leu254,
Pro491Thr219 NH O10 2.37
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Table 3. Cont.

Name
Hydrogen Bond Interactions

van der Waals Interactions π-π/π–Alkyl
InteractionsAmino Acid Amino Acid Atom Ligand Atom Distance (<3.5 Å)

REF Phe113 O H42 2.06 Glu110, His114, Thr219, Lys292,
Glu249, Asp489, Lys492, Gln495 Leu254, Pro491Glu250 O H37 2.68

Table 4. IUPAC names SMILE code and 2D structure of identified hits Lig_1, Lig_6, and Lig_14.

Characters Lig_1 Lig_6 Lig_14

IUPAC name

methyl 4-[[6-hydroxy-7-[[4-(2-
hydroxyethyl)piperazin-1-ium-1-

yl]methyl]-4-methyl-3-oxo-benzofuran-
2-yl]methyl]benzoate

[(3R,4R)-3-[(3S,4S)-6-(cyclopentoxy)-4-
hydroxy-chroman-3-yl]-4-hydroxy-6-

methoxy-chroman-7-yl]methyl-methyl-
ammonium

N-[[(1S,2R,4S,5S)-5-(indolin-1-
ylmethyl)quinuclidin-1-ium-2-

yl]methyl]-4-methyl-
benzenesulfonamide

SMILE ID COC(=O)c1ccc(CC2Oc3c(C[NH+]4CCN
(CCO)CC4)c(O)cc(C)c3C2=O)cc1

C[NH2]Cc1cc2OC[C@@H]([C@H]3COc
4ccc(OC5CCCC5)cc4[C@H]3O)[C@@H]

(O)c2cc1OC

Cc1ccc(cc1)S(=O)(=O)NC[C@H]2C
[C@@H]3CC[N@H]2C[C@@H]3CN4CCc

5ccccc45

2D Structure
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2.7. Pharmacokinetic Property Assessment

Assessments of the pharmacological properties of the absorption, distribution, metabolism,
and excretion (ADME) of a chemical compound are crucial steps for their selection as potential
lead candidates. The available computational tools and web servers allow researchers to predict
the ADME properties of identified compounds in the initial stage of drug discovery and save a
lot of time and expenditure for being invested in compounds with unfavorable properties [27].

The present study’s results suggested that the identified hits have better water solubil-
ity and are compatible with REF. The caco-2 permeability prediction is a useful parameter for
the oral absorption of a drug. The benchmark for a drug to be absorbed at the intestinal level
is >30%. Those that have intestinal absorbance levels <30 are considered poorly soluble
and less absorbed. The skin permeability potential score is higher than the acceptable range
for REF. In the next step, the hits and REF were investigated for being a p-glycoprotein
substrate and inhibitor, and we observed that all three compounds were predicted as a
p-glycoprotein substrate. A drug considered a substrate of p-glycoprotein can potentially act
as an inhibitor or inducer of its function; p-glycoprotein functions as a biological barrier
by removing xenobiotics and toxins from the cell [22]. The volume of distribution (VD)
measures the relationship between the administered dose of a drug and the amount of
drug present in plasma to tissue; a higher value of the VD indicates that more of a drug
is distributed in tissue. REF and hits were observed to be fairly distributed in tissue. The
pharmacokinetic parameters, blood–brain barrier permeability (BBBP), and central nervous
system permeability (CNSP) for REF and hits were analyzed, and it was concluded that all
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the compounds have a very rare chance of causing CNS-related toxicity. The pharmacoki-
netic parameter that analyzes the metabolism of a compound includes cytochrome P450, an
important enzyme in the human body for drug detoxification. In our work, we considered
all the isoforms of cytochrome P450; the overall calculation emphasized that all three hits
have acceptable results compared to REF. The combination of hepatic and renal clearance
encounters drug clearance from the body. The excretion of the drug is also measured by
Organic Cation Transporter 2 (OCT2), which is unambiguously expressed on the tubular
epithelia of the kidney and plays a critical role in drug renal clearance (Table 5). We ob-
served that REF and the hits do not inhibit hERG I (the human ether-à-go-go-related gene),
an important indication for a compound not causing cardiotoxicity when administered. On
the other hand, similar to REF, all three identified hits inhibit hERG II. The Oral Rat Acute
Toxicity (LD50) and Chronic Toxicity (LOAEL) were also predicted for Lig_1, Lig_6, Lig_14,
and REF. Other parameters like AMES toxicity, hepatotoxicity, skin sensitization, Minnow
toxicity, and T. Pyriformis toxicity were also predicted for REF and hit (Table 6). The overall
analysis of the ADMET calculation strongly suggested that the identified hits Lig_1, Lig_6,
and Lig_14 show predicted values in the acceptable range compared to REF.

