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Abstract: The majority of the well-known pharmacogenomics research used in the medical sciences
contributes to our understanding of medication interactions. It has a significant impact on treatment
and drug development. The broad use of pharmacogenomics is required for the progress of therapy.
The main focus is on how genes and an intricate gene system affect the body’s reaction to medications.
Novel biomarkers that help identify a patient group that is more or less likely to respond to a certain
medication have been discovered as a result of recent developments in the field of clinical therapeutics.
It aims to improve customized therapy by giving the appropriate drug at the right dose at the right
time and making sure that the right prescriptions are issued. A combination of genetic, environmental,
and patient variables that impact the pharmacokinetics and/or pharmacodynamics of medications
results in interindividual variance in drug response. Drug development, illness susceptibility, and
treatment efficacy are all impacted by pharmacogenomics. The purpose of this work is to give a
review that might serve as a foundation for the creation of new pharmacogenomics applications,
techniques, or strategies.

Keywords: pharmacogenomics; genetic approach; drug therapy; drug development; personalized
medicine/therapy; human diseases

1. Introduction

Pharmacogenetic research over a long period of time has demonstrated how genetic
variants affect drug response in a broad way [1–5]. With the increasing number of known
functional polymorphisms and the availability of high-density genomic SNP maps, there
is hope that pharmacogenetics may be able to optimize patient-specific medications. As
genomes and other omics technologies are used more often, the term “pharmacogenomics”
has evolved to describe this evolving method of drug discovery and treatment [1–5]. One
drug fits all is replaced with “the right drug for the right patient at the right dose and
time” in pharmacogenomics, the first step toward personalized medicine. This does not
imply that all patients will receive care that is unaffordable. Instead, individuals are
categorized into groups according to genetic and other factors that indicate how the disease
will develop and how effective a medication will be. When utilizing drug therapy, one
must avoid toxicity or an inability to react. A drug obtains a more favorable risk/benefit
ratio and has the potential to become the first-choice therapy, increasing its market share,

Pharmaceuticals 2024, 17, 940. https://doi.org/10.3390/ph17070940 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph17070940
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-6222-9674
https://orcid.org/0000-0002-3535-578X
https://orcid.org/0000-0002-6321-8248
https://orcid.org/0000-0002-5385-4048
https://doi.org/10.3390/ph17070940
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph17070940?type=check_update&version=1


Pharmaceuticals 2024, 17, 940 2 of 21

if the incidence of adverse events can be further decreased in the targeted population.
Researchers anticipate a growing trend—the cornerstone of personalized medicine—to
associate the release of new medications with diagnostic indicators, frequently genetic
ones, in order to enhance treatment outcomes for individual patients [6–9]. Differentiated
drug response may be caused by a multitude of variables, such as age, sex, body weight,
diet, organ function, infections, drugs, and inheritance. One of the numerous strategies
used in personalized medicine is pharmacogenomics, and medical informatics makes it
simpler to include pertinent data (Figure 1). Here, we have outlined the key components
of pharmacogenomics therapies, which are often simplified processes. Clinical sample
collection is the first step, followed by genotyping, analysis, and the discovery of multi-level
components linked to complicated human illnesses; in the end are the biological functions or
connected pathways. However, because disease processes and pharmacological treatments
are complex systems with unpredictable behavior, pharmacogenomics can only make
limited predictions. Understanding the vast scope of pharmacogenomics and the obstacles
that must be removed in order for tailored medicine to become a reality is therefore difficult.
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Figure 1. Summary of the steps taken in pharmacogenomics therapeutics. It starts from the integration
of multi-omics data (the generation and analysis of large data sets by different high-throughput
approaches) and proceeds through pathway-level understanding, pathway–pathway interactions
(pathway crosstalk), and network-level understanding, unraveling the integrated mechanisms and
predicting the optimal putative biomarkers in the case of cancer.

The implementation of precision medicine may be contingent upon next-generation
sequencing methodology and technology [3,10,11]. An opportunistic target capture phase
may be employed to decrease the necessary sequencing capacity and improve the coverage
of genomic areas of interest. Following sequencing, an appropriate reference, such as the
human reference genome or, in the case of tumor biopsies, the patient’s germline genome,
is compared to identify the genetic variations present in the sample. Computational tech-
niques or data from previous research can be utilized to predict the functional consequences
of modifications detected if they are not fully understood (Figure 1).

As we mentioned the basics of the steps implemented in pharmacogenomics thera-
peutics in the previous paragraphs, now we introduce the general factors associated with
therapeutic failure and drug resistance. A primary factor contributing to patient morbidity
and mortality is the variation in pharmacological therapeutic response. Most inpatient and
outpatient patients encounter unpleasant medication-related events, such as adverse drug
reactions (ADRs) and sub-therapeutic outcomes from pharmacological therapy [3,12–14].
Many patient-specific factors, including age, diet, polypharmacy, concomitant diseases,
and heritable factors, contribute to these interindividual variances in medication response;
a substantial amount of this variability is driven by genetic polymorphisms. The liver,
which is the main organ involved in drug metabolism, excretes the majority of drugs.
The cytochrome P450 (CYP) class of genes encodes enzymes that perform the majority
of phase-I drug metabolism, making them significant drug response modulators. The
bioactivation and/or detoxification of the medicine may be significantly impacted by the
notable variation of CYP genes both within and across populations [2,3,15].

