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Abstract: Despite significant progress in cancer prevention, screening, and treatment, the still limited
number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years,
many efforts were put forth to develop therapeutics that selectively target different components of
the oncogenic Wnt/β-catenin signaling pathway. These include small molecule inhibitors, antibodies,
and more recently, gene-based approaches. Although some of them showed promising outcomes in
clinical trials, the Wnt/β-catenin pathway is still not targeted in routine clinical practice for cancer
management. As for most anticancer treatments, a critical limitation to the use of Wnt/β-catenin
inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with
acceptable toxicity. Protecting healthy tissues from the effects of Wnt/β-catenin inhibitors is a major
issue due to the vital role of the Wnt/β-catenin signaling pathway in adult tissue homeostasis and
regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/β-catenin
pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore
strategies under development to improve the benefit/risk profile of this therapeutic approach.

Keywords: Wnt/β-catenin; cancer therapy; small molecule inhibitors; drug design; drug profiling;
drug combination; ADC; nanovectorization; precision medicine; clinical trials

1. Introduction

In 1984, Nusse and Varmus identified Wnt-1, the first gene encoding a Wnt/β-catenin
pathway component, as the “first common integration site” of a mouse mammary tumor
virus (MMTV) sequence responsible for the milk-transmitted susceptibility to develop
mammary gland tumors in some strains of mice [1–4] (Table S1). This discovery generated
great interest in the scientific community by highlighting the importance of Wnt signaling
in animal species at all stages of life, from embryogenesis to regeneration and homeostasis
of adult tissues [5–14] (Table S1). Concomitantly, genetic alterations associated with devel-
opmental defects in animal models, such as Drosophila melanogaster, Caenorhabditis elegans,
and the mouse, or with human diseases, such as inherited and sporadic cancers, played a
significant role in identifying critical components and regulatory mechanisms of this com-
plex signaling network [15–27]. These studies established that Wnt is an autocrine-secreted
glycoprotein that binds to atypical G-protein-coupled seven-pass transmembrane receptors
(frizzled or FZD), leading to activation of three distinct and interconnected signaling path-
ways: the canonical Wnt pathway, also known as the Wnt/β-catenin signaling pathway,
and two non-canonical pathways, the Wnt/calcium (Wnt/Ca2+) pathway and the planar
cell polarity pathway [28–31]. To date, 19 Wnt ligands and 10 FZD receptors were identified
in humans, suggesting multiple combinations of Wnt/FZD pairs to activate one of these
three signaling pathways. A systematic mapping of Wnt-FZD interactions revealed distinct
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functional selectivity depending on the Wnt/FZD pair; however, how a specific Wnt signal-
ing cascade is achieved still remains elusive because some Wnt/FZD combinations display
functions in both canonical and non-canonical Wnt pathways [32–34]. In general, Wnt1, 2,
3a, 8a, 8b, 10a, 10b and FZD1, 5, 7, 9 are classified as canonical components, whereas Wnt4,
5a, 5b, 6, 7a, 7b, 11 and FZD2, 3, 4, 6 are considered non-canonical components. Wnt2b, 9a,
9b, 16 and FZD8, 10 remain unclassified. Moreover, single transmembrane receptors, such
as LDL receptor-related proteins 5/6 (LRP5/6), the receptor tyrosine kinase-like orphan
receptors 1/2 (ROR1/2), and the tyrosine kinase-related receptor RYK, contribute to Wnt
signaling specification by acting as FZD co-receptors [35–42]. For example, ROR1 and
ROR2 were associated with the activation of β-catenin-independent Wnt signaling, notably
via the non-canonical ligand Wnt-5a [43]. In addition, the LRP5/6, ROR1/2 and RYK
receptors can bind to Wnt ligands and transduce them on their own [44–53], thus adding
another layer of complexity.

In this review, we focused on strategies for selectively targeting canonical Wnt signals,
the transduction of which relies on the intracellular stabilization and co-transcriptional
activity of β-catenin. In resting cells, i.e., in the absence of extracellular Wnt signals, the
cytoplasmic concentration of β-catenin is maintained constant through the balance between
synthesis and proteasomal degradation [54–56]. β-catenin degradation is initiated by a
multi-protein complex composed of the scaffold proteins axins and Adenomatous Polyposis
Coli (APC) associated with the serine/threonine kinases Casein Kinase 1 α (CK1α) and
Glycogen Synthase Kinase 3 β (GSK3β) [11,57–67]. Within this complex, GSK3β and
CK1α mediate β-catenin phosphorylation, a key recognition signal for the S-phase kinase-
associated protein 1 (SKP1)-Cullin1-F-box protein (SCFβ-TrCP)-dependent ubiquitination
and subsequent proteasomal degradation of β-catenin [68,69]. Once initiated by the binding
of an extracellular Wnt ligand to a transmembrane FZD receptor, the signal transduction is
relayed inside the cell through Disheveled (DVL), which recruits the β-catenin degradation
complex at the plasma membrane [70–76]. This prevents SCFβ-TrCP-induced β-catenin
ubiquitination and degradation, leading to β-catenin accumulation in the cell, including
in the nucleus [68]. There, β-catenin binds to the transcription factors lymphoid enhancer
factor-1 and T-cell factor (TCF) and recruits co-transcriptional activators [B-cell lymphoma 9
(BCL9), B-cell lymphoma 9-like, Pygorus], chromatin modifiers, and remodeling factors
[CREB binding Protein (CBP), Brg-1], thereby enhancing the expression of many target
genes [77–81], including c-MYC. Importantly, c-MYC is the master gene responsible for the
oncogenic activity of the Wnt/β-catenin pathway in the intestine, where APC mutations
are sufficient for cancer initiation [82–84]. In addition to APC mutations, a significant
number of genetic alterations that induce β-catenin stabilization were identified in several
components of the Wnt/β-catenin signaling cascade and are considered critical events in
the development of different cancer types [85,86] (Table S1). Therefore, this pathway is
a major and challenging cancer research topic. Developed strategies include the use of
small molecule inhibitors, antibodies, and more recently, gene-based approaches, some of
which are showing promising outcomes in clinical trials. Yet, the Wnt/β-catenin pathway
is not targeted for cancer management in routine clinical practice. This narrative review
provides a comprehensive analysis of current clinical research and perspectives on the
topic of inhibiting Wnt/β-catenin pathway activity for future implementation in routine
clinical practice. Included are inhibitors of the Wnt/β-catenin pathway tested in clinical
trials alone or in combination with other anticancer therapies. Excluded are anticancer
agents with unproven Wnt/β-catenin pathway inhibitory activity, Wnt/β-catenin pathway
inhibitors still in preclinical development, and Wnt/β-catenin pathway inhibitors whose
mechanism of action is unknown.

2. Wnt/β-Catenin Inhibitors in Clinical Trials

Several comprehensive reviews described strategies to selectively inhibit the Wnt/β-
catenin pathway [87–89]. These involve the use of two distinct groups of compounds that
target the canonical and non-canonical Wnt/β-catenin pathways. Many of these com-



Pharmaceuticals 2024, 17, 949 3 of 38

pounds were tested in monotherapy and/or in combination with conventional chemother-
apy agents in patients with cancer to determine their therapeutic index in clinical trials.
This section provides an up-to-date overview of clinical trials designed to selectively target
the Wnt/β-catenin pathway, and highlights the clinical benefits and adverse side effects of
the Wnt/β-catenin inhibitors used as anticancer agents.