Table 5. In silico ADME property assessment of REF and identified SHP2 hits.

ADME Properties Lig_1 Lig_6 Lig_14 REF (SHP099) Cutoff

Absorption

WS (log mol/L) −3.3 −4.28 −3.17 −3.84 <−10 insoluble to <0 highly soluble
Caco-2 Permeability (log cm/s) 0.18 1.042 1.66 0.999 >0.90

IA human (% abs) 63.17 90.35 96.62 92.23 >30
SP (log KP) −2.74 −2.75 −2.81 −3.01 >−2.5

P-glycoprotein Substrate Yes Yes Yes No No
P-glycoprotein I inhibitor No Yes Yes No No
P-glycoprotein II inhibitor No No Yes No No

Distribution

VDss (human) 0.856 0.857 1.152 0.865 <0.71 low to >2.81 high
Fraction unbound (human) 0.262 0.138 0.146 0.308 Numeric (Fu)

BBBP (logBB) −1.153 −0.751 −0.262 −0.451 >0.3 high to <−1 poor
CNS permeability −3.685 −3.224 −2.606 −2.88 >−0.2 high to <−3 poor

Metabolism

CYP2D6 substrate No No No No No
CYP2D6 inhibitor No No No No No
CYP3A4 substrate Yes Yes Yes Yes No
CYP3A4 inhibitor No Yes Yes No No
CYP1A2 inhibitor No No No Yes No
CYP2C19 inhibitor No No No No No
CYP2C9 inhibitor No No No No No

Excretion
TC (mL/min/kg) 1.312 1.145 1.005 0.66 Numeric (mL/min/kg)

Renal OCT2 substrate No No Yes No No

Abbreviations: WS—water solubility, IA—intestinal absorption, SP—skin permeability, VDss—volume of distribu-
tion at steady-state, BBBP—blood–brain barrier permeability, CNS—central nervous system, TC—total clearance,
OCT2—Organic Cation Transporter 2.

Table 6. In silico toxicity profile assessment of REF and identified hits.

Toxicity Parameters Lig_1 Lig_6 Lig_14 REF (SHP099) Cutoff

Toxicity

AMES toxicity No No No No Categorical (Yes/No)
Max. tolerated dose (human) −0.15 −0.12 −0.42 −0.18 >0.477 mg/kg/day

hERG I inhibitor No No No No Categorical (Yes/No)
hERG II inhibitor Yes Yes Yes Yes Categorical (Yes/No)

Oral Rat Acute Toxicity (LD50) 2.944 2.72 2.61 2.932 Numeric (mol/kg)
Oral Rat Chronic Toxicity (LOAEL) 2.852 1.76 1.86 0.508 Numeric (mg/kg_bw/day)

Hepatotoxicity Yes No Yes Yes Categorical (Yes/No)
SS No No No No Categorical (Yes/No)

T. Pyriformis toxicity 0.29 0.294 0.33 0.513 >0.5 µg/L Toxic
Minnow toxicity 1.488 1.498 1.107 2.056 <−0.3 Toxic

Abbreviations: hERG—human ether-à-go-go-related gene, LD50—Lethal Dose, LOAEL—lowest observed adverse
effect, SS—skin sensitization.
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3. Discussion