Thus, after presenting the basic steps and the factors associated with pharmacoge-
nomics therapeutics, we feel that the most critical step in this direction is to predict the



Pharmaceuticals 2024, 17, 940 3 of 21

potential and most appropriate biomarkers. Some hypotheses suggest that pharmacoge-
nomic biomarkers that might predict drug response could be very useful for enhancing
molecular diagnostics in ordinary clinical treatment. It is crucial to distinguish between
somatic cancer genome biomarkers, which affect how cancer cells respond to medications,
and germline biomarkers, which affect the pharmacokinetics and pharmacodynamics of sys-
temic pharmaceuticals. Drug response variations have been related to epigenetic changes
in DNA or histones in addition to hereditary variables. In oncology, the overexpression of
the drug efflux transporter has been connected to epigenetic modifications in cancer cells
that underpin treatment resistance. Blood may include DNA that has undergone epigenetic
alteration, offering a unique means of tracking the development of drug resistance and the
effectiveness of therapy [3,10,16–34]. Another use for it is the classification of tumors. Fur-
thermore, pharmacological modulators of the epigenetic machinery have been effectively
applied to the treatment of cancer, mostly as adjuvants to increase tumor sensitivity to
chemotherapy administered as routine care. We give a comprehensive update on this topic
by reviewing current studies. An overview of the genetic markers that forecast medication
response and direct therapeutic decision-making, such as medication choice and dose, is
provided in this article. We also talk about recent technological developments that make it
easier to find and use biomarkers [3].

2. Pharmacogenomics

Pharmacogenomics is one tool that the pharmaceutical industry may use. It represents
a major advancement in medical history. Finding novel targets for new drugs, improving
efficacy and reducing adverse drug reactions, correlating genotype with clinical genotype,
and pharmacogenetically profiling individuals to forecast drug response and sickness
risk are its main objectives. Most drugs used to be developed with the population in
mind, rather than being particularly formulated for each patient. By countering that
trend, pharmacogenomics aims to improve the effectiveness and safety of drugs while
concentrating on therapy. Instead of focusing on the outward manifestation of the disease,
or the phenotype (the signs and symptoms), pharmacogenomic treatment examines and
treats the genotype. Pharmacogenomic research will eventually be included into drug
discovery and development, resulting in a considerable reduction in the cost of medicine
development [1,35–40]. Additionally, it will ensure the safety of the clinical study and
reduce the number of failures. Consequently, many potential drugs that would be lost due
to the effects on the outliers in a research study can be kept when the pharmacogenomic
study is used in the future (Figure 1).

Treating each patient as an individual and forecasting the clinical result of various
therapies for various patients are the two main objectives of personalized medicine. Phar-
macogenomics is a fundamental component of personalized medicine. The fundamental
idea is that a patient’s characteristics, such as age, gender, and/or concurrent medicines,
as well as environmental variables, genetics, and epigenomics, all have an impact on
the interindividual variability in drug response [41]. Advances in pharmacogenomics,
often known as “omics” methods, have transformed our understanding of the genesis and
susceptibility of diseases and have great promise for the development of new treatment
approaches. Ivacaftor is only approved for use in the treatment of cystic fibrosis in individ-
uals who have the particular G551D genetic mutation in their CFTR gene. Encoded by the
CFTR gene, a protein that controls the body’s transportation of water and chloride breaks
down in cystic fibrosis. Ivacaftor works by activating the CFTR protein, which improves
lung function [42].

Targeted treatment is still a relatively new notion, even though examples like this
one and others (vemurafenib, which inhibits the BRAF V600E mutation in malignant
melanoma) imply that the blockbuster paradigm of drug development is ending. One
explanation for this is that monogenic pharmacogenetic traits usually do not account for
variations in a complex phenotype such as drug response. In addition to having several
off-target effects, most medications used today have multiple targets, according to data
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from drug-target network research [9,10]. Gaining a grasp of genome-wide techniques
like metabolomics, epigenomic profiling, and sequencing is essential to comprehending
the molecular architecture of disease genesis and/or therapy response. Although genome-
wide association studies (GWAS) have revealed several new biological pathways, this
method has drawbacks in that the majority of alterations linked to clinical phenotypes—
like adverse pharmaceutical reactions—are often not causative. One may reasonably expect
that pharmacogenomic research would benefit from the combination of several omics
technologies [9,10,30,43–45]. Recently, multi-omics research has proven useful in locating
potential novel targets for therapy (Figure 1).

Numerous significant pharmacogenomics applications have been licensed by the FDA
and are already being utilized in clinical practice. These applications include warfarin
and CYP2C9/VKORC1, cetuximab/panitumumab and KRAS, vemurafenib and BRAF,
abacavir and HLA-B*5701, carbamazepin and HLA-B*1502, and thiopurines and TPMT.
To assess the usefulness of alternative options (like tamoxifen) in clinical settings, more
research is needed. To better translate pharmacogenomics from lab to bedside, a more
thorough examination of the dynamic relationship that may exist between a patient’s
genome and their phenotype (e.g., pharmaceutical response), which may change over
time, is also required (Figure 1). Recent research using warfarin algorithms has shown
that the addition of non-genetic variables, such as environmental and clinical covariates,
can provide a substantial amount of additional phenotypic data to enhance the precision
of a treatment decision. Age, sex, body mass index, diet, genetic variation in CYP2C9
and VKORC1, concurrent drug therapy, ethnic background, and food all affect how much
warfarin is needed [5].

In the past several years, pharmacogenomics has drawn a lot of interest, and functional
genomic techniques will likely prove to be an invaluable resource for predicting clinical
outcomes in the future. Multi-omics technologies have lately sparked interest in the field of
pharmacogenomics research, which is evidently quite fascinating. However, a concentrated
effort is required to link the knowledge of basic and clinical researchers with other sectors,
including the healthcare community, regulators, and commercial partners, in order to
demonstrate the therapeutic benefit of pharmacogenomics in the majority of medical
specialties [2–5].

