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Abstract: Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by progressive
joint inflammation and damage. Oxidative stress plays a critical role in the onset and progression
of RA, significantly contributing to the disease’s symptoms. The complex nature of RA and the
role of oxidative stress make it particularly challenging to treat effectively. This article presents a
comprehensive review of RA’s development, progression, and the emergence of novel treatments,
introducing Galangin (GAL), a natural flavonoid compound sourced from various plants, as a
promising candidate. The bioactive properties of GAL, including its anti-inflammatory, antioxidant,
and immunomodulatory effects, are discussed in detail. The review elucidates GAL’s mechanisms
of action, focusing on its interactions with key targets such as inflammatory cytokines (e.g., TNF-α,
IL-6), enzymes (e.g., SOD, MMPs), and signaling pathways (e.g., NF-κB, MAPK), which impact
inflammatory responses, immune cell activation, and joint damage. The review also addresses the
lack of comprehensive understanding of potential treatment options for RA, particularly in relation
to the role of GAL as a therapeutic candidate. It highlights the need for further research and clinical
studies to ascertain the effectiveness of GAL in RA treatment and to elucidate its mechanisms of
action. Overall, this review provides valuable insights into the potential of GAL as a therapeutic
option for RA, shedding light on its multifaceted pharmacological properties and mechanisms of
action, while suggesting avenues for future research and clinical applications.
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1. Introduction
1.1. Rheumatoid Arthritis (RA)

In rheumatoid arthritis, “arthr-” refers to joints, “-itis” means inflammation, and
“rheumatoid” comes from rheumatism, which broadly refers to various musculoskeletal
conditions. Therefore, rheumatoid arthritis (RA) is a chronic, inflammatory disorder that
mostly affects the joints, but can also involve other organ systems like the skin and lungs
as well [1,2]. RA is a chronic autoimmune disorder that impacts around 1% of the global
population. While the disease can manifest at any age, it is most commonly diagnosed
in people between the ages of 30 and 60 [3]. Interestingly, women are more than twice
as likely to develop RA compared to men. This gender disparity may be attributed to
the role of estrogen in modulating the immune response, potentially increasing women’s
susceptibility to the disease [4,5].

1.1.1. Development of RA

Rheumatoid arthritis is an autoimmune process that is typically triggered by an inter-
action between genetic and environmental factors [6]. A deficiency in a gene that encodes
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an immune protein, such as human leukocyte antigen (HLA-DR1 and HLA-DR4), may result
in rheumatoid arthritis when combined with environmental factors like cigarette smoke or
specific infections [7–9]. These environmental factors can activate peptidyl arginine deimi-
nases in mucosal cells, enhancing the post-translational conversion of arginine to citrulline
in the presence of intracellular or matrix proteins, a process known as citrullination [10,11].

This process creates neo-epitopes, which are novel antigenic determinants formed
from alterations in the protein sequence, that can be recognized by the adaptive immune
system. These modified peptides are presented on major histocompatibility complex
(MHC) proteins by antigen-presenting cells (APCs), activating T cells in lymphoid tissues.
This, in turn, stimulates B cells to produce a variety of autoantibodies that recognize
self-proteins, including rheumatoid factor (RF), which targets IgGs and anti-citrullinated
protein antibodies (ACPAs), which target citrullinated proteins [12,13].

1.1.2. Pathogenesis of RA

The presence of ACPAs and RF is associated with a more aggressive disease pro-
gression and can serve as a diagnostic and prognostic indicator [14,15]. Upon binding to
their targets, these antibodies form immune complexes that accumulate in the synovial
fluid. Subsequently, these complexes activate the complement system, which operates in an
enzymatic cascade to facilitate joint inflammation and injury. Initially, the classical pathway
is activated when the C1 complex binds to the Fc region of the antibodies in the immune
complexes. This triggers a sequential activation of complement proteins C2, C4, and C3,
ultimately forming the C3 convertase. The convertase cleaves C3 into C3a and C3b, where
C3b binds to the immune complex, leading to the formation of the C5 convertase. This
convertase cleaves C5 into C5a and C5b.

C5a acts as a potent anaphylatoxin, promoting inflammation, and C5b initiates the
assembly of the membrane attack complex (MAC) composed of C5b, C6, C7, C8, and C9.
The MAC creates pores in cell membranes, leading to cell lysis and contributing to tissue
damage. Additionally, the activation of complement components C3a and C5a recruits and
activates neutrophils, macrophages, and other immune cells to the site, further amplifying
the inflammatory response and resulting in joint inflammation and injury [16,17].

In RA, T-helper cells and antibodies move into the bloodstream and travel to the
joints [18,19]. Once there, T cells release cytokines like interferon-gamma (IFN-γ) and
interleukin-17 (IL-17), which attract more inflammatory cells such as macrophages into the
joint space [20,21]. Macrophages also produce inflammatory cytokines like tumor necrosis
factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6), which, along with T
cell cytokines, stimulate the growth of synovial cells [22,23]. This process leads to the for-
mation of pannus, a thickened synovial membrane containing fibroblasts, myofibroblasts,
and inflammatory cells [24]. Over time, the pannus can damage cartilage and other soft
tissues and erode bone. Synovial cells also release enzymes that break down proteins in the
cartilage [25,26]. Without protective cartilage, bones can rub against each other. Addition-
ally, inflammatory cytokines increase the production of RANKL, a protein that allows T
cells to bind to osteoclasts, triggering bone breakdown [27,28]. Chronic inflammation also
promotes the formation of new blood vessels around the joint, bringing more inflammatory
cells [29].