The non-receptor tyrosine phosphatase SHP2 is a key player in various cell signaling
pathways, and nowadays, it is being explored as an oncogene in many tumors which
makes SHP2 an interesting therapeutic target [6]. SHP2 is involved in the downstream
signal transduction of multiple growth factors, and its requirement for complete RAS-
RAF activation and its role in the negative regulation of the JAK-STAT pathway have
established SHP2 as a key contributor in oncogenic signaling pathways [28]. Ruess et al.
reported the established role of SHP2 in oncogenic KRAS-driven tumors and provided the
necessary support for proving the role of SHP2 in the positive regulation of KRAS-driven
carcinogenesis [28]. Several recent efforts have been made to find potential selective SHP2
inhibitors. Some inhibitors have reached clinical trials, but none have been FDA-approved
to date [17,19,29]. Considering the importance of the SHP2 receptor in cell proliferation and
growth, there is a requirement to develop a selective SHP2 inhibitor that can be a potential
candidate for clinical trials. The selection and development of novel drug candidates
against the macromolecule are complex and time-consuming. To potentiate this drug
development process, we can use computer-aided drug-designing methods [30].

The present study focuses on the structure-based pharmacophore modeling approach,
one of the most promising in silico techniques for drug design (Figures 3 and 4), which
was selected along with other validation methods, such as MD and MDS (Figures 5 and 6).
Based on the previous studies conducted on SHP2, we selected 6CMR for PM; a total of
10 PMs were produced using the Receptor–Ligand Pharmacophore Generation protocol of
DS (Table S1). The pharmacophore mapping features SHP2 allosteric site residues and a
6CMR-bound ligand SHP099 map with T108, E110, R111, E249, and E250 (Figure 4B). The
generated PM had five chemical features: one HBA, one HBD, two HYP, and one positive
ionizable (P) feature [28]. The HBA feature could map E110 and R111, and the HBD feature
was mapped with E250, whereas the P feature was mapped with T108. In the present
investigation, the pharmacophore feature mapping results suggest that the selected PM
can be a significant candidate for the virtual screening of chemical databases. The PM
was subsequently validated using the GH approach (Table 1) [21]. A drug-like database
was prepared from four chemical databases utilizing ROF and ADMET descriptor filters
available DS using the selected PM (Table S2). Out of 31,277 compounds, only 518 were
mapped to the selected PM. The reduction of millions of compounds to hundreds reveals
the significance of the pharmacophore-based virtual screening process.

The final 518 compounds were then subjected to the GOLD program for MD analy-
sis [31]. For comparative analysis, the 6CMR co-crystal ligand SHP099 was docked under
similar conditions [3,32]. Therefore, the SHP099 (REF) docking score was used as the first
criterion for choosing the compounds. The selected REF pose has a Goldscore of 55.28 and
a Chemscore of −28.35. In this work, the final selected compounds through MD were
further subjected to MDS using the GROMACS program [33]. The simulated protein–ligand
complexes were ranked based on BFE, and the compounds with better binding affinity for
SHP2 than REF were selected (Table 2). The selected hits were analyzed based on their
stability using geometrical parameters like RMSD and RMSF (Figure 5A,B).

The results obtained in the present work reveal that all three identified hits showed
stable behavior through a 500 ns MDS run, and the observed average threshold value was
<0.3 nm. The identified hit also displayed strong hydrogen bond-forming ability, suggesting
that these hits have great affinity for SHP2 (Figure 5C). The MM-PBSA method was used
to validate the binding affinity of complexes (Figure 7A and Table 2) [34]. The average
binding free energy from the last 100 ns trajectories revealed that all three identified hits,
Lig_1, Lig_6, and Lig_14, displayed a significantly better binding affinity with values of
−151.13 kJ/mol, −161.49 kJ/mol, and −107.13 kJ/mol, respectively, when compared with
REF −71.48 kJ/mol. It can be noticed that REF and the selected hits target similar residues
with different energetics. In particular, E15, E121, E128, E139, E195, E232, E249, E258, E313,
and D489 significantly contribute to binding via various hydrophobic interactions. The
residues shown on the upper side of the graph, such as R5, R46, K55, R111, G130, K199,



Pharmaceuticals 2024, 17, 935 14 of 19

R229, K235, K242, K260, K317, K405, R465, and R527, may contribute to polar interactions.
(Figure 6B). The detailed binding mode of the hit compounds and SHP099 showed that
allosteric site key residues were targeted by various types of molecular interactions (Figure 8
and Table 3).