3. Genetic Causes of Individual Variability in Drug Response

The wide range of pharmacological response and toxicity as well as phenotypic vari-
ability prevent a medication from being used in clinical settings (Figure 2). Less than
70% of patients receive a satisfactory response with some of the most advanced drugs
available today, and a significant portion endure adverse effects. For many patients, this
leads to a poor risk/benefit ratio. Understanding variability requires an understanding of
pharmacokinetics (PK) and pharmacodynamics (PD), two domains that provide quantita-
tive assessments of drug exposure and impact. PD is primarily focused on drug targets
(receptors and enzymes), downstream signaling pathways, and pharmacological response,
whereas PK is more concerned with absorption, distribution, metabolism, and excretion
(ADME). There are several polymorphism genes that are crucial for PK-PD [46–48]. Because
ADME regulates medication exposure, medication level monitoring generates phenotypic
indications that are useful for tailored therapy [49]. High-throughput technologies were
previously used in PK screening to find predictive biomarkers of toxicity or efficacy in
cancer therapy. If these biomarkers were used in clinical practice, they might lead to the
development of individualized therapies based on a patient’s genetic composition. The
application of pharmacogenomic technologies and the practical efficacy of pharmacoge-
netic screening might improve patient safety by identifying biomarkers related to drug
metabolism for customized treatment. Pharmacogenetic pediatric research has shown
encouraging findings, despite the fact that pharmacogenomic studies were conducted in
adult cohorts. According to a meta-analysis, polymorphic drug-metabolizing enzymes
have been linked to serious negative pharmacological consequences [17,50,51]. Protein
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treatments encompass a wide range of biologics, such as therapeutic replacement enzymes,
fusion proteins, and antibodies. Since their conception, they have transformed the way that
a variety of illnesses, including cancer, autoimmune, inflammatory, respiratory, vascular,
and neurological disorders, are treated. Protein therapies are frequently the subject of
in vivo pharmacokinetic, pharmacodynamic, and effectiveness research; however, studies
that pinpoint the critical variables influencing the absorption, distribution, metabolism,
and excretion (ADME) features of these agents have not received enough attention. The
extensive characterization and comprehensive investigation of their ADME characteristics
are essential to assist drug research and development procedures for the creation of safer
and more potent biotherapeutics. This suggests a potential tactic to reduce the probability
of unfavorable outcomes when utilizing genetic data [4,10,24,52].
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Drug transporters, which are extensively engaged in ADME and drug targeting, are
encoded by several hundred genes. Though little is known about their effects, a number
of functional polymorphisms appear to alter pharmaceutical response. It is exceedingly
difficult to analyze the effects of polymorphisms in the genes that encode drug receptors.
Activating mutations could be an exception, particularly if they impact tyrosine kinases,
which are crucial for the growth of cancer. For example, responsiveness to gefitinib is
generally correlated with activating mutations of EGFR, but the constitutive activation
of the fusion protein BCR/ABL (resulting from chromosomal translocation in leukemia)
confers a notable sensitivity to imatinib. ErbB2 over-expression is necessary for the efficacy
of herceptin therapy in the treatment of breast cancer.

4. Future of Genotypes in Drug Therapeutics

If there is a strong and frequent genetic component, prospective genotyping may be
advised if obtaining the best available pharmacological therapy might have disastrous
consequences. Finding the genetic factors causing varying drug responses may be enough
in many cases to lower the likelihood of serious side effects. The therapeutic hypothesis is
supported by evidence from human genetics, which raises the probability that a medicine
will be successful in clinical trials. Numerous alleles with a variety of impact sizes are
produced by common and rare disease genetics, and these alleles can be used as proxies
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for a drug’s effect in a given condition. A wealth of genetic data about humans has been
made available recently through large-scale population collections and whole genome
sequencing techniques, supporting the choice of therapeutic targets. These methods will
have a greater impact on several phases of a drug development program as the variety of
phenotypes profiled broadens and additional alleles from people throughout the world are
found. Because genotyping in a therapeutic facility presents practical problems in addition
to legal and financial concerns, several opinions have been voiced regarding prospective
genotyping in this case. Alternatively, the judicious monitoring of the white blood cell
count may be adequate to avoid major toxicity. It is clear that there are ethical, legal,
economical, and medical issues to take into account when using potential genotyping at
the bedside [53–56].

5. Drug Response

A complex phenotype known as clinical drug response results from the interaction
of several variables, including genetic, clinical, environmental, and demographic ones
(Figure 2). Due to this intricacy, there is a significant interindividual heterogeneity medi-
cation response, which can have an adverse effect on both effectiveness and toxicity and
lead to a wasteful use of the scarce healthcare resources. Through genotype-informed pre-
scription and monitoring guidelines, pharmacogenomics—the research and practical use of
the genetic drivers of drug response variation—aims to maximize therapeutic effectiveness
and decrease adverse drug responses. A number of approved cardiovascular medications,
such as simvastatin (SLCO1B1), warfarin (VKORC1, CYP2C9, CYP4F2), and clopidogrel
(CYP2C19), have documented pharmacogenomic relationships [57,58].

Two definitions of interindividual variability in drug response are the need for a range
of doses to achieve an effect of a defined intensity in each patient or the occurrence of an
effect of varied strength in different people receiving a specific medication dosage. Drug
reaction is classified into four categories: toxic impact, no effect or therapeutic failure,
unfavorable effect, and intended good effect (efficacy). The dosage of the medication has a
special bearing on side effects and therapeutic failure. For precision oncology, medication
response prediction based on cancer genetic profiles is crucial. The majority of medication
response prediction models now in use were constructed using immortalized cancer cell line
drug screening data, which often have different genetic profiles from patient malignancies.
Patient-derived organoids, or PDOs, are becoming more and more popular as a platform
for accurately simulating patient cancers [2,6,53,57,59].