As the disease progresses, inflammation and damage occur in multiple joints on
both sides of the body [30]. These inflammatory cytokines do not remain limited to the
joints; instead, they spread through the bloodstream, affecting other organs. For instance,
IL-1 or IL-6 can travel to the brain, causing fever [31]. When these cytokines reach the
brain, they stimulate the production of prostaglandins, especially in the hypothalamus.
Prostaglandins act on the hypothalamus, specifically in the preoptic area, which is the
body’s thermoregulatory center. This release of prostaglandins leads to an increase in the
hypothalamic set point for body temperature, causing the body to generate and retain heat,
resulting in fever [32]. The systemic effects of these cytokines extend beyond fever. In
muscles, they promote protein breakdown. In the skin and body organs, they lead to the
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formation of round collections of immune cells called rheumatoid nodules [33,34]. The liver
responds by producing high amounts of hepcidin, a protein that decreases iron levels in the
blood [35,36]. In the lungs, fibroblasts become overactive, leading to scar tissue formation
that impairs gas exchange. The pleural cavities around the lungs can also become inflamed,
filling with fluid (pleural effusion), which can affect lung expansion [37,38].

Hence, as Rheumatoid Arthritis progresses, the systemic spread of inflammatory
cytokines leads to a wide range of extra-articular manifestations. These affect multiple
organs and tissues throughout the body, resulting in diverse complications.

1.1.3. Role of NF-κB, MAPK, JAK/STAT, and PI3K/Akt in the Pathogenesis of RA

RA is characterized by an intricate interplay of inflammatory pathways, including
NF-κB, MAPK, JAK/STAT, and PI3K/Akt. All of these contribute to the chronic inflam-
matory state and joint damage observed in the disease [39,40]. The NF-κB pathway, a
pivotal regulator of inflammation, is aberrantly activated in RA synovial cells, leading to
the transcription of pro-inflammatory genes such as TNF-α, IL-1β, and IL-6 [41]. These
cytokines, in turn, activate the MAPK pathway, comprising p38 MAPK, ERK, and JNK
subfamilies, which further promotes cytokine production and matrix metalloproteinase
(MMP) expression, contributing to inflammation and tissue damage in RA [42].

Concurrently, the JAK/STAT pathway, activated by cytokines like IL-6 and IL-17 abun-
dant in RA synovium, plays a crucial role in RA pathogenesis [43]. This pathway not only
drives the differentiation of pro-inflammatory T-helper 17 (Th17) cells but also enhances the
activation and recruitment of immune cells, including macrophages and neutrophils, to the
inflamed synovium, perpetuating the inflammatory cascade. Additionally, the PI3K/Akt
pathway, activated by growth factors and cytokines, promotes the survival and prolifer-
ation of synovial fibroblasts and immune cells, contributing to synovial hyperplasia and
inflammation [44]. Akt activation also stimulates the expression of MMPs, notably MMP-9,
further exacerbating tissue damage in RA joints.

Overall, the dysregulated activation of these signaling pathways in RA leads to a vi-
cious cycle of inflammation, immune cell infiltration, and tissue destruction. Targeting these
pathways individually or in combination presents a promising therapeutic approach for RA,
aiming to alleviate inflammation, preserve joint function, and improve patient outcomes.

1.1.4. Oxidative Stress in RA

The development of RA is closely associated with oxidative stress, a condition charac-
terized by an imbalance between the excessive production of reactive oxygen species (ROS)
and the body’s insufficient antioxidant defenses. This condition contributes to inflamma-
tion, immune dysregulation, and joint damage, all of which are characteristic of RA [45].
During the inflammatory process in RA, various cells such as neutrophils, macrophages,
and synoviocytes produce ROS, including superoxide anions, hydrogen peroxide, and
hydroxyl radicals [46]. These ROS are known to cause damage to lipids, proteins, and DNA,
leading to cell dysfunction and death [47], and activate redox-sensitive signaling pathways
like NF-κB, and MAPKs, which in turn promote the production of pro-inflammatory cy-
tokines, chemokines, and MMPs. This chain of events further worsens the inflammation
and joint damage experienced by RA patients [48–50]. The human body combats oxidative
stress through a range of antioxidant mechanisms [51]. Enzymatic antioxidants, such as
superoxide dismutase (SOD), catalase, and glutathione peroxidase, play a crucial role
in detoxifying ROS [52]. Non-enzymatic antioxidants, including vitamins C and E, also
help neutralize free radicals [53]. Additionally, the activation of transcription factors like
NRF2 stimulates the production of antioxidant proteins, enhancing the body’s resilience to
oxidative stress [54]. By understanding these defense systems, we can better appreciate the
therapeutic potential of promising compounds, that not only reduce inflammation but also
bolster these antioxidant defenses, thereby protecting joint tissues from oxidative damage
and inflammation associated with RA.
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Several studies have shown that RA patients have increased oxidative stress markers.
For instance, the levels of lipid peroxidation products, such as malondialdehyde (MDA)
and 4-hydroxynonenal (4-HNE), were observed to be higher in the synovial fluid and
serum of RA patients [55]. Furthermore, the levels of antioxidants, such as superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), were found to be
decreased in RA patients, further exacerbating oxidative stress [56].

Additionally, three transcription factors—activator protein 1 (AP-1), hypoxia-inducible
factor (HIF), and nuclear factor 2 (Nrf2)—play crucial roles in disease progression [57].
AP-1, a complex of proteins from the Fos and Jun families, regulates the expression of genes
involved in cell proliferation, differentiation, and inflammation. In RA, AP-1 is activated by
pro-inflammatory cytokines such as TNF-α and IL-1β, as well as by other stimuli like ROS
and mechanical stress. Activated AP-1 in RA synovial fibroblasts promotes the expression
of MMPs, contributing to the degradation of cartilage and bone [58]. Additionally, AP-1
regulates the expression of pro-inflammatory cytokines and chemokines, further amplifying
the inflammatory response in RA.