In addition, PCA was used to study the collective motion of the selected protein-ligand
complexes [25]. The eigenvector index revealed the significance of the first five eigenvectors
which were regulating the overall motion of the protein. Moreover, the covariance analysis
revealed that all three hits (Lig_1, Lig_6, and Lig_14) occupied less conformational space
than REF (Figure 7A,B). Gibb’s free energy (GFE) landscapes are useful measures for
studying the thermodynamic stability of the compounds [35]. The analysis of the GFE
landscape based on PC1 and PC2 revealed that energy values spanned from 0 to 16.8 kJ/mol
for the REF, 0 to 15.7 kJ/mol for Lig_1, 0 to 17.2 kJ/mol for Lig_6, and 0 to 16 kJ/mol for
Lig_14. The energy values indicate that Lig_1 and Lig_14 displayed lower free energy
values than REF, suggesting that these complexes might be thermodynamically more stable.
Based on all computational calculations, we propose that the identified hits can serve as a
potential scaffold for developing anticancer agents.

The pharmacoinformatic techniques used in the present study provide significant
results, but our work still has some limitations. Firstly, for pharmacophore modeling, we
used a single protein-ligand complex (PDB: 6CMR), which can limit the conformation
flexibility of SHP2. To overcome this issue, we used the long MD simulation run. For
efficient pharmacophore-based virtual screening, we consistently used the REF molecule in
each step to increase the credibility of the methodology employed.

4. Materials and Methods
4.1. Generation of Receptor-Based Pharmacophore Model

The 3D structure of the SHP2 mutant E76D protein in complex with the selective
allosteric selective1 inhibitor SHP099 was downloaded from the RCSB Protein Data Bank
with PDB code 6CMR having a resolution of 2.21 Å [19]. The obtained protein structure
was further cleaned and prepared using the ‘clean protein’ and ‘prepare protein’ protocols
in Discovery Studio v23, respectively. The pharmacophore model (PM) was generated
using the Receptor–Ligand Pharmacophore Generation tool available in DS [36]. The
pharmacophore generation module embedded in DS first identifies the features that match
the receptor–ligand interactions, and based on those features, it generates 10 pharma-
cophore models.

4.2. Pharmacophore Model Validation

The prepared pharmacophore was validated using a well-known Güner–Henry (GH)
approach [20–22]. The validation of the PM is a crucial step for identifying the ability
of selected models to identify and differentiate between given active and inactive com-
pounds [20,21]. In this study, the Ligand Pharmacophore Mapping protocol, incorporating
a flexible search option within Discovery Studio (DS), was employed to screen the decoy
test set. The results obtained from ligand pharmacophore mapping were subsequently
utilized to validate the prepared pharmacophore model by calculating the GH score and
EF value using the specified equations.

GH =

{
[
Ha[3A + Ht]

4HtA
]

[
1 − Ht − Ha

D − A

]}
EF = (Ha × D)/(Ht × A)

where, D represents the total number of molecules in the database, A is the number of active
molecules, Ht is the total number of active molecules in the retrieved hits, and Ha represents
the number of retrieved hits by pharmacophore. The % yield of actives is shown by (Ha/Ht)
× 100, and the % ratio of actives is represented by Ha/A × 100. Meanwhile, A-Ha and
Ht-Ha are the denotations for false negative and false positive specified equations.
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4.3. Virtual Screening

Four chemical databases (Eximed, ZINC natural, Marvin supernatural, and InterBio-
Screen) were selected to identify potential SHP2 allosteric inhibitors. To identify compounds
with drug-like properties from the chemical databases containing thousands of compounds,
we initially applied the ADMET descriptors and the drug-likeness rule known as Lipinski’s
Rule of Five (Ro5), available in Discovery Studio (DS). This screening aimed to select
compounds with acceptable pharmacokinetic characteristics [22,37,38]. In the next step, the
selected validated PM was subjected as an input query to screen out the prepared drug-like
database using Ligand Pharmacophore Mapping with the Best mapping option of DS [36].