The most effective method for treating complex diseases like cancer and HIV/AIDS
is no longer thought to be single-agent treatment that targets a single receptor. But when
many medications are used concurrently, there is a higher chance of drug–drug interactions,
which might lead to unexpected and difficult-to-identify adverse effects [9]. For instance,
when CYP2D6 poor metabolizers take medication A with another prescription that inhibits
CYP2C9, the drug’s metabolism—which is metabolized by both CYP2D6 and CYP2C9—is
significantly decreased. Ritonavir is used as an antiviral “boosting” medication when
up to three antiviral medications are administered concurrently for anti-HIV therapy.
Ritonavir is a strong inhibitor of membrane transporters including CYP3A4 and Pgp
(MDR1), depending on the mechanism. This allows other antivirals that are also carried by
Pgp and processed by CYP3A4 to be taken at lower dosages; however, the dosing becomes
unpredictable. Furthermore, to reduce the lipodystrophic side effects of the antivirals, the
majority of patients are co-medicated with statins, antidepressants, and antibiotics [53].
Serious side effects result in a high frequency and intensity, which are probably influenced
by polymorphisms in genes linked to ADME. “One gene, one drug” strategy may make it
challenging to demonstrate a causal relationship since effects are distributed over a network
of interactions. Instead, integrating overall harmful effects with functional variations in
several genes requires a systems approach. We propose a medical informatics strategy
that evaluates all side effects, particularly those involving sizable patient populations, in
relation to the most common pharmacogenetic markers.
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Combinatorial treatment has been used in the past to diagnose various tumors (e.g.,
advanced non-small-cell lung cancer: nivolumab plus ipilimumab). In this case, nivolumab
with ipilimumab had a higher response rate than nivolumab monotherapy, especially for
patients whose tumors expressed programmed death ligand 1 (PD-L1) [60–62].

6. Genetic Causes Associated with Phenotype Variations

The stability and processing of mRNA, the structure and function of proteins, and the
regulation of gene expression can all be impacted by modifications in the DNA sequence.
Extensive studies on genetic variation indicate that polymorphisms affecting cis-regulatory
genes are far more common than those altering key protein structure and function. Even
if the bulk of them are yet unknown, almost all genes are predicted to contain polymor-
phism(s) at one or more cis-regulatory sites, which can be found anywhere in the extended
gene locus. During mRNA processing, genetic variants also impact alternative splicing
and mRNA stability. According to current estimations, 35–59% of human genes experience
alternative splicing. Few polymorphisms, such as a synonymous SNP in the dopamine
DRD2 receptor, have been demonstrated to alter mRNA stability, despite the fact that many
polymorphisms, such as mutations in CYP2D6, have already been found to affect splic-
ing. Nevertheless, most SNPs may impact mRNA folding and, therefore, mRNA stability,
processing, or translation, according to computational studies of mRNA folding [4,9,18,31].

Numerous phenotypic variations may be explained by cis-acting polymorphisms that
impact mRNA functions, according to previous research and assessments. Typically, this
results in an imbalance between the expression of one allele and the other in the production
of mRNA (allelic expression). To find an imbalance in allele expression, a method that uses
the PCR amplification of genomic DNA and mRNA (as cDNA) of a transcribed region of
the gene containing a common marker SNP can be applied. The next step is to determine
the allelic ratios in both DNA and mRNA. Each allele has an own control system that
eliminates transacting effects. A large number of marker SNPs might be used to see if
splicing events change polymorphically. Since the target tissues have different controls
on transcriptional and mRNA processing, the test must be carried out there. In cases
where trans-acting mechanisms (transcription factors) cause genetic variability in mRNA
levels, identifying the underlying cis-acting polymorphisms upstream in the signaling
cascades is essential. Allelic expression imbalance analysis’s low repeatability may be the
reason for its limited application, despite the fact that it has the potential to be a useful
tool for discovering cis-acting factors. Many important genes can have different expression
patterns, which might result in a disease or influence the course of treatment. It has been
demonstrated that epigenetic changes can also cause an imbalance in allelic mRNA. One
way to identify interindividual differences in mRNA processing and gene expression is to
evaluate the allele DNA to mRNA ratio. This approach yields quantitative characteristics
that may be utilized to identify the cis-acting variables and is sensitive to each of these
processes [8,18,36].

7. Knowledge Gap about the Genetic Contribution to Phenotype Variations

Even for genes that have been well studied, the entire genetic variability remains
unknown. A functional polymorphism is frequently employed in clinical studies after
receiving experimental validation, but its relative contribution to overall genetic variability
is never assessed. Most genes have a large number of functional polymorphisms [57,63–66].
For example, various mood and cognitive impairments have been linked to the serotonin
transporter gene, SERT. By using a reporter gene test and performing in-depth analysis
in association studies, it has been demonstrated that a difference in the promoter region
influences the levels of SERT mRNA in lymphocytes. Inconsistent data, however, suggest
that the LPR genotypes in the central nervous system have varying degrees of SERT
expression. SERT is mostly expressed in neurons found in the pontine region of the brain
stem. While non-synonymous mutations in the SERT coding region are uncommon, other
regulatory polymorphisms might influence the likelihood of developing a disease or how
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well a therapy works. A quantitative evaluation of the penetrance of SERT polymorphisms
is required when treating mental illnesses or using certain serotonin reuptake inhibitors,
which are often prescribed antidepressants with a high rate of patient satisfaction. Although
haplotypes can be a helpful tool in combining the impacts of many functional SNPs in
phase, like epistasis, they might not provide all the genetic information in different patient
groups. Finding any functional polymorphism that manifests often enough in the target
group must be our main objective [18,31,42,53,67].