In the hypoxic microenvironment of the RA synovium, HIFs play a critical role in
regulating genes involved in angiogenesis, inflammation, and cell survival [59]. HIF-
1α, a subunit of the HIF complex, stabilizes under hypoxic conditions and promotes the
expression of vascular endothelial growth factor (VEGF) and other angiogenic factors,
leading to excessive blood vessel formation (angiogenesis) in the synovium. This aberrant
angiogenesis contributes to the chronic inflammatory state and pannus formation in RA.
Moreover, HIF-1α regulates the expression of genes encoding pro-inflammatory cytokines
and MMPs, further exacerbating joint inflammation and damage in RA.

Nrf2 regulates the expression of genes involved in antioxidant defense and detoxi-
fication of ROS. In RA, oxidative stress is a prominent feature, leading to increased ROS
production and oxidative damage in the joints [60]. Nrf2 activation in response to oxidative
stress is impaired in RA, contributing to the accumulation of ROS and oxidative dam-
age. Restoring Nrf2 activity was proposed as a potential therapeutic strategy to alleviate
oxidative stress and inflammation in RA.

In summary, AP-1 promotes joint inflammation and destruction by regulating the
expression of MMPs and pro-inflammatory mediators. HIFs contribute to RA pathogenesis
by promoting angiogenesis, inflammation, and cell survival in the hypoxic synovial mi-
croenvironment. Nrf2 dysfunction leads to increased oxidative stress and inflammation in
RA joints. Therefore, chronic inflammation and oxidative stress are pivotal players in the
aggravation of chronic inflammatory joint disease. In this regard, anti-inflammatory and
antioxidant therapy may offer novel adjuvant/complementary treatment options aimed at
enhancing disease control.

1.1.5. Novel Treatments for RA

The ultimate goal of RA treatment is to reduce inflammation, minimize joint damage,
and enhance the patient’s physical function and quality of life [61,62]. Treatment is expected
to improve the clinical outcomes of RA by reducing synovitis, thereby decreasing the
likelihood of further joint damage [63].

There are three general classes of drugs commonly used in RA therapy [61]: non-
steroidal anti-inflammatory drugs or NSAIDs, corticosteroids, and disease-modifying
antirheumatic drugs or DMARDs. Although NSAIDs and corticosteroids are effective
at providing symptom relief for patients with RA, only DMARDs were demonstrated
to modify the course of the disease and improve radiologic findings [64]. DMARDs are
divided into two types: biological and synthetic small molecules (Figure 1) [65,66].
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Biologics represent a novel approach to treating RA based on recent advances in
understanding the immune and inflammatory processes associated with the disease [67,68].
TNF-α inhibitors were the first biological DMARDs approved for arthritis treatment [69].
They function by binding to TNF-α, thereby reducing its activity and minimizing inflam-
mation. Blocking agents are another type of biological DMARD that interfere with the
interaction between certain immune cells [70]. B-cell depleting agents are also used, re-
ducing the number of B cells in the joints and lowering T cell activation and plasma cell
count [71].

Synthetic small molecule DMARDs are also effective treatments for RA, acting by
modifying the immune response within cells. Methotrexate (MTX), a non-biologic DMARD,
is a commonly prescribed medication for RA treatment [72]. Initially developed as a
cancer drug, MTX has proven beneficial in treating other inflammatory diseases like psoria-
sis [73]. MTX inhibits dihydrofolate reductase, an enzyme necessary for cell division and
growth [74]. This disruption in nucleic acid production leads to decreased cell proliferation
and suppression of the immune response. However, prolonged use of MTX can lead to tox-
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icity in various tissues, including bone marrow suppression, liver damage, gastrointestinal
irritation, pulmonary inflammation or fibrosis, and in high doses, kidney damage [75].

Many current treatments for RA can cause significant side effects, which may limit
their long-term use. Treatment failure is also a concern, as some patients do not respond
to existing therapies, leading to continued disease progression and joint damage. While
many treatments can alleviate symptoms, achieving complete disease remission remains a
challenge for numerous patients. With the development of new therapies, more options will
become available to reduce inflammation in RA and potentially achieve disease remission.
To avoid side effects and treatment failure, researchers are exploring natural sources of
drugs, specifically bioactive compounds obtained from natural products.

Numerous studies were conducted to investigate the potential of natural alternatives
for treating rheumatoid arthritis (RA) and preventing the side effects of Methotrexate
(MTX), commonly used in RA treatment. Synthetic trans-∆9-tetrahydrocannabinol (∆9-
THC) [76], Indole-3-Carbinol (I3C) found in cruciferous vegetables [77], an Aloe species’
leaf extract [78] Boswellia extract rich in Acetyl Keto Boswellic Acid (AKBA) [79], glabridin
found in Glycyrrhiza glabra roots [80], and a natural agent named Silibinin [81] have shown
anti-inflammatory and anti-arthritic effects. These natural agents were also shown to be
effective in protecting the liver from MTX-induced damage. The combination therapy of
these natural agents with MTX was found to be more effective in inhibiting arthritis and
reducing MTX-induced hepatotoxicity in arthritic animals, highlighting the potential of
natural compounds as adjuncts to conventional RA therapy.

1.2. Introduction of GAL as a Potential Therapeutic Agent and Its Sources

Flavonoids are polyphenols found in honey and various parts of plants, including
barks, roots, rhizomes, stems, leaves, flowers, seeds, grains, fruits, and vegetables [82].
Flavonols, a subclass of flavonoids, possess a 3-hydroxyflavone backbone. Both flavonoids
and flavonols exhibit a range of health benefits, including antioxidant, anti-inflammatory,
and immune-modulatory properties, potentially offering relief from various ailments [83,84].
Galangin (GAL), a flavonol, is a promising contender that has demonstrated favorable out-
comes in various disease models [85–88]. GAL is extracted from honey [89], propolis [90],
and bee pollen [91,92], and is found in a wide variety of plants. Its sources are summarized
in Table 1.