4.4. Molecular Docking

In this work, the Genetic Optimization of Ligand Docking (GOLD v5.2.2) was considered
for the molecular docking calculation [39]. The crystal structure of the human SHP2
receptor, bound with known inhibitor SHP099 (PDB ID: 6CMR), was downloaded from
the Protein Data Bank (http://www.rcsb.org/) accessed on 20 December 2022. Before
performing molecular docking studies, the protein was prepared, all missing atoms were
added, and bond orders were corrected using the Clean Protein module, available in
DS [40]. The energy minimization of the protein was conducted using a CHARMm27 force
field. The binding site of the SHP2 receptor was specified around the bound allosteric
inhibitor SHP099. The molecular docking studies using the GOLD Genetic Algorithm (GA)
generated a maximum of ten poses for each drug-like molecule subjected to it. Goldscore
and Chemscore are the default scoring functions to select potential SHP2 binders. The
bound inhibitor SHP099 (REF) was considered the reference criterion for analyzing the
docking results. Compounds that displayed better docking scores and optimal binding
modes with the mentioned key residues were used for SHP2 inhibition. The results were
visualized in DS and compared with the reference inhibitor for further study.

4.5. Molecular Dynamics Simulation

The compounds secured through the molecular docking analysis were further passed
on to MDS using the Groningen Machine for Chemical Simulations (GROMACS v5.15) to
analyze the physical atomistic movements of molecules under the given virtual physi-
ological condition [33]. The protein parameter and coordinate files were generated by
using the CHARMm27 force field [41]. Topology files for the ligands were generated with
SwissParam [42]. A dodecahedron box and TIP3P water model were used for each simula-
tion system. The prepared SHP2–ligand simulation systems were further neutralized by
adding appropriate Na+/Cl− ions. The Steepest Descent algorithm was used to minimize
the steric hindrance of each system before running the actual MDS. The equilibration of
protein–ligand complex systems was conducted by incorporating NVT and NPT ensembles
for 1 ns at 300 K. The MDSs were performed under periodic boundary conditions to avoid
edge effects for 500 ns of the simulation run. The Leap-Frog and LINC algorithms were
used for non-bonding interactions and to restrain the bond length. Particle mesh Ewald
(PME) was employed to estimate long-range electrostatic interactions. The MDS output
was analyzed using the DS and GROMACS trajectory analysis tools.

4.5.1. Stability of Simulation Systems

To evaluate simulation systems’ stability, the protein’s dynamics upon ligand binding
were quantitatively assessed using root-mean-square deviation (RMSD), root-mean-square
fluctuations (RMSFs), and potential energy calculations. The calculations were carried out
utilizing the “gmx rmsd”, “gmx rmsf ”, and “gmx energy” commands in GROMACS.

The RMSD calculation was performed using the following equation.

RMSDx =

√√√√ I
N

N

∑
i=1

(r′(tx))− (ri(tre f ))
2

http://www.rcsb.org/
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where the number of atoms is N, tref is the reference time, r′ represents the location of
selected atoms within the frame x after superimposition on the reference frame, and the
recoding intervals of x are designated with tx [22].

Additionally, hydrogen bond interactions between the protein and ligand were analyzed
for each system, employing the “gmx hbond” command to identify and quantify hydrogen
bonds, providing insight into the complexes’ binding affinity and structural integrity.

4.5.2. MM-PBSA Binding Free Energy Calculation

In computational drug discovery, the binding free energy of a system can provide a
mechanistic insight into protein–ligand interaction, which can serve as a crucial measure to
calculate the absolute binding energy of identified hits. This study used the “g_mmpbsa,”
a GROMACS plugin tool, to calculate binding free energy [34]. From the 500 ns MDS
trajectories, the last 100 ns trajectories were used to calculate binding free energy. The ∆G
of the protein–ligand complex was calculated by using the following equation:

Gbinding = Gcomplex −
[

Gprotein + Gligand

]
Gbinding is the binding free energy of a protein–ligand complex, Gcomplex represents

the total energy of the protein–ligand complex, and Gprotein and Gligand denote individual
energy components.