8. Epigenetic Effects and Regulation of Gene Expression at the mRNA and Protein Level

Animal cells come in a variety of forms and are the basic components of all mul-
ticellular organisms. Although classification techniques remain ambiguous, substantial
advances have been made in the characterization of cell types. We provide an evolutionary
description of a cell type so that it may be distinguished and compared within and across
species. The transcription factors’ “core regulatory complex” (CoRC) has developed in
ways that allow it to recognize newly developing sister cell types, support their indepen-
dent development, and regulate apomeres, or characteristics exclusive to a certain cell type.
These alterations are essential for identifying the cell type. We discuss the distinctions
between developmental and evolutionary lineages and provide a future research agenda.
Even in the absence of genomic DNA polymorphisms, altered gene expression can be
passed down from generation to generation through chromatin remodeling or imprinting,
as well as during somatic cell divisions. Here, we incorporate a figure from the previous
work [1] which presents the simple regulatory mechanism for cell-type identity. Here, we
can see how different levels of regulation take place (Figure 3). The methylation of CpG
islands and modifications to histones through acetylation and methylation are the main
processes behind these transmissible characteristics. Global methylation is also necessary
for X chromosome inactivation, which is regulated by the Xist transcript and accounts for
variations in gene dosage between males and females. Allele expression is uneven as a
result of the frequent skewness in X-inactivation. According to recent research, epigenetic
alteration affects disease broadly and may potentially have therapeutic benefits [68,69]. Ex-
tended manic and depressive phases of bipolar disorder may be brought on by metastable,
reversible epigenetic changes to gene regulation. Histone acetylation is increased and
CpG methylations are reversed by decitabine and HDAC inhibitors in an attempt to force
the expression of suppressor genes. This is because the same epigenetic processes that
inhibit tumor suppressor genes also seem to have an effect on cancer. On the other side, the
response to anticancer treatment with cisplatin and BCNU is improved by the methylation
of the MGMT promoter, an enzyme that repairs DNA. While it is evident that epigenetic
changes have an impact on illness and treatment results, there is currently not enough
information to use this understanding in a tailored medical setting in the future [2,7,70].

The astounding complexity of gene regulation and translation has been shown by
recent studies on small regulatory RNAs, including antisense transcripts from the opposite
DNA strand of many genes, siRNA mechanisms, and the emerging science of microRNAs.
With up to 1000 microRNAs in the human genome, each of which targets many genes,
one may anticipate that microRNAs have a significant role in both disease and therapy
outcomes. Specifically, microRNAs may be involved in chemosensitivity or resistance
brought on by chemotherapy. Subsequent investigations will explore the function of short
regulatory RNAs in the progression of illness and the efficacy of treatment [67,71].
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Figure 3. Cell-type identity regulatory signature [1]. A paradigm for identifying the kind of cell. A
limited group of terminal selector genes (TS1 to TS3) produce transcription factors (TF1 to TF3), which
are altered when ligands connect to them and create a core regulatory complex (CoRC) via activating
signaling pathways. The molecular agent known as CoRC is responsible for both maintaining its
own expression and controlling the downstream effector genes (E1 to E5). To sum up, the terminal
selector transcription factors work together to produce a CoRC, which controls the expression of
genes exclusive to a certain cell type and promotes the evolutionary independence of that cell type.

9. Summary of Computational Approach in Pharmacogenomics and Drug Development
and Therapeutics

Drug delivery schedules have a major impact on how well cancer therapies work;
mathematical models of population dynamics and treatment responses may be used to pro-
vide mechanistic insights and optimum drug administration regimens. However, a major
challenge is the appropriate interpretation and bioinformatic processing of increasingly
complex multi-omics data sets. The operation of biological networks is greatly affected by
mutations in the coding sequence or expression of genes, as well as transient responses to
external signals at the level of protein activity, posttranslational modification, stochastic
processes, etc. It is believed that using genomics by itself is insufficient for research and
drug development. Thus, several one-dimensional biomolecular-omics data sets and patient
history may be connected utilizing an integrated systems pharmacy approach to improve our
comprehension of the biology underlying illnesses and drug-response phenotypes. In the end,
this kind of strategy ought to lead to the discovery of new therapeutic targets [23,29,72–76].
We also outline the fundamental tools, techniques, and software in Tables 1 and 2. Moreover,
the multi-omics data integration is summarized in Figure 4 [31]. Ritchie M.D. et al. have
presented highly relevant work related to methods for multi-omics data integration which
could be most appropriate for pharmacogenomics and personalized therapeutics.

To achieve the full potential of this approach, the cancer community has to get over
the challenges of implementing this type of work in clinics. Approximately half of the
patients do not react as expected to pharmaceutical therapy. Heritable variables account for
a significant portion of these interindividual variances, and there is an increasing number
of connections between genetic polymorphisms and pharmaceutical response patterns.
Significantly, the pharmacogenes’ genetic landscape is incredibly complicated, with tens of
thousands of uncommon genetic variations. This has been revealed by the recent, rapid
breakthroughs in next-generation sequencing technology. Given the high frequency of these
uncommon variations observed in each individual, it is expected that they play a major
role in the genetically encoded interindividual variability in the effects of pharmaceuticals.
Since the problem is now so big that a complete experimental characterization of these
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variations is no longer possible, the primary challenge is to comprehend the functional
significance of variants. An outline of the key ideas and advancements in the creation of
computational prediction techniques for figuring out how changes in amino acid sequence
impact the transporters and enzymes involved in drug metabolism is given here. As is
now widely known, recent discoveries regarding the functional implications of non-coding
changes, such as those to splice sites, regulatory regions, and miRNA binding sites, seem
valuable for the development of pharmacogenomics- and genetics-based medicines. We
believe that within a precision medicine framework, the multidisciplinary approach will
offer a helpful toolset to enable the inclusion of a wide variety of unusual genetic variability
in drug response predictions.
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For this reason, computer prediction algorithms are often employed to estimate the
functional impact of genetic variations when feasible experimental procedures are not
available. The majority of these algorithms seek to forecast how modifications resulting in
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amino acid substitutions would affect function. However, in recent times, there has been
a noticeable progress in the understanding of non-coding mutations that impact splice
sites, enhancers, promoters, or miRNA binding sites. a list of the characteristics that are
currently measurable by computer prediction algorithms. Whether genetic alterations
are found in the coding sequences of the gene, in untranslated sections, in putatively
regulatory sequences, or inside introns determines the significance of many characteristics
and attributes such as RNA binding protein, non-sense-mediated decay, intronic splicing
enhancer/silencer, and exonic splicing enhancer/silencer [67,71].