2.1. Clinical Trials Using Canonical Wnt-Dependent Inhibitors (WDi)

Canonical WDi are antibodies (Scheme 1) or small molecules (Scheme 2) that selectively
target ligands, receptors, or modulators of the canonical Wnt/β-catenin signaling pathway.

2.1.1. Antibody-Based Therapies

Antibody-based strategies selectively target components exposed at the cell surface,
thus representing attractive approaches for targeting Wnt/β-catenin signaling in cancer
cells [90]. The developed strategies are based on recombinant fusion proteins that can trap
Wnt ligands and prevent Wnt-FZD interaction, or on antibodies that can antagonize Wnt
binding to FZD receptors and block Wnt signal transduction.

Anti-Wnt molecules: the first class of recombinant fusion proteins to trap Wnt lig-
ands is represented by ipafricept (OMP-54F28), developed by OncoMed Pharmaceuticals.
Ipafricept includes the Fc fragment of human IgG1 fused to the extracellular portion of
the human FZD-8 receptor. Several phase I studies on ipafricept reported encouraging
outcomes for cancer treatment. In a first-in-human phase I study (NCT01608867), ipafri-
cept administration led to stable disease in patients with advanced solid tumors, such
as desmoid and germ cell tumors, at acceptable tolerated doses [91]. In a phase I study
(NCT02050178) in which ipafricept was combined with the anti-metabolic agent gemc-
itabine and the anti-mitotic agent nab-paclitaxel, a significant number of patients displayed
partial response and stable disease and the clinical benefit rate was 81% (i.e., the best
response) in patients with previously untreated stage IV pancreatic cancer [92]. A dose
escalation study of ipafricept (OMP-54F28) in combination with paclitaxel and the cy-
totoxic agent carboplatin (NCT02092363) also showed an overall response rate of 75.7%
in patients with recurrent platinum-sensitive ovarian cancer. However, bone toxicity at
efficacy doses was considered an obstacle for further development of its use as ovarian
cancer treatment [93]. The observed bone toxicity is not surprising given the critical role of
Wnt/β-catenin signaling in bone homeostasis [94].

Anti-Wnt receptor molecules: Strategies to target canonical Wnt receptors mainly
involved monoclonal antibodies against FZDs [95]. For instance, vantictumab (OMP-18R5)
is a human IgG2 antibody against the FZD extracellular domain developed by OncoMed
Pharmaceuticals, in partnership with Bayer [96].

The first-in-human, phase I study on OMP-18R5 in 18 patients with advanced solid
tumors (NCT01345201) showed stable disease in three patients with manageable and re-
versible bone toxicity, thus allowing dose escalation to continue [97]. Recently published
results of a phase Ib clinical trial on vantictumab combined with paclitaxel (NCT01973309)
indicate promising efficacy at well tolerated doses in patients with locally advanced or
metastatic HER-2 negative breast cancer. However, the incidence of bone fractures was
considered as a limitation to future clinical developments in metastatic breast cancer [98].
Another phase Ib study (NCT02005315) recently reported that the combination of vantic-
tumab with nab-paclitaxel and gemcitabine in patients with previously untreated metastatic
pancreatic cancer had to be discontinued due to concerns about bone-related safety [99].

Tabituximab barzuxetan (OTSA-101) is a radiolabeled humanized monoclonal anti-
body against FZD-10 developed by OncoTherapy Science. Currently, 111In-radiolabeled
OTSA-101 is tested in patients with relapsed or refractory synovial sarcoma (NCT01469975;
NCT04176016) because a previous study with 90Y-radiolabeled OTSA-101 reported hema-
tological toxicity [100].

BNC101, a human monoclonal antibody against the leucin-rich repeat-containing
G-protein coupled receptor 5 (LGR5), was developed by Bionomic Limited and eval-
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uated in a phase I, dose escalation study in patients with metastatic colorectal cancer
(NCT02726534) [101]. LGR5 is both a Wnt/β-catenin target gene and a potentiator of
Wnt/β-catenin activity through binding to its roof plate-specific spondin (R-spondin or
RSPO) ligands and co-interaction with FZD [102]. LGR5 is a promising target for cancer
therapy because it is overexpressed in various tumor types and stimulates cancer stem
cell proliferation and self-renewal, cancer cell mobility, tumor formation, and epithelial-
mesenchymal transition [103]. The clinical trial on BCN101 was completed, but the results
are yet to be published.

An emerging approach to target Wnt receptors or co-receptors involves the use of
nanobodies, which are single monomeric variable domains of antibodies produced by
genetic engineering. To date, BI905677 is the only nanobody targeting Wnt/β-catenin
signaling tested in a clinical trial (NCT03604445). This humanized bi-paratopic nanobody
developed by Boehringer is composed of two domains that block the LRP5/6 co-receptors.
In this phase I open-label study, dose-escalation in patients with advanced solid tu-
mors showed that BI905677 is well tolerated and associated with stable disease in 35%
of patients [104].

Anti-extracellular modulator antibodies: The most prominent examples of anti-
bodies against extra-cellular modulators of Wnt/β-catenin signaling target Dickkopf-1
(DKK1), a secreted Wnt/β-catenin inhibitor that prevents LRP5/6 heterodimerization
with FZDs [45,105,106]. Among them, the humanized monoclonal antibody DKN-01, de-
veloped by Leap Therapeutics (Nasdaq: LPTX), showed promising outcomes in several
phase I clinical trials (NCT01457417; NCT02013154; NCT02375880; and NCT01711671) and
was evaluated in phase II studies for many cancer types (NCT03395080; NCT03645980;
NCT05761951; NCT04057365; NCT03837353; NCT04166721; NCT03818997; NCT05480306;
and NCT04363801) [107]. Recently published results for the clinical trial NCT02375880
indicate that 300 mg of DKN-01, in combination with gemcitabine and cisplatin, is well
tolerated in patients with advanced biliary tract cancer. However, this combination did not
seem to have additional activity compared with the gemcitabine and cisplatin combination
alone [108]. As DKN-01 has potential anti-angiogenic and immunomodulatory activities,
it was considered that DKN-01 dose/intensity should be increased. Therefore, a phase
II study using 600 mg of DKN-01 in combination with the immune checkpoint inhibitor
nivolumab [an anti-Programmed cell Death 1 (PD-1) antibody] was started for patients
with advanced biliary tract cancer (NCT04057365). Recent results from a phase IIa clinical
trial on DKN-01 in combination with the immune checkpoint inhibitor atezolizumab [an
antibody against Programmed cell Death ligand-1 (PD-L1)] in patients with advanced
esophagogastric adenocarcinoma (NCT04166721) reported a manageable safety profile
without new safety signals due to DKN-01 [109]. Moreover, BHQ880, a phage-derived
anti-DKK1 antibody developed by Novartis Pharmaceuticals, was evaluated in multiple
myeloma because it can increase osteoblast differentiation and inhibit malignant plasma cell
growth and osteolytic lesion development [110,111]. In a phase II clinical trial evaluating
disease response in patients with smoldering multiple myeloma (NCT01302886), intra-
venous administration of BHQ880 was well tolerated and associated with stable disease in
most patients. BHQ880 was also assessed in phase I/II clinical trials in combination with
the proteasome inhibitor bortezomib and the anti-inflammatory and immunosuppressive
agent dexamethasone in patients with untreated multiple myeloma and renal insufficiency
(NCT01337752), or with zoledronic acid and standard anti-myeloma chemotherapy in pa-
tients with relapsed or refractory myeloma (NCT00741377). The published results of the
second trial show stable disease in two patients, and a shift from stable disease to partial
response in 2/28 patients, although the use of combination treatments did not allow for
assessing BHQ880-specific effects [112].