Table 1. Sources of GAL.

Category Source References

Honeybee Products Propolis, Bee Pollen [89–92]

Plants (Rhizomes) Alpinia officinarum, Alpinia calcarata, Alpinia galanga [93–95]

Plants (Roots) Coleus vettiveroides [96]

Plants (Leaves)
Mexican Oregano (Lippia graveolens), Nothofagus gunnii,
Eugenia catharinensis, Castanea sativa, Piper aleyreanum,

Japanese Alnus sieboldiana
[97–103]

Plants (Buds) Poplar (Populus nigra) [104–107]

Plants (Other)

Poplar tree gum, Fruits (Sechium hybrid, Sechium edule
Perla Negra, Campomanesia xanthocarpa, Prunus cerasus
(Oblacinska), Psidium cattleianum), Plantain peel, Jujube

peel and seed, Crocus sativus flower petals

[108–115]

Marine Fungus Chaetomium globosum [116]

2. Bioactive Properties of GAL
2.1. Molecular Structure of GAL

GAL, a bioactive compound, is classified as a 3,5,7-trihydroxyflavone, a subclass
of flavonoids. This molecule possesses a distinct chemical structure characterized by a
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chromone ring (also known as 1-benzopyran-4-one) substituted with hydroxyl groups at
specific positions 3, 5, and 7. Additionally, a phenyl ring is linked to the chromone ring
(see Figure 2) [117]. The molecular formula of GAL is C15H10O5, and its molecular weight
is 270.24 g/mol. A summary of the chemical and physical properties of galangin can be
found in the Supplementary Data, Table S1.
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2.2. Pharmacological Properties of GAL

Using the ultra-high-performance liquid chromatography–tandem mass spectrometry
(UHPLC–MS/MS) method, researchers studied the pharmacokinetic properties of GAL.
They discovered that when GAL was administered orally or via intraperitoneal injection to
a rat model, it was quickly absorbed (tmax = 0.25 h) and eliminated (t1/2 < 1.1 h) with an
absolute bioavailability of 7.6%. GAL was found in high amounts in the kidney, liver, and
spleen, and it was also able to cross the blood–brain barrier to reach the brain, although in
lower concentrations [118]. GAL undergoes metabolism through glucuronidation reaction,
producing metabolites such as galangin-3-O-β-D-glucuronic acid (GG-1) and galangin-7-O-
β-D-glucuronic acid (GG-2), which were detected in the urine and plasma of rats [119,120].

Due to limitations in absorption and solubility that hinder its effectiveness, researchers
have investigated methods to improve these properties of GAL for optimal delivery [121–125].
These methods include liposomes, which act as carriers to deliver GAL to targeted sites
within the body [121]. Micelles, on the other hand, can significantly enhance the water
solubility of GAL, making it more readily absorbed [122]. Additionally, nanostructured
lipid carriers (NLCs) and nanoparticles (NPs) offer advantages like increased drug-loading
capacity and controlled release [123,124]. Finally, β-cyclodextrin inclusion complexes can
enhance both the solubility and stability of GAL, improving its therapeutic potential [125].

Given its interaction with CYP450 enzymes, GAL has the potential to alter the
metabolism of other drugs. It was shown to inhibit several CYP450 enzymes, including
CYP2A6, CYP2C8, CYP2C13, and CYP3A1, while activating CYP1A2 and CYP2B3 [126,127].
Therefore, caution should be exercised when co-administering GAL with other pharmaco-
logical agents. GAL administration, both in vitro and in vivo, exhibited no cytotoxicity on
normal cells, suggesting a favorable safety profile [128,129]. Studies demonstrated good
tolerance at concentrations up to 30 µM in microglial BV2 cells and at high oral doses of
320 mg/kg in rats [128,129]. Remarkably, this non-toxic effect on normal cells aligns with
GAL’s ability to destroy cancer cells, suggesting potential avenues for further research into
its therapeutic applications [130].

In vitro and in vivo studies have revealed that GAL possesses a broad spectrum of
biological activities, including anti-inflammatory, antioxidant, antifibrotic, antihypertensive,
antimicrobial, and anticancer properties [131–135]. These diverse pharmacological effects
have led researchers to investigate its potential therapeutic applications in various disease
models, as illustrated in Figure 3.
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2.2.1. Anti-Inflammatory Effects of GAL

GAL exhibited anti-inflammatory properties in various disease models, both in vivo
and in vitro. These diseases include cardiovascular, renal, neural, skin, pulmonary, hepatic,
gastrointestinal, pancreatic, foot, and retinal illnesses [86,132,136–143]. GAL works by
modulating several signaling pathways that participate in the production of both proin-
flammatory and anti-inflammatory mediators, thereby alleviating inflammation. Detailed
insights into these pathways are provided in Table 2.

Table 2. Anti-inflammatory mechanisms of GAL.

Type of Inflammation GAL’s Mechanism of Action Model References

Renal

Decreased NF-κB p65, iNOS, and TNF-α, IL-1β,
IL-6 levels Rat model of diabetic nephropathy [136]

Inhibited ERK and p38 MAPK signaling and
NF-κB activation and the release of

proinflammatory cytokines
Rodent model of nephrotoxicity [144,145]

Suppressed PI3K/AKT, NF-κB, NLRP3 inflammasome,
and the production of TNF-α, IL-1β, PGE2, and NO Rat kidney epithelial cells (NRK-52E) [146]

Cardiovascular

Suppressed TNF-α, IL-6, NF-κB, COX-2, and iNOS
gene expression

Albino Wistar rat model of cardiac
inflammation and fibrosis [132]

Decreased VCAM-1, TNF-R1, TNF-α, and the activity
of NF-κB Rat model of hypertension [133]

Decreased NF-κB p65 activation and inhibited
MEK1/2-ERK1/2-GATA4 and
PI3K/AKT-GSK3β pathways

Mouse model of aortic banding mediated
pressure overload and angiotensin II

treated H9c2 cells
[147]

Decreased NF-κB p65, iNOS, and TNF-α, IL-1β,
IL-6 levels Rat model of diabetic cardiomyopathy [148]

Positively regulated adiponectin/AdipoR1 signaling
pathway and COX-2 and reduced NF-κB activity Rat model of cardiometabolic syndrome [149]

Downregulated renin-angiotensin system (RAS) and
IL-6/TNF-α and upregulated endothelial nitric oxide

synthase (eNOS) pathway
Rat model of cardiometabolic syndrome [150]
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Table 2. Cont.