Most prediction tools base their judgments, at least partially, on the evolutionarily
conserved sequence in issue; prediction algorithms are often trained on collections of
harmful variants. Most notably, though, pharmacogenes are unique in that they have
limited evolutionary conservation and are typically unrelated to human illness. These
variances confound the understanding of pharmacogenetic variations. With an emphasis
on their applicability for pharmacogenetic predictions, we also reviewed computational
methods for the functional interpretation of genetic variations in this instance. We came
to the conclusion that one of the most significant areas for the therapeutic use of NGS-
based genotyping is still the development of computational tools, which are crucial for the
functional interpretation of an individual’s pharmaco-genotype [18,19,48,68,77–86]. Finally,
we present a summary for pharmacogenomics-based therapeutic studies (Figure 4).

Table 1. Essential fundamental methods [87] for pharmacogenetics and genomics genotype analysis
[2–4,17,48,55,58,63,87,88].

Method Short Description and Purpose

Sanger dideoxy (end terminal)
sequencing Analyzing DNA sequences and finding novel polymorphisms.

Denaturing high performance liquid
chromatography (DHPLC)

Ion-pair reverse-phase HPLC can be used to differentiate the differentially shaped hybrid
molecules (homoduplex versus heteroduplex) that result from the combination of variant
and wild-type DNA in order to detect polymorphisms.

PCR-RFLP
Restriction endonucleases, which are enzymes unique to a certain sequence, cut the
amplified polymorphic genomic area. The resultant fragments are indicative of the
genotypes and are subjected to electrophoresis analysis.

Pyrosequencing [89,90]

A DNA sequencing technique that makes use of the sequencing by synthesis concept. It is
used in DNA methylation studies and SNP genotyping. The “next generation” of
large-scale DNA sequencing, which can sequence more than 100 million base pairs a day, is
based on the same premise as this approach.

Single-base (primer) extension (also
known as mini-sequencing) [91]

The 3’ end of short oligonucleotides is annealed directly upstream of the polymorphism site.
A combination of (fluorescently labeled) ddNTPs without dNTPs is used to elongate a
single base alone. The MALDI-TOF detection technique or sequencing can be used to
identify the products. It is used as a multiplex reaction for genotyping SNPs.

DNA microarrays [92]
Using microarray solid-phase attached DNA molecules, a single sample may be genotyped
for many SNPs—up to a million—at once. This method is utilized in research on
genome-wide associations.

RNA/cDNA microarrays [93]
Utilized to measure the quantity of transcripts in a single sample or to compare two samples
while performing gene expression analysis. Beneficial for quantifying a large range of
distinct transcripts in a single sample, including those found throughout the genome.

PCR [93] PCR is a fundamental method used in nearly all modern genomic and
pharmacogenetic analyses.

qPCR [94]
Employing different fluorescence quenching or fluorescence energy transfer techniques to
detect the development of the PCR product while the PCR reaction is ongoing in order to
genotype individual SNPs in a variety of samples.

qRT-PCR [94] Used following a reverse transcription procedure to measure the number of transcripts in a
sample. Helpful for quantifying RNAs in large quantities of samples.
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Table 2. Bioinformatics databases and software tools [87] for pharmacogenetics and genomics
[2–5,9,17,46,48,49,55,58,63,88,95].

Aim Computer Solution Website [Accessed on 3 July 3024]

Databases

Human genome [87]
National Center for Biotechnology
Information in the USA (NCBI)

www.ncbi.nlm.nih.gov/genome/guide/
human/

Ensembl www.ensembl.org/Homo_sapiens/

SNP databases [96–100]
dbSNP at NCBI www.ncbi.nlm.nih.gov/snp/

Japan database JSNP https://dbarchive.biosciencedbc.jp/
data/jsnp/LATEST/README_e.html

Pairwise linkage disequilibrium and
haplotypes HapMap project [101] www.hapmap.org

Gene expression analysis Gene Expression Omnibus (GEO) by
NCBI [102,103] www.ncbi.nlm.nih.gov/geo/

Metabolic pathways Kyoto Encyclopedia of Genes and
Genomes (KEGG) [104] www.genome.jp/kegg/

Software

Homology search BLAST at NCBI [105] www.ncbi.nlm.nih.gov/BLAST/

Sequence alignment and identification of
new SNPs Gap5 (part of Staden package) [106] http://staden.sourceforge.net/

Haplotype mapping (phasing) Phase, Fastphase [107,108]

http://stephenslab.uchicago.edu/
software.html (there is also a new
program for imputation of analyzed to in
silico linked SNPs)

Pairwise linkage disequilibrium and
visualization of Haplotype blocks Haploview [109,110] www.broad.mit.edu/mpg/haploview/

Extended haplotype homozygosity
(EHH) Sweep [111] www.broad.mit.edu/mpg/sweep/

Analysis of SNPs affecting promoter
function TRANSFAC [112,113] https://bioinformatics.umg.eu/