Recently, two additional classes of secreted Wnt/β-catenin inhibitors attracted much
interest due to exciting findings in animal cancer models [113,114]. The first targets
the RPSO ligands for the LGR 4/5/6 receptors [115]. RPSO behave as potent Wnt sig-
nal enhancers and stem cell growth factors by neutralizing zinc and ring finger 3 and
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ring finger 43 (RNF43), two transmembrane E3 ubiquitin ligases that ubiquitinate FZDs,
thereby promoting their endocytosis and degradation [116,117]. RSPO2 and RSPO3 were
also identified as oncogenesis drivers in colon cancer subsets and other solid tumor
types [24,118]. Rosmantuzumab (OMP-131R10), an anti-RPSO-3 monoclonal antibody
developed by OncoMed Pharmaceuticals is tested in an ongoing phase I dose escalation
study in patients with advanced solid tumors and metastatic colon cancer (NCT02482441).
The initial results indicate that OMP-131R10 is well tolerated and three patients had pro-
longed stable disease for 112 days as the best objective response [119]. These encouraging
observations could at least partly result from the anti-fibrosis activity of OMP-131R10 [120],
fibrosis being an important player in malignant transformation, cancer aggressiveness, and
response to treatment [121–123]. The second inhibitor class targets NOTUM, an acetylase
that palmitoylates Wnt ligands, thereby preventing their binding to FZD receptors [124,125].
NOTUM inhibition abrogates the ability of APC-mutated cells to expand and form intesti-
nal adenomas, suggesting a potential application for people at a high risk of developing
colorectal cancer [114]. This inhibitor was not tested yet in clinical trials.

2.1.2. Small Molecule-Based Therapies

Porcupine inhibitors (PORCNi): Small molecules acting as canonical WDi in clinical
trials are mostly represented by PORCNi that are designed to inhibit Wnt autocrine func-
tion by preventing both secretion and binding of Wnt ligands to FZD receptors [126,127].
PORCN is an endoplasmic reticulum-resident membrane-bound O-acyltransferase that
mediates Wnt palmitoylation on a highly conserved hairpin, a critical post-translational
modification for Wnt secretion and autocrine function [128]. Palmitoylation increases
Wnt ligand hydrophobicity, trapping them close to neighboring cells and increasing their
affinity for FZDs to initiate signal transduction [34]. PORCNi showed promising effects in
different tumor types, including colorectal, pancreatic, hepatocellular, and head and neck
cancer [25,129–133]. However, long-term exposure of colon cancer cells is associated with
the emergence of a resistant population that carries frameshift deletions in the Wnt pathway
inhibitor axin1, leading to protein loss [134]. None of the available PORCNi were marketed
and only four molecules (LGK974, ETC-159, CGX1321, and RXC004) reached the phase
I stage [126]. Three clinical trials on LGK974 were launched by Novartis (NCT01351103),
Array bioPharma (NCT02278133), and the University of Michigan Rogel Cancer Center
(NCT02649530). This last trial was withdrawn for undisclosed reasons. Recent published
results from a single-agent phase I study on the PORCNi WNT974 (NCT01351103) in pa-
tients with advanced solid cancer reported an effect on immune cell recruitment to the
tumor and checkpoint inhibitor activity with limited anti-tumoral activity [135]. Similarly,
a phase I expansion study (NCT02521844) in which the PORCNi ETC-159 was adminis-
tered with bone protective treatment showed increased immune infiltration in advanced
tumors [136]. However, a phase Ib dose escalation study in which ETC-159 was combined
with the immune checkpoint inhibitor pembrolizumab (anti-PD-1 antibody) in advanced
or metastatic solid tumors was discontinued due to disease progression in 90% of the in-
cluded patients and significant side effects, despite potential clinical benefit in patients with
microsatellite stable (MSS) colon cancer [137]. CGX1321, the PORCNi developed by Cure-
genix, strongly inhibits the Wnt pathway with manageable side effects when administered
alone or in combination with pembrolizumab in patients with advanced gastrointestinal
tumors (NCT02675946; NCT03507998). In combination with pembrolizumab, CGX1321
showed promising efficacy results in patients with tumors carrying RSPO fusions. This
supports its further development as monotherapy and in combination with anti-PD-1/L1
antibodies for this cancer type that is refractory to standard therapies and to immune
checkpoint inhibitors [138]. CGX1321 is currently tested as an oral treatment in patients
with relapsed or refractory solid tumors, including colorectal, gastric, pancreatic, bile duct,
liver, and esophageal carcinoma [139]. RXC004, the PORCNi developed by RedxPharma,
also showed promising results in a phase I study in patients with advanced solid tumors
(NCT03447470) and was tested in a multi-arm phase II open-label study (NCT04907539),
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as monotherapy or in combination with the anti-PD-1 nivolumab, in patients with RNF43-
or RSPO-mutated, metastatic, and MSS colorectal cancer following standard treatments.
Results are not available yet [140]. Recently, it was reported that VHN-88, a novel POR-
CNi, limits progression of xenografted Wnt-driven human teratocarcinoma with high
autocrine Wnt signaling and pancreatic carcinoma with Wnt-sensitizing RNF43 mutations
and inhibits cancer cell stemness [141]

DVL inhibitors: Drugs initially used for different purposes were found to behave
as FZD inhibitors. For instance, niclosamide, a drug used as an anti-helminthic since the
mid-1960s and approved by the Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) for treating tapeworm infections, interferes with Wnt/β-catenin
signaling by promoting FZD1 internalization, leading to DVL-2 down-regulation, and also
by inducing degradation of the LRP6 transmembrane receptor [142–146]. Niclosamide
was assessed in a phase II clinical trial (NCT02519582). An ongoing study investigates its
safety and efficacy by oral administration in patients with metachronous or synchronous
metastases of colorectal cancer that progressed after therapy [147]. However, in a phase
I study in patients with castration-resistant prostate cancer treated with the androgen
receptor inhibitor enzalutamide, oral administration of niclosamide did not show any
clinical activity at safe doses (below 500 mg) [148]. Furthermore, the FDA-approved non-
steroidal anti-inflammatory drug sulindac prevents interaction of the PDZ domain of DVL
with FZD, thereby suppressing Wnt-induced β-catenin signaling [149,150]. Unfortunately,
sulindac did not show any significant clinical benefit in patients with lung or prostate
cancer [151–154]. Conversely, phase IIb/III clinical trials (NCT00005882, NCT00118365)
suggested that the combination of sulindac with the cytostatic agent eflornithine (diflu-
oromethylornithine or DFMO) might prevent colorectal adenoma development in pre-
disposed patients [155]. However, in a phase III clinical study in patients with Familial
Adenomatous Polyposis (FAP) (NCT01483144), the eflornithine-sulindac combination did
not significantly reduce disease progression rate compared with eflornithine alone [156]. A
secondary analysis of a randomized clinical trial in patients with FAP (NCT01187901) indi-
cated that sulindac combined with the EGFR inhibitor erlotinib significantly decreased the
number of colorectal polyps after 6 months of treatment [157,158]. More recently, reduced
breast density, as well as improved stiffness and quality of life were correlated with sulindac
treatment in women treated with aromatase inhibitors for breast cancer (NCT00245024;
NCT01761877) [159,160].
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2.2. Clinical Trials on Canonical Wnt-Independent Inhibitors (WIi)

Canonical WIi include small molecules that target β-catenin and components impli-
cated in the modulation of β-catenin stabilization (Scheme 3) or transcriptional activity
(Scheme 4).