Type of Inflammation GAL’s Mechanism of Action Model References

Neural

Reduced prostaglandin E2 Pentylenetetrazole (PTZ) mouse
epilepsy model [102]

Suppressed production of proinflammatory mediators
(TNF-α, IL-1β, IL-6, COX-2, iNOS) and inhibited

phosphorylation of JNK, p38, AKT, and NF-κB p65
Rat model of Parkinson’s disease [137]

Suppressed phosphorylation of p38 MAPK, JNK,
PI3K/Akt, and NF-κB, activated PPARγ, reduced
proinflammatory mediators (TNF-α, IL-6, MMP-3,
MMP-9, iNOS), and increased anti-inflammatory

mediators (IL-10, HO-1)

Lipopolysaccharide (LPS) injected mouse
brains and LPS-stimulated microglial cell

line (BV-2 cells)
[151]

Suppressed MMP-9 expression and inhibited
phosphorylation of multiple signaling molecules
including c-Src, Pyk2, PKC isoforms, Akt, mTOR,

MAPKs (ERK1/2, JNK1/2, p38), FoxO1, c-Jun, and p65

Human neuroblastoma cell line
(SK-N-SH cells) [152]

Inhibited proinflammatory mediators (iNOS, IL-1β,
NO) and suppressed phosphorylation of JNK, p38

MAPK, and NF-κB

LPS-stimulated microglial cell line
(BV-2 cells) [129]

Reduced proinflammatory cytokines (IL-8, TNF-α),
inhibited TLR4/NLRP3 inflammasome and DPP-4,

and increased GLP-1 levels

Rat model of LPS-induced
neuroinflammation [153]

Skin

Attenuated NF-κB p65 activation and proinflammatory
cytokine release (TNF-α, IL-1β, IL-6) Human HS68 dermal fibroblasts [138]

Inhibited ERK, p38 MAPKs, and NF-κB pathways and
suppressed TNF-α/IFN-γ-induced production of

CCL17 and proinflammatory cytokines (IL-6, TNF-α,
IL-1β)

Mouse model of atopic dermatitis and
human keratinocytes (HaCaT cells) [154]

Attenuated NF-κB/p65 activation, inhibited Erk1/2
and JNK activation, suppressed production of NO,

iNOS, and IL-6, and downregulated serum IgE levels

Mouse model of atopic dermatitis and
RAW264.7 macrophages [155]

Activated Nrf2/HO-1 pathway, inhibited NF-κB
pathway, downregulated proinflammatory mediators
(COX-2, iNOS) and cytokines (IL-17, IL-23, IL-1β), and

upregulated anti-inflammatory cytokine IL-10

BALB/c mice model of induced
psoriasis-like skin inflammation [156]

Pulmonary

Inhibited collagen deposition, lowered alpha-smooth
muscle actin, disrupted TGF-β1 pathway, and reduced

VEGF and MMP-9

Induced chronic asthma mice model
and airway smooth muscle cell

culture (ASMC)
[157]

Activated PPARγ, reduced IL-4, IL-5, IL-13, TNF-α,
IL-17, NO, eosinophil peroxidase, and IgE, and

increased IFN-γ
Induced allergic asthma mice model [139]

Suppressed activation of NF-κB p65 and
TNF-α-mediated translocation, decreased production

of inflammatory mediators including monocyte
chemoattractant protein-1, eotaxin, CXCL10, and

VCAM-1, IL-4, IL-5, IL-13, and iNOS

Mouse model of induced
airway inflammation [158]

Inhibited NF-κB activation and reduced TNF-α and
IL-6 levels Mouse model of induced acute lung injury [159]

Activated PPARγ and DNMT3A, leading to
suppressed ERK, p65, and AP-1, and reduced

proinflammatory cytokines (IL-6, TNF-α)

Rat model of induced inflammatory
lung injury [160]

Hepatic

Suppressed NF-κB p65, iNOS, and proinflammatory
cytokines (TNF-α, IL-1β, IL-6) Rat model of induced hepatotoxicity [86]

Induced Nrf2/HO-1 pathway, elevated PPARγ,
inhibited NF-κB activation, and decreased
proinflammatory cytokines (TNF-α, IL-1β)

Rat model of induced hepatotoxicity [161,162]
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Table 2. Cont.