4.5.3. Principal Component and Free Energy Landscape Analysis

The fluctuations in protein residues on protein–ligand binding were observed through
principal component analysis (PCA) using simulated MDS trajectories [43]. Also, Gibbs
free energy (GFE) landscape values were calculated for the thermodynamic properties
of protein–ligand complexes [35]. The GROMACS tool “gmx_covar” was used to analyze
pattern recognition in protein movements [23]. In PCA, the covariance matrix calculates the
eigenvectors and eigenvalues [44]. The larger the eigenvalue of the corresponding eigenvec-
tor, the higher the motion for this eigenvector coordinate [45]. The “gmx_anaeig” tool was
used to produce the 2D plot of two different eigenvectors, and subsequently, the “gmx_sham”
GROMACS tool was exploited to calculate the GFE landscape for these components [23].
PC1 and PC2 were used to calculate the GFE based on the following equation:

∆G(PC1, PC2) = −KBTlnP (PC1, PC2)

PC1 and PC2 are reaction coordinates, KB symbolizes the Boltzmann constant, and P
(PC1, PC2) illustrates the probability distribution of the system along the first two principal
components [46].

The change in Gibbs free energy (∆G) for a system depends upon the change in
enthalpy (∆H) and the change in entropy (∆S) according to the following equation [47]:

∆G = ∆H − T∆S (1)

where ∆H = enthalpy, T = temperature in Kelvin, ∆S = entropy, and ∆G = Gibbs free energy.

4.6. Pharmacokinetic Properties Analysis

The process of drug discovery is challenging and time-consuming. Bringing a new
pharmaceutical drug into the market takes several years. Investigating a potential com-
pound’s pharmacokinetic (ADME) properties is crucial before being upgraded to clinical
trials to avoid failure and save time. In the present study, selected hit compounds were
submitted to the online server pkCSM (http://structure.bioc.cam.ac.uk/pkcsm) to analyze
their detailed pharmacokinetic or ADMET properties accessed on 2 January 2024 [27].

http://structure.bioc.cam.ac.uk/pkcsm
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5. Conclusions

The present research aimed to find a selective SHP2 allosteric inhibitor. A structure-
based pharmacophore model (PM) was generated using the known SHP2 inhibitor-bound
crystal structures (PDB: 6CMR). The PM was observed to efficiently target the key residues
of the allosteric site1 residue through desirable hydrogen bond interactions. Pharmacophore-
based virtual screening was employed to obtain potential SHP2 inhibitors from the prepared
drug-like database. The MD and MDS analysis were used to predict and validate the bind-
ing affinity of the compounds. In the next step, the binding free energy and Gibb’s free
energy were used to rank the simulated complexes, and the results were compared with the
bound selective allosteric inhibitor SHP099 (REF). The detailed molecular interaction analy-
sis further revealed that the selected hits favorably interact with SHP2 by forming more
hydrogen bonds or electrostatic interaction with the key residues. As a result, we propose
that the identified hits might be a strong contender against SHP2 for anticancer therapies.
To overcome the limitations of computational drug discovery, we used the REF drug as
a control, and the results of the identified hits were compared with REF in each step. In
conclusion, we strongly suggest that with our computational results, further experimental
validation can be a good measure to prove the potentiality of the identified hits.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph17070935/s1, Figure S1. (A) Docking parameters validation using
co-crystalized structure (grey) and selected docked pose (Blue) protein is shown in grey color. The RMSD
value between both structures was 1.53 Å. (B) The enlarged view of the binding pattern of REF (SHP099);
Figure S2. The binding pattern of identified Hits (Lig_1, Lig_6, and Lig_14) and selective allosteric site 1
inhibitor SHP099 (REF). (A) The superimposed view of Lig_1, Lig_6, Lig_14, and REF is shown in the
left image. (B) The enlarged view is depicted in the right-side image. The protein is represented in grey,
whereas hits are shown in yellow, pink, and green. All the hydrogen atoms were deleted except the polar
hydrogen atoms for clear visualization. Table S1. Receptor-based pharmacophore models generated
from PDB: 6CMR. Table S2. Parameters used for the generation of a drug-like database. Table S3. List of
potential compounds obtained from molecular docking.
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