2.2.1. Small Molecule-Based Therapies to Prevent β-catenin Stabilization

Tankyrase inhibitors (TNKSi): TNKSi are usually dual inhibitors of poly(ADP-
ribose)polymerase I and tankyrase 1/2 (TNKS1/2). TNKS1/2 stabilize axin, the
concentration-limiting component of the β-catenin degradation complex [161–164]. Inter-
estingly, it was reported that short-form APC mutations are potential biomarkers of TNKSi
sensitivity in colorectal cancer [165]. TNKSi are represented by stenoparib (also known as
E7449, XAV939, or 2X-121) and nesuparib (JPI-547) [162]. In a clinical trial by the Japanese
company Eisai, in patients with advanced solid tumors (NCT01618136), E7449 showed anti-
tumor activity. Among the 41 patients with acceptable tolerability, 13 displayed durable
stable disease and 2 partial response [166]. This study also identified the 2X-121 drug re-
sponse predictor as a novel tumor-agnostic molecular biomarker to distinguish responders
from non-responders to E7449. The TNKSi JPI-547 developed by Onconic Therapeutics
also showed promising anti-tumor activity in Wnt-addicted pancreatic cancer cells and in
BRCA-deficient breast and ovary cancer cell xenografts, as a single-agent or in combination
with chemotherapy drugs and immune checkpoint inhibitors, thus encouraging the design
of clinical trials to assess this drug [167,168]. Preliminary results from a phase I dose escala-
tion and expansion study in patients with advanced solid tumors (NCT04335604) report
11 patients with confirmed partial response and 15 with stable disease among 39 patients
with breast or ovarian cancer with germline or somatic BRCA/homologous recombination
repair (HRR) mutations. The overall response rate of 28.2% and the disease control rate
of 64.1% suggest that JPI-547 monotherapy is effective in patients with BRCA/HRR muta-
tions [169]. Moreover, JPI-547 is currently being evaluated for the treatment of fallopian
tube cancers, primary peritoneal, and non-small cell lung cancer [170].

CK1 inhibitors: The FDA-approved anti-helminthic drug pyrvinium was first de-
scribed in 1946 as part of the US patent number 2,515,912 filed by Lare E.V. and Brooker
L.G.S, and was then found to inhibit β-catenin degradation by stimulating its CK1α-
induced phosphorylation [171–173]. Pyrvinium is effective in several cancer types, and
particularly in cancer stem cells [174], and was recently assessed in a phase I clinical trial that
included patients with early stage pancreatic ductal adenocarcinoma (NCT05055323) [175].

V-ATPase inhibitors: v-ATPase inhibitors prevent the inhibition of transmembrane
protein 9 (TMEM9)-v-ATPase-induced vesicular acidification, thereby protecting APC from
lysosomal degradation and enhancing β-catenin degradation [176]. For instance, chloro-
quine (CQ) and hydroxychloroquine (HCQ) display effects in cancer cells and the tumor
microenvironment when used as monotherapy, and enhance the effects of chemotherapy
when used as adjuvants in combination therapies [177,178]. HCQ and CQ are anti-malarial
drugs chemically related to quinacrine and also the most commonly used drugs for acute
and chronic inflammatory diseases, such as rheumatoid arthritis, systemic lupus erythe-
matosus, Sjogren’s syndrome, and sarcoidosis. Several preclinical studies showed that
HCQ and CQ sensitize the chemotherapy effects in many tumor types, including central
nervous system, lung, breast, pancreas, leukocytes, skin, and colon and/or rectum cancers.
Unfortunately, HCQ and CQ showed poor outcomes, particularly due to non-specific
biodistribution, low aqueous solubility, low bioavailability at target sites, limited transport
across tissue barriers, and multiple adverse events such as retinal toxicity, diarrhea, and
hair loss.

Non-canonical Wnt signaling activators: Small molecules that act as non-canonical
Wnt agonists can indirectly enhance β-catenin degradation. For instance, the Wnt5A-
mimicking peptide Foxy-5, developed by WNTResearch AB, activates the non-canonical
Wnt/Ca2+ pathway and might inhibit Wnt/β-catenin signaling at least partly through
activation of the serine/threonine Protein Kinase C alpha (PKCα). Then, PKCα directly
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phosphorylates β-catenin and the orphan receptor RORα, increasing β-catenin degrada-
tion and inhibiting its co-transcriptional activity [179]. Given its promising anti-tumoral
activity in preclinical models of colon, breast, and prostate cancer [180–183], Foxy-5 was
evaluated in phase I and II clinical trials in patients with colon, breast, or prostate can-
cer (NCT02020291; NCT02655952) and in a phase II study in patients with colon cancer
(NCT03883802) [184]. Encouraging findings on its efficacy in impairing metastasis forma-
tion in patients with cancers with low or absent WNT5A expression recently led to the
patent application US20210008149 for Foxy-5 involvement in cancer relapse treatment and
prevention [185].

PKC activators: PKCs are relevant targets for cancer therapy [186,187]. Several
PKC family members behave both as tumor suppressors and Wnt/β-catenin signaling
inhibitors [188,189]. For instance, PKCδ induces apoptosis and promotes β-catenin degra-
dation through a GSK3β and β-TrCP-independent mechanism [190]. Moreover, PKCζ,
similar to PKCα, behaves as a tumor suppressor in the intestine and induces β-catenin
degradation, but through a phosphorylation-dependent mechanism distinct from that of
PKCα [191,192]. PKC activators include the macrolide lactone bryostatin that is slightly
more selective for PKCϵ, but that did not show any significant benefit in clinical cancer trials.
Conversely, di-terpene esters have a good affinity for PKCα and δ and are more promising
candidates in some cancers. For example, the di-terpene ester ingenol mebutate (PEP005),
commercialized by Peplin, is a traditional home remedy for warts and corns, and showed
anticancer and pro-inflammatory effects in several clinical trials when topically applied on
skin for treating pre-malignant and malignant lesions [193–211]. PEP005 might have a dual
mechanism of action: rapid lesion necrosis and specific neutrophil-mediated, antibody-
dependent cellular cytotoxicity [212]. Several clinical trials (NCT01325688, NCT00329121,
NCT00432185, NCT00108134, NCT00108121, NCT02723721, NCT03546166, NCT02990221,
and NCT03569345) assessed its effect as a topical treatment of basal cell carcinoma, squa-
mous cell carcinoma, and intraepidermal carcinoma and a phase I/II clinical study showed
good results for the topical treatment of non-melanoma skin cancers [195]. Conversely,
the published results of the prospective study NCT03546166 suggest that PEP005 does not
bring any added value to the existing therapeutic options for low-risk superficial basal cell
carcinoma and cannot be recommended for this indication [193]. Moreover, PEP005 was
not considered for the management of deep-seated tumors due to the serious risk of toxic-
ity following systemic administration. Phorbol-12-myristate-13-Acetate (PMA), another
diterpene ester, promotes tumor formation when repeatedly applied on mice skin. This po-
tentially discouraged its clinical use; however, upon systemic administration, PMA showed
significant clinical benefits in patients with leukemia, and led to temporary remission
in patients with myeloid leukemia refractory to conventional therapies [213–215]. More
recently, two clinical trials were launched to assess the systemic administration of PMA
in patients with hematologic malignancies (NCT00004058; NCT01009931). One patient
with leukemia treated with PMA, dexamethasone, and the non-steroidal anti-inflammatory
drug choline magnesium trisalicylate (Trilisate) experienced severe side effects, including
gastrointestinal tract and central nervous system hemorrhages, and died before the study
ended (NCT01009931).
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Endoplasmic reticulum stress activators: WIi can also promote β-catenin degradation,
but independently from the degradation complex. For instance, CWP232291 (CWP291)
induces apoptosis through endoplasmic reticulum stress activation [216–219]. In a phase
I study conducted by JW Pharmaceuticals in patients with relapsed or refractory acute
myeloid leukemia and myelodysplastic syndrome (NCT02426723), CWP232291 monother-
apy demonstrated anti-tumor activity with acceptable side effects for further enrollment in
a combination therapy arm [220]. More recent results from a phase I study on CWP232291
in 54 patients with relapsed or refractory acute myeloid leukemia and myelodysplastic
syndrome (NCT01398462) include one partial and one complete response. The most com-
mon adverse events were nausea in almost 50% of patients, vomiting in more than 33% of
patients, and diarrhea in more than 25% of them [221].