Type of Inflammation GAL’s Mechanism of Action Model References

Gastrointestinal

Reduced TLR4 expression, decreased HMGB1,
inhibited NF-κB p65 activation, and decreased

proinflammatory cytokines (IL-6, TNF-α)
Mouse model of induced ulcerative colitis [140]

Downregulated IL-8 secretion Human gastric adenocarcinoma
(AGS) cells [163]

Activated the Nrf2/HO-1 pathway and suppressed the
NF-κB pathway and its downstream proinflammatory

mediators (COX-2, iNOS, and TNF-α/IL-6)
Mouse model of induced ulcerative colitis [164]

Suppressed TLR4/NF-κB signaling pathway, increased
anti-inflammatory cytokines (IL-10, TGF-β), and

decreased proinflammatory cytokines (IL-1β, IL-6,
TNF-α), and PGE2

LPS-injured rat intestinal
epithelial (IEC-6) cells [165]

Pancreatic
Activated Nrf2/HO-1 pathway and inhibited NF-κB
p65 and proinflammatory mediators, such as TNF-α,

IL-18, MCP-1, and CXCL10
Mouse model of pancreatitis [141]

Foot Suppressed the expression of NF-κB, TNF-α, COX-2,
and PGE2 Acute inflammation and pain rat model [142]

Retinal Inhibited the ERK1/2-NF-κB/Egr1 pathway and
proinflammatory cytokines (TNFα, IL-1β, and IL-6)

D-glucose-induced microglia BV2 cells
and retinal inflammatory injury in diabetic

mice model
[143]

Multiple studies in various disease models have consistently shown that GAL can
inhibit the activation of NF-κB [136–138,140]. This inhibition occurs by targeting spe-
cific proteins in the NF-κB signaling pathway. These proteins, IκBα, IKKβ, and p65,
undergo phosphorylation, a crucial step for NF-κB activation [146]. GAL inhibits this
phosphorylation process, thereby preventing NF-κB from dissociating from its natural
inhibitor, IκBα [146]. This effectively suppresses NF-κB activity, thereby hindering its
ability to initiate the inflammatory cascade [146]. Consequently, GAL-mediated inhibi-
tion of NF-κB results in reduced levels of various pro-inflammatory cytokines, includ-
ing TNF-α, IL-1β, and IL-6 [136,137,148,151,164]. Additionally, GAL reduces the expres-
sion of proinflammatory enzymes such as inducible nitric oxide synthase (iNOS) and
cyclooxygenase-2 (COX-2) [132,136,137,142,148,149,156], which are responsible for the pro-
duction of nitric oxide (NO) and prostaglandin E2 (PGE2), respectively, both contributing
to inflammation [129,149]. Furthermore, GAL modulates NF-κB by regulating other fac-
tors such as Toll-like receptor 4 (TLR4) and Peroxisome proliferator-activated receptor
gamma (PPARγ) [139,140,151,153,160,165]. In studies using lipopolysaccharide-stimulated
microglia models and in vivo models of pulmonary inflammation in vivo study, GAL
demonstrated its ability to activate PPARγ, a molecule that downregulates NF-κB and
inflammatory cytokine production [151,160]. GAL also disrupted the TLR4-NF-κB p65 sig-
naling axis, further reducing inflammation in lipopolysaccharide (LPS)-injured rat intestinal
epithelial (IEC-6) cells and sulphate sodium-induced ulcerative colitis in mice [140,165].

GAL’s influence extends beyond NF-κB. It exerts its anti-inflammatory effects through
additional pathways, including the PI3K/AKT, MAPK, and NOD-like receptor family pyrin
domain containing three (NLRP3 inflammasome) pathways [144–146,151–153]. GAL may
also help control MMPs, enzymes that contribute to inflammation in RA as discussed previ-
ously. Notably, GAL inhibits MMP expression in activated microglia, human neuroblastoma
cells, and an animal model of induced pulmonary inflammation [151,152,157]. Furthermore,
in lipopolysaccharide-induced neuroinflammation in rats, GAL inhibited the Dipeptidyl
peptidase 4 (DPP-4) activity, ultimately increasing levels of the anti-inflammatory molecule
GLP-1 [153]. Furthermore, GAL activates Nrf2, a molecule known to be compromised in
RA. This activation of Nrf2, as demonstrated in various in vivo models of liver, gastroin-
testinal, and skin inflammation, leads to the restoration of the Nrf2/HO-1 pathway and the
production of the potent anti-inflammatory enzyme HO-1 [156,161,162,164].
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Overall, GAL’s multifaceted anti-inflammatory actions, including NF-κB inhibition,
cytokine reduction, MMP control, and Nrf2 activation, position it as a promising therapy
for RA. By addressing inflammation, immune dysfunction, and joint degradation, GAL
offers a comprehensive approach to combating RA’s complex pathogenesis.

2.2.2. Antioxidant Effect of GAL

Due to its structure, particularly the presence of hydroxyl groups, GAL (3,5,7-trihy
droxyflavone) effectively functions as an antioxidant. This functionality arises from its
ability to readily donate a hydrogen atom, specifically from its 3-hydroxyl group. This
donation transforms a portion of the GAL molecule into a 3-flavonoid phenoxyl radical.
The phenoxyl radical acts as a free radical scavenger, neutralizing free radicals [166].

Endogenous antioxidants, including superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GPx), serve as the primary shield against cellular damage caused
by reactive oxygen species (ROS). These enzymes facilitate the conversion of ROS into less
reactive molecules. SOD specifically catalyzes the dismutation of superoxide radicals into
hydrogen peroxide, a less harmful species. Furthermore, CAT offers additional protec-
tion by catalyzing the reduction of hydrogen peroxide into water and oxygen. Reduced
glutathione (GSH) scavenges free radicals and acts as a substrate for several detoxifying
enzymes. Therefore, a compromised antioxidant defense system can lead to the breakdown
of hydrogen peroxide into highly reactive hydroxyl radicals, which can disrupt various
cellular components [167].

Numerous studies have shown that GAL exhibits protective effects against oxidative
stress. These studies revealed that GAL upregulated the activity of various antioxidant
enzymes and molecules, including SOD, CAT, glutathione S-transferase (GST), GPx, and
GSH [128,140,141,144,145,156,167–173]. Additionally, it increased the levels of antioxidant
molecules like ascorbic acid (vitamin C) and α-tocopherol (vitamin E) [128,168,170]. More-
over, GAL suppressed lipid peroxidation, leading to a reduction in thiobarbituric acid
reactive substances (TBARS) and MDA levels [133,140,144,145,156,167,170,173]. GAL’s
ability to reduce ROS levels [144,174] may also be explained by its effect on NADPH
oxidase-1 (NOX-1). This enzyme is a major source of ROS production in cells, and studies
using a neurotoxicity-induced rat model have shown that GAL treatment downregulates
NOX-1 [175].