Analysis of SNPs affecting splice sites
and ESEs

Automated Splice Site Analyses
(Children’s Mercy Hospitals Missouri,
USA) [114]

http://isplice.cmu.edu.tw/index.htm

ESEfinder 3.0 (Cold Spring Harbor
Laboratory) [115]

http://rulai.cshl.edu/cgi-bin/tools/
ESE3/esefinder.cgi?process=home

9.1. Sequence Analysis, Predictions, and Functional Impact of Variants

The degree of conservation is a measure of how important a sequence is for the
structure and function of the associated gene product. It is computed by examining the
evolutionary variation dynamics of DNA or amino acid sequences among homologs.
Therefore, regions with high evolutionary rates are thought to be crucial, whereas slowly
evolving, or conserved, sequences show selection pressure against variation in these areas
and, consequently, unfavorable consequences in the event of a mutation. Evolutionary
conservation is a parameter used by most computational prediction systems to distinguish
between harmful and benign variants. While some algorithms focus on nucleotide sequence
alignments or a combination of the two, most systems that focus on functional interpretation
of missense changes employ alignments of amino acid sequences. Amino acid sequence
alignment has been demonstrated to be effective in missense variant analysis; however,
genomic sequence alignments provide more flexibility and allow functional interpretations
to be extended to variant classes, such as synonymous and regulatory variants, that do

www.ncbi.nlm.nih.gov/genome/guide/human/
www.ncbi.nlm.nih.gov/genome/guide/human/
www.ensembl.org/Homo_sapiens/
www.ncbi.nlm.nih.gov/snp/
https://dbarchive.biosciencedbc.jp/data/jsnp/LATEST/README_e.html
https://dbarchive.biosciencedbc.jp/data/jsnp/LATEST/README_e.html
www.hapmap.org
www.ncbi.nlm.nih.gov/geo/
www.genome.jp/kegg/
www.ncbi.nlm.nih.gov/BLAST/
http://staden.sourceforge.net/
http://stephenslab.uchicago.edu/software.html
http://stephenslab.uchicago.edu/software.html
www.broad.mit.edu/mpg/haploview/
www.broad.mit.edu/mpg/sweep/
https://bioinformatics.umg.eu/
http://isplice.cmu.edu.tw/index.htm
http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
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not alter the amino acid sequence. Notably, commonly employed conservation-based
function-dependability predictions ignore sequence interdependencies. Nonetheless, it
has been shown lately that predictive accuracy is enhanced by the explicit integration
of residue dependency information from various sequence alignments, underscoring the
advantage of merging variation interaction data with conservation-based functionality
predictions [9,34,116–123].

miRNAs have a major role in the regulation of mRNA stability and translation. Ten
percent or more of all SNPs are located at conserved miRNA binding sites in 3′-UTRs, which
promote miRNA-mRNA interaction and may influence complementary miRNA-mRNA
pairing. Moreover, it has been shown that miRNAs significantly alter the gene expression
patterns of ADME. Consequently, one of the most important factors in deciding the destiny
of the linked transcript is the functional interpretation of genetic changes inside miRNA
target sites [124–130]. Many databases, including the polymiRTS Database 3.0 and MirSNP,
offer helpful resources that can be used to evaluate the potential significance of genetic
polymorphisms in UTRs. These databases include a collection of experimentally confirmed
SNPs and indels in both the miRNA target sites and the miRNA seed regions responsible
for mRNA binding. Additionally, a variety of additional public SNP impact prediction
algorithms are accessible [8,18,58,131].

Several computational methods may be used to forecast the potential disruption of
the miRNA-mRNA pairing for a certain variation in the absence of experimental evidence.
MicroSNiPer and ImiRP use vast variation databases to compare the mutant 3′-UTR se-
quences with one another in order to find and anticipate such disruptions. In a similar
vein, mrSNP has the ability to forecast the impact of any mutation found in NGS-based
studies on the interaction between target transcripts and miRNA. It is noteworthy that a
significant fraction of predicted miRNA targets seem to be false-positive, indicating that
similar issues can potentially arise for research utilizing miRNA-target databases lacking
strong experimental validations. Inverse techniques, which estimate the impact of genetic
variations in suspected miRNA target sites and search for potential negative effects in
changes in miRNAs or pre-miRNAs, are facilitated by a number of web-based applica-
tions. The reader is directed to current reviews and internet resources for a more thorough
collection of variant interpretation tools connected to miRNA. The range of cutting-edge
techniques that go beyond the prediction of miRNA binding sites now includes the impact
of UTR variations on the binding of RNA-binding proteins (RBPs), translational efficiency,
and ribosomal loading.

9.2. Analysis of Regulatory Variants

Considering non-coding areas significantly expands the analytic space accessible
for computer predictions, since they comprise more than 99% of the human genome.
Variants in non-coding regions may alter the local chromatin structure or the transcription
factor binding affinity of regulatory elements, including enhancers, silencers, insulators,
and promoters. Accurately predicting the functional impact of such changes is a major
challenge in human genetics [9,67,76,132–134].