2.2.2. Small Molecule-Based Therapies to Prevent β-catenin Co-Transcriptional Activity

Inhibitors of β-catenin-CBP interaction: Among the WIi that prevent β-catenin co-
transcriptional activity, PRI-724 (or the active agents ICG001 and C82) was developed by
PRISM Pharma to specifically target the interaction between β-catenin and its transcrip-
tional co-activator CBP [222–225]. PRI-724 promoted immune cell infiltration in gliomas,
enhancing the immunotherapy effects [226]. PRI-724 represents the second generation of
specific CBP-β-catenin interaction antagonists that were primarily developed for treating
fibrosis-associated diseases [227–230]. In a dose escalation phase I trial in patients with
hepatitis C virus-related cirrhosis (NCT02195440), PRI-724 showed dose-dependent plasma
exposure and led to improvement in 3/14 patients. However, it was associated with serious
adverse events, including liver damage, nausea, and vomiting [231]. Recent results from a
phase I/IIa study (NCT03620474) also reported serious adverse effects, such as nausea and
diarrhea, without significant decrease in hepatic fibrosis [232]. However, in a first-in-human
phase I study in patients with advanced solid tumors (NCT01302405), PRI-724 showed ac-
ceptable toxicity [233]. This safety profile was confirmed in a phase Ib trial in patients with
metastatic pancreatic cancer where the PRI-724-gemcitabine combination had modest clini-
cal activity (NCT01764477), warranting next-phase clinical trials [234,235]. E7386, a non-
specific CBP-β-catenin interaction antagonist developed by Eisai, also showed anti-tumor
activity in pre-clinical tumor models with activated Wnt/β-catenin signaling [236,237].
E7386 is currently clinically tested alone (NCT03833700; NCT03264664) or in combination
with chemotherapy drugs (NCT04008797; NCT05091346) in patients with solid tumors.
In a dose-escalation study in patients with advanced solid tumors (NCT03833700), oral
administration of 120mg of E7386 was well tolerated and was considered the recommended
dose for the expansion study [238]. In a phase I study (NCT04008797), the combination of
E7386 with the multi-kinase inhibitor lenvatinib showed promising activity in patients with
hepatocellular carcinoma. Toxicity could be managed by administering antiemetics [239].

Inhibitors of the β-catenin-transducin β-like protein 1 (TBL1) interaction: Tega-
vivint (BC2059) is a WIi developed by Iterion Therapeutics that selectively disrupts the
interaction of nuclear β-catenin with TBL1, a key player in enhancing β-catenin co-
transcriptional activity by recruiting it to the promoter of Wnt target genes [240–243]. TBL1
also protects β-catenin from proteasomal degradation through binding to the SKP1/Cullin-
1/F-box protein complex (SCF complex) [244,245]. Given its anti-tumor activity in desmoid
cancer cells [241], tegavivint safety was evaluated in patients with desmoid cancer in a
phase I, open-label, non-randomized study (NCT03459469). Tegavivint was well toler-
ated with an overall response of 25%, warranting its continued development for desmoid
tumors [246]. Tegavivint is also assessed in other cancer types, including metastatic EGFR-
mutated non-small cell lung cancer (NCT04780568), leukemia (NCT04874480), hepatocellu-
lar carcinoma (NCT05797805), and relapsed or refractory B-cell lymphoma (NCT05755087;
NCT04851119).

Inhibitors of CDC-like kinases (CLKs): Small molecule inhibitors can also behave
as indirect inhibitors of β-catenin transcriptional activity by disrupting the gene expres-
sion machinery. For instance, cirtuvivint (SM08502), a pan-inhibitor of intranuclear CLK
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developed by Biosplice Therapeutics [247], inhibits Wnt/β-catenin activity by preventing
serine and arginine-rich splicing factor (SRSF) phosphorylation, thereby disrupting spliceo-
some activity and blocking activation of Wnt/β-catenin target genes [248–250]. SM08502
showed anti-tumor activity in gastrointestinal cancer models with reduced Wnt pathway
activity [247]. It is currently evaluated alone (NCT03355066) or in combination with hor-
monal therapies or chemotherapy agents NCT05084859) in patients with advanced solid tu-
mors. Biosplice Therapeutics is currently developing SM04755, a CLK2 and dual-specificity
tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitor, as an experimental
treatment for tendinopathy [251]. Moreover, SM04755 safety and pharmacokinetic profiles
were assessed in a phase I, open-label, dose escalation, dose-finding study (NCT02191761)
in patients with advanced gastrointestinal cancer.

In addition to those evaluated in clinical trials, many Wnt/β-catenin signaling in-
hibitors are used for basic research. Other molecules underwent drug repurposing and
are currently clinically tested in several cancer types to inhibit Wnt/β-catenin signaling.
These include dietary phytochemicals, such as naringenin, resveratrol, avenanthramides,
epigallocatechin, curcumin, quercetin, silibinin, genistein, mangiferin, and many others
that are considered serious options for cancer chemoprevention and treatment, given their
anti-stem cell, anti-metastasis, and anti-inflammatory activities [252–258]. Moreover, in-
creasing technological improvements provide opportunities for developing new selective
Wnt/β-catenin inhibitors for many diseases, the incidences of which are increasing (e.g.,
cancer, Alzheimer’s disease, and osteoporosis). Biosplice Therapeutics, Samil Pharmaceuti-
cal, Prism Pharmaceutical, Ohara Pharmaceutical, and Eisai are among the leading players
in this growing market. However, none of the compounds selectively designed to inhibit
the Wnt/β-catenin pathway are approved by FDA or EMA.



Pharmaceuticals 2024, 17, 949 13 of 38
Pharmaceuticals 2024, 17, x FOR PEER REVIEW 13 of 39 
 

 

 
Scheme 3. Clinical trials (https://clinicaltrials.gov/) using small molecules inhibitors (SMi) as Wnt-independent inhibitors (WIi) preventing β-catenin stabilization. 
API: active pharmaceutical ingredient; SD: stable disease; PR: partial response; CR: complete response [166,169,175,178,184,193,195–211,220,221]. 
Scheme 3. Cont.