Additionally, GAL administration inhibited protein oxidation and nitration, resulting
in a decrease in protein carbonyls (PCO) and nitrotyrosine levels across various disease
models. These models include induced nephrotoxicity, fructose feeding to induce metabolic
syndrome, and a hepatorenal disease model [144,170,173]. It also downregulated Acyl-CoA
Synthetase Long-Chain Family Member 4 (ACSL4) and 4-Hydroxynonenal (4-HNE) levels,
attenuating oxidative stress in AR42J pancreatic cells [141].

Finally, GAL treatment restored and upregulated the Nrf2/HO-1 pathway, leading to
an increase in heme oxygenase-1 (HO-1) expression. HO-1 is a potent antioxidant enzyme
that helps eliminate harmful free radicals and alleviate oxidative stress. This, in turn,
protects dermal fibroblasts from senescence following H2O2 exposure and mitigates the
severity of acute pancreatitis, psoriasis-like skin inflammation, and cognitive alterations in
rodent models [131,141,156,175].

Therefore, GAL’s antioxidant potential is derived from its direct scavenging of free
radicals and reinforcement of the cellular antioxidant defense system. By enhancing the
activity of antioxidant enzymes and molecules, it effectively shields cells from oxidative
stress damage. This multifaceted antioxidant activity holds significant promise as oxidative
stress mediators are pivotal in the development of joint damage in RA. Given the direct
contribution of oxidative stress to the progression of RA, there is a compelling rationale
to further explore GAL as a potential therapeutic strategy for safeguarding joints and
managing RA.
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2.2.3. Immunomodulatory Effect of GAL

The immunomodulatory effects of GAL were shown in several in vivo and in vitro
studies, as summarized in Table 3.

Table 3. GAL’s immunomodulatory mechanisms.

Condition/Cell Type Mechanism of Action Key Findings Reference

Experimental Autoimmune
Encephalomyelitis (EAE)

Model

Inhibits mononuclear cell infiltration, reduces T cell
proliferation and differentiation (Th1 and Th17 cells),

and impairs dendritic cell function

Alleviated autoimmune
encephalomyelitis [87]

LPS-stimulated RAW 264.7
Macrophage Cells

Downregulates COX-2, reduces NO and
proinflammatory cytokines (TNF-α, IL-1β, IL-6), and

inhibits IRAK-1, JAK/STAT pathway, MAPK
(p38 and ERK), and NF-κB

Reduced inflammation [94]

Atopic Dermatitis (AD) Model

Reduces infiltration of inflammatory cells
(eosinophils, mast cells), decreases histamine levels,
inhibits Th1 and Th2 cytokines, and reduces serum

IgE and IgG2a

Reduced inflammation [154]

Ovalbumin-(OVA-) Induced
Airway Inflammation Model

Reduced total leukocytes (eosinophils, neutrophils,
and lymphocytes) and downregulated the

production of IgE

Alleviate induced airway
hyperresponsiveness and

inflammation
[158]

Neutrophils
Inhibits FcγRs and CRs activation, and reduces

myeloperoxidase and horseradish
peroxidase activity

Decreased ROS
production, reduced

tissue damage
[176]

Human Mast Cells (HMC)-1
Downregulates JNK, p38, and NF-κB pathways,

suppresses histamine release and reduces activation
of Caspase-1

Reduced inflammation [177]

Concanavalin A
(ConA)-induced Hepatitis

(CIH) Model

Suppresses infiltration of inflammatory cells
(neutrophils, macrophages, T cells), inhibits T cell

activation via STAT1 pathway, and reduces
proinflammatory cytokines and chemokines

Reduced inflammation [178]

Bleomycin-Induced
Pulmonary Fibrosis Model

Reduced the number of CD4+ and CD8+ T cells and
dendritic cells

Alleviate pulmonary
fibrosis [179]

Dendritic Cells (DCs) Promotes tolerogenic DCs (tolDCs) and stimulates
regulatory T cells (Tregs)

Skews DCs towards
tolerogenic phenotype and
suppresses inflammatory

T cell responses

[180]

Myocardial
Ischemia-Reperfusion Injury

Induces autophagic flux via PI3K/AKT/mTOR
pathway, increases anti-inflammatory M2

macrophages, and decreases proinflammatory
M1 macrophages

Reduced inflammation [181]