Many approaches have been put up to interpret noncoding variances. The first ap-
proaches, such as GERP++, SiPhy, PhyloP, PhastCons, or SCONE, used sequence alignments
to restrict evolution. Conservation of regulatory areas can only be a poor predictor of the
functional impact of SNVs in regulatory regions, as was shown when no extra constraints
were found in regulatory elements at the level of DNA sequence despite conserved tran-
scription factor binding. Therefore, to increase prediction quality, functional genomics
parameters such as transcription factor binding profiles, DNase I hypersensitive sites,
information about histone modifications, sequence, and genic context were added to con-
servation metrics. These massive data sets were subjected to a range of machine learning
techniques, including GWAVA, CADD, FATHMM, DANN, DIVAN, and Genomiser, to pro-
duce a number of ensemble classifiers with the goal of differentiating between pathogenic
and neutral variations [3–5].
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9.3. Overall Functional Relevance and Impact

Thanks to technological developments, NGS is now often employed in clinical diag-
nostics and medical genetics. However, the practical use of NGS-based pharmacogenomics
is still far behind. Most importantly, in order to fully capitalize on the main advantage of
NGS-based genotyping, namely, the identification of the entire spectrum of the individual’s
genetic portfolio, tools that facilitate the translation of these variability data into functional
implications and clinical recommendations would need to be in place. Pharmacogenomic
phenotypes are usually more difficult to detect because they are context-specific, such
as exposure to particular medications. In contrast, the presence of distinct phenotypic
alterations in the affected patient and the ability to perform comparative genomic analyses
of unaffected family members aid in the identification of rare putatively deleterious muta-
tions in congenital diseases. Furthermore, reliable computational prediction methods are
desperately needed to bridge this gap due to the lack of experimental characterizations or
drug response associations that facilitate the functional interpretation of rare variants.

The functional implications of missense mutations that are relevant to function have
been studied the most. The predictions of the associated techniques are based on evolu-
tionary conservation and the structural features of the polypeptide that each gene encodes.
Importantly, evolutionary conservation is not a good signal of the effects of variations in
genes with little selective pressure, like the majority of pharmacogenes, even though it is
a valuable tool for determining the harmfulness of a variant or its impact on organismal
fitness. Computer predictors may be trained using ADME missense variants once concep-
tual issues have been identified. Moreover, many methodologies have been established
to examine the functional implications of mutations in non-coding genomic areas, which
are progressively acknowledged as a primary contributor to interindividual variability.
An increasing number of algorithms are now accounting for a wide range of character-
istics, including splicing modulation, effects on transcriptional processes, the disruption
of transcription factor binding sites or polymerase loading, and effects on translational
efficiency or miRNA binding. The majority of these algorithms have not been indepen-
dently benchmarked, but rather trained on sets of pathogenic variants, even though these
advancements offer a methodological toolkit to thoroughly describe each class of genetic
variant. Therefore, more research is needed to determine their ability to predict outcomes
for pharmacogenetic analysis [9].

The ability to predict drug metabolism characteristics based on a person’s genotype
has come a long way over the past decades. Traditional methods evaluate drug response by
utilizing data from a small number of candidate variations for which thorough in vitro or
in vivo characterization data are available [2,31,53,57,135]. The functional consequences of
a wide range of uncommon genetic variations have not been investigated, despite the fact
that this method has been successful in incorporating common pharmacogenetic variability
into clinical decision-making. Utilizing Whole Exome Sequencing (WES) to thoroughly
examine the genetic landscape of pharmacogenomic sites and also incorporate uncommon
variations, extremely complex investigations have begun. As previously mentioned, the
study was limited to pharmacogenetic missense variations, and the effects of SNVs with
unclear functional relevance were evaluated using computer models trained on pathogenic
data sets. Consequently, these approaches have a rather low predictive ability, even if
they represent a substantial development in the further customization of genotype-guided
therapy decisions.

10. Conclusions and Future Perspectives

The pharmaceutical sector could find pharmacogenomics to be a helpful tool. It is a
significant advancement in the history of medicine. Finding new targets for innovative
medications, reducing adverse drug responses, improving effectiveness, and using phar-
macogenetic patient profiles to forecast illness risk and treatment response are some of
its primary goals. In the past, the whole public was considered while developing most
medications, not specific patients. Pharmacogenomics helps to focus on therapy, improves
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pharmaceutical efficacy, and reduces adverse effects by opposing this tendency. Pharma-
cogenomic treatment looks at the genotype and addresses it, as opposed to focusing on the
disease’s external expression, or what doctors call the phenotype. In the end, pharmacoge-
nomic research will be incorporated into the procedure to lower the expense of medication
development. It will also lower the number of failures and guarantee the safety of the
clinical investigation. Therefore, when pharmacogenomic study is employed in the future,
many promising medications that would be lost owing to the impacts on the outliers in a
research study can be maintained.

Although practical use is still several years off, the field of pharmacogenomics is
making progress in understanding medication response. Before pharmacogenomics can
be efficiently used in pharmacological therapy, there are a number of challenges to be ad-
dressed. The manner in which medications and drug combinations interact with the body is
determined by several routes. Pharmacological interactions may have unanticipated effects
related to genes with polymorphisms. A systems analysis of medial informatics to integrate
all pertinent data is necessary for the genetic study of the entire pharmacological response.
It is essential to have a quantitative understanding of how the genetic factors contribute
to the target phenotype. In addition to the molecular genetic analysis of polymorphisms
affecting the main structure of proteins, we propose the systematic use of allelic expres-
sion imbalance for the quantitative assessment of cis-acting factors in transcription and
mRNA processing.

We must assess how small regulatory RNAs and epigenetic factors contribute to
interindividual variability. A regulatory framework is necessary to guarantee that phar-
macogenomic data are integrated into the development of medications and post-approval
surveillance. Because the implications of genetic and genomic data are still poorly un-
derstood, the FDA created a “safe haven policy” to encourage pharmaceutical companies
to use genomic data for the New Drug Approval process without fear of delays or other
regulatory measures. These types of data will be more important in the medicine approval
process as research advances. Pharmacogenetic data on pharmaceutical package inserts
have made genetic information more accessible to physicians and patients. Finally, it should
be noted that pharmacogenomics is an increasingly useful technique for understanding
interindividual heterogeneity in drug response and toxicity. However, significant advance-
ments in pharmaceutical therapy necessitate an integrated systems approach that enhances
customized care through the use of medical informatics.
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