Pharmaceuticals 2024, 17, 949 14 of 38Pharmaceuticals 2024, 17, x FOR PEER REVIEW 14 of 39 
 

 

 

Scheme 3. Clinical trials (https://clinicaltrials.gov/) using small molecules inhibitors (SMi) as Wnt-independent inhibitors (WIi) preventing β-catenin stabilization.
API: active pharmaceutical ingredient; SD: stable disease; PR: partial response; CR: complete response [166,169,175,178,184,193,195–211,220,221].

https://clinicaltrials.gov/


Pharmaceuticals 2024, 17, 949 15 of 38Pharmaceuticals 2024, 17, x FOR PEER REVIEW 15 of 39 
 

 

 
Scheme 4. Clinical trials (https://clinicaltrials.gov/) using small molecules inhibitors (SMi) as Wnt-independent inhibitors (WIi) preventing β-catenin transcrip-
tional activity. API: active pharmaceutical ingredient; SD: stable disease; PR: partial response; CR: complete response [231–235,238,239,246]. 
Scheme 4. Clinical trials (https://clinicaltrials.gov/) using small molecules inhibitors (SMi) as Wnt-independent inhibitors (WIi) preventing β-catenin transcriptional
activity. API: active pharmaceutical ingredient; SD: stable disease; PR: partial response; CR: complete response [231–235,238,239,246].

https://clinicaltrials.gov/


Pharmaceuticals 2024, 17, 949 16 of 38

3. Future Challenges

As for the vast majority of anticancer treatments, a critical limitation of Wnt/β-catenin
inhibitors is their therapeutic index (i.e., the difficulty of combining effective anti-cancer
activity with acceptable toxicity) due to the crucial role of the Wnt/β-catenin pathway
in maintaining the undifferentiated state of stem cells and in making cell fate decisions
throughout life to preserve adult tissue homeostasis or for regeneration, for instance after
injury. These vital functions explain why mutations in components or regulators of this
pathway promote cancer development by increasing cancer cell growth and survival, or
by acting on the tumor microenvironment [114,259–261], and also why protecting healthy
tissues from Wnt/β-catenin inhibitors must be a major concern. Many adverse events were
observed during the administration of Wnt/β-catenin inhibitors as monotherapies or in
combination with other anticancer drugs (Schemes 1–4). The most common are nausea,
vomiting, fatigue, diarrhea, neutropenia, headache, bone marrow toxicities, fractures, and
hemorrhage. Furthermore, due to the patients’ quality of life deterioration, dose escalation
was sometimes interrupted before reaching the effective anti-tumoral concentration, leading
to inconclusive data about the anticancer activities of the tested Wnt/β-catenin inhibitors.
This section explores current approaches to improve their efficacy while limiting harmful
side effects.

3.1. Drug Profiling

The molecular mechanisms underlying Wnt/β-catenin signaling regulation are very
complex and the homeostasis of healthy tissues is highly dependent on Wnt signaling.
Therefore, the design of anticancer drugs that selectively and efficiently decrease the
oncogenicity of this pathway in cancer cells is a major challenge. Gene mutations, high-
resolution multi-omics data, advances in biotechnologies, and a better understanding of
cancer mechanisms provided valuable information that can be used to identify relevant
therapeutic targets and design new anticancer drugs, including Wnt/β-catenin inhibitors.
However, experimental drug design is costly and time-consuming, without guarantee
of success (~2.8 billion dollars and 10 to 17 years are needed to bring a new drug into
the clinic, and only 10% of all compounds evaluated in clinical trials will reach the mar-
ket) [262]. Since the 1980s, computer-aided drug design (or in silico virtual screening) sig-
nificantly improved the cost-effectiveness and efficiency of screening large libraries of com-
pounds. This led to the identification of many anticancer drug candidates, including some
Wnt/β-catenin inhibitors, such as the TNKS1/2 inhibitor LZZ-02 [263] and small molecules
to block β-catenin-TCF4 interactions [264,265]. Thanks to the considerable advances in
computer hardware and deep neural networks, artificial intelligence is now emerging
as a more powerful tool to design anticancer drugs, some of which successfully entered
phase II/III clinical trials in recent years [266]. To our knowledge, so far, no artificial
intelligence-designed Wnt/β-catenin inhibitor was tested in clinical trials.

3.2. Drug Combinations

Numerous studies demonstrated the superiority of combination therapy over monother-
apies for cancer management. Combination therapies often display greater effects than
the sum of the effects expected with each drug on its own. In addition, multi-target
synergy can achieve therapeutic efficacy, while overcoming adverse events thanks to the
administration of lower doses of each drug. For example, as niclosamide clinical use in
patients with cancer is limited by its water solubility, safety, and resistance, it was com-
bined with chemotherapeutic drugs, targeted drugs, radiotherapy, and immunotherapy
to enhance its anti-tumor effects [267]. Drug combinations can also allow the rapid and
cost-effective implementation of therapeutic alternatives because the different therapeutic
agents may be chosen directly from the existing pharmacopoeia. Optimizing drug combi-
nation strategies was a research topic for more than 20 years, leading to the development of
high-throughput combination strategies to systematically test combinations of thousands
approved drug ingredients, emerging therapeutics, and research probes against different
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cell phenotypes that represent different diseases [268,269]. Quantitative methods were
developed to determine the dose ratios that maximize the intended effect and minimize the
toxic effects [270,271]. However, all experimental models still present some limitations and
must be wisely chosen in function of the available data and study type (in vitro, in vivo,
or clinical trial). As described in Section 2, several therapeutic combinations that include
Wnt/β-catenin inhibitors were evaluated in different cancer types; for instance, the anti-
Wnt antibody ipafricept (OMP54F28) or the anti-FZD antibody vantictumab (OMP18R5)
with gemcitabine and nab-paclitaxel (NCT02050178; NCT02005315) [92,99]. Ipafricept was
also combined with paclitaxel alone (NCT019703309) or with the cytotoxic compound
carboplatin (NCT02092363) [93]. Despite promising efficacy results at well-tolerated doses,
bone toxicity is a major issue with these combinations and is considered a serious limitation
for future clinical developments. The combination of the anti-DKK1 antibody DKN-01 with
nab-paclitaxel and gemcitabine did not show any benefit compared with nab-paclitaxel and
gemcitabine alone in advanced biliary tract cancer [108]. A more promising combination is
the administration of Wnt/β-catenin inhibitors with immune checkpoint inhibitors. Over-
expression of immune checkpoint molecules in the tumor microenvironment has a critical
role in anti-tumor immunity evasion and cancer progression; however, immune checkpoint
inhibitors showed clinical benefit only in a subset of patients, suggesting immunosup-
pressive mechanisms within tumors [272,273]. Interestingly, the Wnt/β-catenin pathway
is recognized as an important oncogenic signaling pathway related to immune evasion.
Particularly, increased expression or activity of β-catenin was correlated with impaired
recruitment of immune cells in tumors, a poor prognostic factor [274]. Therefore, the com-
bination of Wnt/β-catenin inhibitors with immune checkpoint inhibitors should increase
immune cell infiltration and the tumor sensitivity to immune checkpoint therapy. Several
immune checkpoint inhibitors, including nivolumab (anti-PD-1 antibody), pembrolizumab
(anti-PD-1 antibody), and atezolizumab (anti-PD-L1 antibody), were tested in combina-
tion with Wnt/β-catenin inhibitors in clinical trials. For example, the DKN-01 antibody
was combined with nivolumab (NCT04057365) and atezolizumab (NCT04166721) for the
treatment of biliary tract and esophagogastric cancer [109], and the PORCNi ETC-159 and
CGX1321 were combined with pembrolizumab for metastatic solid cancer (NCT02521844)
and gastrointestinal cancer management (NCT02675946; NCT03507998) [137,138]. The
ETC-159-pembrolizumab combination resulted in a significant increase in immune cell infil-
tration in solid tumors, but with significant adverse events. The CGX1321-pembrolizumab
combination showed efficacy in gastrointestinal tumors harboring RPSO fusions. An on-
going study is assessing the RXC004-nivolumab combination (NCT049075539) in patients
with RNF43- or RSPO-mutated, metastatic, and MSS colorectal cancer following standard
treatments [140].

3.3. Drug Targeting

Drug targeting is an attractive strategy to selectively deliver active concentrations of
anticancer drugs at the tumor site, while protecting healthy tissues from the drug toxicity.
The aim of current studies is to enhance the cytotoxic activity of agents that selectively
target Wnt/β-catenin components at the cancer cell surface [for instance, using antibody-
drug conjugates (ADCs)] and to preferentially deliver Wnt/β-catenin inhibitors in cancer
cells (using targeting systems such as nanovectorization approaches) in order to increase
their efficacy and safety.

3.3.1. ADC-Based Approaches

To date, thirteen ADCs were approved by the FDA for cancer management [275]. An
ADC is made of a cytotoxic molecule chemically linked to a monoclonal antibody, which
can selectively target biomolecules expressed at the surface of cancer cells, be internal-
ized through endocytosis routes, and deliver the cytotoxic drug inside the cell. Several
ADCs that selectively target Wnt signaling gave promising results in preclinical studies
(Scheme 5). In septuximab vedotin (F7-ADC), a human anti-FZD7 antibody is conjugated



Pharmaceuticals 2024, 17, 949 18 of 38

to the anti-mitotic microtubule inhibitor monomethyl auristatin E (MMAE). In preclin-
ical models, this ADC induced ovarian tumor regression without acute toxicities [276].
PF-06647020, a PTK7-targeted ADC made of a humanized antibody against PTK7 conju-
gated with the auristatin microtubule inhibitor Aur0101, also induced tumor regression in
a subset of patient-derived xenograft models, without significant signs of toxicity [277,278].
PTK7 is an atypical receptor tyrosine kinase family member without intrinsic tyrosine
kinase activity, but with key roles during embryogenesis and carcinogenesis. PTK7 can
modulate the Wnt and VEGF pathways and has a dual role in Wnt signaling: it can
heterodimerize with FZD7 and bind to Wnt-2b to inhibit the canonical Wnt/β-catenin
pathway [279], but it can also heterodimerize with ROR2 and bind to Wnt-5a to activate the
non-canonical Wnt/planar cell polarity pathway [280]. As PTK7-dependent signaling can
be oncogenic or tumor suppressive, PTK7-targeted ADCs were expected to be useful only
for patients with cancer in which PTK7 is upregulated. In line with this, a first-in-human
study to evaluate PF-06647020 in patients with solid tumors (NCT02222922) showed that
in responders, PTK7 was moderately or strongly expressed in the tumor [281]. The most
common adverse events related to PF-06647020 administration every 3 weeks were nausea,
alopecia, fatigue, headache, neutropenia, and vomiting. Two LGR5-targeting ADCs (LGR5–
MC-vc-PAB–MMAE and LGR5–NMS818) were developed by MedChemExpress to target
LGR5-positive tumor-initiating cells and cancer stem cells. These ADCs are composed of
a specific anti-LGR5 antibody conjugated to two cleavable linker drugs: the antimitotic
microtubule inhibitor MMAE or the DNA damaging topoisomerase-inhibiting anthra-
cycline PNU159682. The encouraging preclinical efficacy and safety findings supported
their further evaluation in patients with gastrointestinal cancer [282,283]. Recently, it was
shown that in a preclinical xenograft model, glypican 1 (GPC1) targeted immunotoxins,
derived from a functional domain of Pseudomonas endotoxin A, inhibit pancreatic tumor
growth via degradation of internalized GPC1, downregulation of Wnt signaling, and in-
hibition of protein synthesis [284]. GPC1 is a cell surface heparan sulfate proteoglycan
that is overexpressed in different cancer types, including pancreatic cancer. As the 5-year
survival rate of patients with pancreatic cancer receiving the standard therapies is poor
(9%), GPC1-targeting ADCs might represent attractive therapeutic candidates. A recently
published study reported that ADCs targeting the tight junction protein claudin-1 (CLDN1)
could be relevant to circumvent acquired resistance to chemotherapy and improve out-
come in patients with advanced colon cancer [285]. CLDN1 upregulation after exposure to
conventional chemotherapies used in colon cancer is, at least in part, functionally related to
activation of the MAPKp38/GSK3β/Wnt/β-catenin pathway. In xenograft mouse tumor
models, an MMAE-conjugated anti-CLD1 monoclonal antibody (6F6-ADC) inhibited tumor
growth. Moreover, sequentially combining oxaliplatin with an anti-CLDN1-ADC could be
beneficial for patients with chemotherapy-resistant cancer.

A novel approach involves the design of peptide-drug conjugates. For instance, PEG4-
VC-PAB-MMAE is made of a mutated RSPO4 peptide sequence fused to the N-terminus
of human IgG1-Fc and conjugated with the cytotoxin MMAE or duocarmycin (DMSA) by
site-specific conjugation. The resulting peptide-drug conjugate showed potent cytotoxic
effects in cancer cell lines that express any LGR in vitro and suppressed tumor growth
in vivo without inducing significant adverse effects [286].

3.3.2. Nanovectorization-Based Approaches

The physical–chemical properties of anticancer agents, such as stability and/or sol-
ubility, can considerably compromise the drug availability at the tumor site, requiring
the administration of high drug concentrations, which can significantly increase the risk
of adverse events. Nearly 400 clinical trials are currently investigating nanodelivery sys-
tems to improve drug pharmacokinetics and pharmacodynamics. However, very few
of these delivery systems were approved by FDA and EMA for cancer treatment since
disclosure of the first one, Doxil, in 1995. For more than ten years, strategies were de-
veloped to nanovectorize Wnt/β-catenin inhibitors [287–289]. Many delivery systems
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were designed to improve the therapeutic index of poor water-soluble phytochemicals,
such as naringenin, curcumin, resveratrol, melatonin, and many others [258,290–294]. For
example, the therapeutic index of nimbolide, a neem (Azadirachta indica) limonoid with
poor pharmacokinetic and bioavailability profiles, is significantly enhanced when encap-
sulated in poly(lactic-co-glycolic acid) nanoparticles (Nim-NPs) [295]. Nim-NPs inhibit
Wnt/β-catenin signaling by downregulating DNA methyltransferases, thus epigenetically
restoring the expression of the secreted frizzled-related protein 1 (SFRP1) and resulting
in tumor growth and metastasis formation inhibition without systemic toxicity. Similarly,
the anti-tumor effects of poorly soluble repurposed drugs, such as the anti-helminthic
drug niclosamide, are significantly enhanced when formulated as lipid-based nanoparticles
(LNPs) [146,296]. Small molecule disruptors of β-catenin-BCL9 interaction also attracted
interest for nanoformulation [297]. These include therapeutic peptides loaded onto gold
nanoparticles (AuNPs) to overcome the pharmacological obstacles of peptide-derived
therapeutics, such as low nuclease stability and low membrane permeability. AuNPs
can successfully deliver β-catenin-BCL9 interaction-disrupting peptides into cancer cells
to inhibit Wnt/β-catenin signaling and tumor growth with favorable biosafety and bio-
compatibility [298,299]. Nanoformulations of short non-coding RNA sequences, such as
short interfering RNAs (siRNAs) and microRNAs (miRNAs), also emerged as relevant
options for selectively targeting oncogenic pathways in cancer [300–304]. Some use LNPs
to deliver mRNAs that can downregulate the expression of oncogenes, such as the MYC
transcription factor, or upregulate the expression of tumor suppressor genes, such as the
gene encoding alpha CCAAT enhancer-binding protein (CEBPA, also known as C/EBPα).
For example, DCR-MYC is a first-in-class Dicer-substrate small interfering double-stranded
RNA (DsiRNA) to target MYC. It was developed by Dicerna Pharmaceuticals as a stable
LNP suspension for cancer treatment. DCR-MYC is well tolerated and showed promising
initial clinical and metabolic responses across various dose levels in several cancer types
(NCT02110563) [305]. However, the early efficacy results from clinical trials in patients
with hepatocellular carcinoma (NCT02314052) do not meet Dicerna expectations to allow
further development. OTX-2002, another LNP mRNA targeting MYC, was developed by
Omega Therapeutics. Currently, an open-label phase I/II study evaluates OTX-2002 safety,
tolerability, pharmacokinetics, pharmacodynamics, and preliminary anti-tumor activity as
a single agent and in combination with the standard of care in patients with hepatocellular
carcinoma or other solid cancers related to the MYC oncogene (NCT05497453) [306]. En-
couraging safety findings were described in a small cohort of patients with hepatocellular
carcinoma [307]. Mina Therapeutics developed MTL-CEBPA, a nanoformulated small
double-stranded 2′-O-methylated RNA that can specifically activate the expression of the
tumor suppressor CEBPA, preventing activation of Wnt/β-catenin signaling [308,309]. In
a first-in-human study in patients with advanced hepatocellular cancer (NCT02716012),
MTL-CEBPA displayed a good safety profile and potential anti-tumor activity when fol-
lowed by treatment with tyrosine kinases inhibitors [310]. This prompted the evaluation of
MTL-CEBPA combined with the multi-kinase inhibitor sorafenib in a randomized phase
II trial in patients with hepatocellular carcinoma (NCT04710641). MTL-CEBPA is also
evaluated in ongoing phase I clinical trials in combination with the checkpoint inhibitors
pembrolizumab (NCT04105335) and atezolizumab plus bevacizumab (an anti-VEGF anti-
body) (NCT05097911). A new generation of drug delivery systems is also currently being
developed to selectively target cancer cells/stem cells and/or the tumor microenviron-
ment [289,311,312]. In this system, anticancer drugs are not delivered passively to the
tumor thanks to its high vascularity (enhanced permeability and retention effect), but
are actively delivered to the tumor by smart nanoparticles (Smart NPs) that, unlike con-
ventional nanoparticles, target cancer biomarkers for precise drug delivery [313]. Smart
NP-based nano-formulations include the use of polymer-based nanocarriers (polymeric
nanoparticles, dendrimers, and micelles), biomimetic-based nanocarriers (liposomes, pro-
tein nanoparticles, and cell membrane nanoparticles), inorganic nanocarriers (mesoporous
silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, and car-
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bon nanotubes), and other advanced smart nanocarriers, such as black phosphorus and
metal-organic frameworks. All these strategies are promising approaches to improve the
therapeutic index of small molecule Wnt/β-catenin inhibitors for cancer management.

3.4. Patient Profiling

As described for many anticancer agents, clinical trials on Wnt/β-catenin inhibitors
showed limited benefits in terms of response rate, survival, and quality of life. However,
they also provided evidence that targeting Wnt/β-catenin signaling is a relevant ther-
apeutic option in several cancer types, highlighting the need of implementing tailored
therapies that take into account the cancer type and where genetic mutations act along
the Wnt/β-catenin signaling cascade (Figures 1 and 2) [314]. Illustrative examples include
the promising overall response rate observed in patients with advanced gastrointestinal
cancer harboring RPSO3 or RFN43 gene alterations following treatment with the PORCNi
CGX1321 combined with the checkpoint inhibitor pembrolizumab. Moreover, preliminary
data indicate a potential clinical benefit in patients with MSS colorectal cancer treated
with the PORCNi ETC-159 [137,138]. In addition, the DVL inhibitor sulindac prevents
malignant transformation in patients with FAP when combined with eflornithine [156].
Some Wnt/β-catenin inhibitors also showed promising anticancer activity when used
as monotherapy in specific contexts. Specifically, the TNKSi nesuparid (JPI-547) showed
efficacy in patients with breast cancer harboring BRCA/HRR mutations [169]. Moreover,
patients who respond to E7449 (another TNKSi) might be identified thanks to the drug
response predictor 2X-121 [166]. Similar to other targeted therapies, key challenges for
optimizing the chances of success with Wnt/β-catenin inhibitors lie in the implementation
of sensitive and robust methods to identify a comprehensive set of biomarkers that will
guide clinicians in personalizing cancer management in function of the patient’s cancer
profile. For cancer profiling, multiplexing technologies (e.g., high throughput “omics”:
genomics, transcriptomics, proteomics, metabolomics, radiomics, and immunomics) could
be combined with functional tests and with digital technologies (e.g., machine learning and
artificial intelligence) [315–327]. Given the scientific and technological progress in the era of
personalized medicine, genomic profiling should become the standard in clinical practice
and cancer biomarkers should be routinely used in clinical trials for patient recruitment
and follow-up in the near future [328,329]. This will undoubtedly help to promote the use
of Wnt/β-catenin inhibitors as anticancer agents for some clinical indications.
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Figure 1. Mutation rates in key players of the canonical Wnt/B-catenin pathway in different cancer types (NIH GDC Data Portal release 40.0-March 2024): green 
(<20%), orange/red (>20%). 
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Figure 1. Mutation rates in key players of the canonical Wnt/B-catenin pathway in different cancer types (NIH GDC Data Portal release 40.0-March 2024): green
(<20%), orange/red (>20%).
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Figure 2. Flowchart for using Wnt/β-catenin inhibitors as anti-cancer treatments on the basis of the
data presented in Figure 1 and Schemes 1–4.
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PNU159682: DNA damaging topoisomerase-inhibiting anthracycline; (ABD)-PA: (Albumin Binding
Domain)- Pseudomonas endotoxin A; ABD; DMSA: Streptomyces Duocarmycin [276–278,281,283–286].

4. Conclusions

In the past decades, cancer research generated a plethora of data, methods, and
chemical compounds that demonstrate the relevance of targeting Wnt/β-catenin signaling
for cancer management. Preclinical and clinical studies highlighted promising anticancer
effects of some Wnt/β-catenin inhibitors for specific clinical indications and demonstrated
substantial benefit when Wnt/β-catenin inhibitors are combined with other agents, such
as anti-PD-1/L1 antibodies [330]. As observed for many anticancer drugs, the current
main challenges are to improve the effectiveness and safety of these compounds for routine
clinical practice. The Wnt/β-catenin pathway proved difficult to target clinically, and no
inhibitors of this signaling pathway were approved by the FDA or EMA, mainly due to
the significant risk of serious adverse effects. These limitations are partly linked to the
screening strategy of many of these inhibitors, i.e., the use of the TOPFlash luciferase
reporter assay, an artificial in vitro system that is far short of reflecting the complexity of the
biological mechanisms controlled by Wnt/β-catenin signaling. Advances in drug design
and formulation, preclinical and clinical research, patient profiling, and digital technologies
should significantly contribute to address these major issues in the near future.
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