These effects contribute to a reduced inflammatory response through multiple mecha-
nisms. First, GAL suppresses the infiltration of inflammatory cells, including neutrophils,
lymphocytes, macrophages, eosinophils, and mast cells [154,158,178]. Notably, mast cells
are key mediators of inflammatory reactions, releasing signaling molecules like histamine
that cause redness and swelling (edema) [154]. Interestingly, GAL treatment directly sup-
presses histamine release in human mast cells (HMC)-1 by decreasing intracellular calcium
levels [177]. Furthermore, GAL’s anti-inflammatory properties extend to its effects on
macrophages. In LPS-stimulated RAW 264.7 macrophages, GAL downregulates COX-2, an
enzyme crucial for the production of inflammatory prostaglandins [94]. This finding aligns
with an in vivo study where GAL treatment attenuated myocardial ischemia-reperfusion
injury in mice. This protective effect was associated with an increase in anti-inflammatory
M2 macrophages and a decrease in proinflammatory M1 macrophages following GAL
administration [181].
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GAL’s anti-inflammatory effects extend beyond just suppressing immune cell infiltra-
tion. It also acts by downregulating key signaling pathways within the very cells it targets.
This included inhibiting the activation of JNK, p38, ERK MAPKs, and NF-κB pathways in
LPS-stimulated RAW 264.7 macrophages and human mast cells (HMC)-1, all of which are
known contributors to the production of proinflammatory cytokines [94,177]. Furthermore,
GAL disrupts the maturation process of these proinflammatory cytokines in HMC-1 by
reducing caspase-1 activity [177]. Similarly, in LPS-stimulated RAW 264.7 macrophages,
GAL targets upstream mediators in inflammatory signaling [94]. It inhibits interleukin-1
receptor-associated kinase 1 (IRAK-1), a key player in TLR signaling that triggers proinflam-
matory cytokine production [94]. Additionally, GAL modulates the JAK/STAT pathway
by suppressing JAK-1, another crucial component of proinflammatory cytokine signaling
within these macrophages [94]. This multi-pronged approach is evident in the reduced
levels of pro-inflammatory mediators observed in various models. Treatment with GAL in
LPS-stimulated macrophages and a concanavalin A-induced hepatitis model significantly
decreased the production of cytokines (TNF-α, IFN-γ, and IL-12), chemokines (CXCL10
and MIP-1α), and adhesion molecules (ICAM-1) [94,178].

Beyond its influence on innate immune cells like macrophages and mast cells, GAL
also modulates the adaptive immune response by affecting T lymphocytes. Following
treatment with GAL in the bleomycin-induced pulmonary fibrosis model, atopic dermatitis
model, and LPS-induced dendritic cell model, T cell activation and expansion were reduced.
These studies revealed that GAL downregulated CD8+ T cells and CD4+ T cells (Th1,
Th2, and Th17 cells), and the levels of cytokines associated with both Th1 (IFN-γ) and
Th2 (IL-4, IL-5, IL-13, IL-31, and IL-32) immune responses [154,179,180]. GAL further
dampens the inflammatory response by suppressing the production of immunoglobulins
involved in allergic and inflammatory responses [154,158]. In models of ovalbumin-induced
airway inflammation and atopic dermatitis, GAL treatment inhibited the production of
immunoglobulin E (IgE) and decreased serum levels of IgG2a [154,158].

GAL’s influence extends to antigen-presenting cells. Research has investigated the
potential role of GAL’s immunomodulatory effect on dendritic cells (DCs) [180]. GAL
treatment of LPS-stimulated DCs promoted the development of tolerogenic dendritic cells
(tolDCs) [180]. Compared to bone marrow-derived DCs (BMDCs), GAL-treated DCs (Gal-
DCs) showed lower levels of CD86, a costimulatory molecule, and reduced expression
of major histocompatibility complex class II (MHC-II) molecules, indicating diminished
antigen presentation capabilities. Gal-DCs displayed an increase in the production of the
anti-inflammatory cytokine IL-10 and programmed death ligand 1 (PD-L1) expression,
which was associated with the activation of MAPKs such as ERK, JNK, and p38. Moreover,
Gal-DCs induced allogeneic CD4 T cells differentiation into regulatory T cells [180]. This
suggests that GAL skews DC towards a tolerogenic phenotype, leading to suppressed
inflammatory T cell responses.

In conclusion, GAL’s immunomodulatory effects align well with the pathogenesis
of rheumatoid arthritis (RA), making it a promising treatment option. GAL’s ability to
suppress inflammatory cell infiltration, modulate macrophage and mast cell activity, and
reduce proinflammatory cytokine production directly addresses these key aspects of RA
pathogenesis. Additionally, its effects on T lymphocytes and antigen-presenting cells
suggest a broader impact on the adaptive immune response, which is often dysregulated
in RA. By targeting multiple components of the immune response implicated in RA, GAL
offers a comprehensive approach to mitigating inflammation and potentially slowing down
joint damage in RA patients.

2.2.4. GAL and Autoimmunity

In the context of autoimmune diseases, GAL was shown to inhibit the activation of
immune complex-stimulated neutrophils by FcγRs (Fc gamma receptors) and CRs (com-
plement receptors). This effect reduces the activity of myeloperoxidase and horseradish
peroxidase enzymes, which are involved in the production of reactive oxygen species (ROS)
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by neutrophils [176]. Consequently, GAL helps to reduce the overall ROS production,
potentially mitigating tissue damage associated with autoimmune conditions.

Building on its ability to modulate immune cell activity and ROS production, a study
using an experimental autoimmune encephalomyelitis (EAE) mouse model showed that
GAL treatment ameliorated demyelination, inhibited the infiltration of mononuclear cells
(MNCs) into the spinal cord, and reduced T cell proliferation and differentiation. Notably,
GAL led to a decrease in TH1 and TH17 cells in the spinal cords of EAE mice. Furthermore,
GAL treatment impaired the function of dendritic cells (DCs), including their ability to
present antigens and produce cytokines (IL-6, IL-12, and IL-23). These combined effects
contributed to the alleviation of clinical symptoms of EAE [87]. This suggests that GAL
holds promise as a therapeutic strategy for multiple sclerosis and other neuroinflamma-
tory diseases.

GAL’s therapeutic potential extends beyond neuroinflammatory conditions to other
autoimmune diseases. In a study on psoriasis, an autoimmune skin disease causing chronic
inflammation, GAL demonstrated its antioxidant and anti-inflammatory properties in an
induced psoriasis-like skin inflammation model. This effect was mediated by the recovery
of the Nrf2/HO-1 pathway and the upregulation of antioxidant enzymes and markers,
including SOD, CAT, GST, GSH, glutathione reductase (GR), and vitamin C [156]. These
findings suggest that GAL may offer therapeutic benefits for various autoimmune diseases
by alleviating inflammation and oxidative stress.

While GAL exhibits therapeutic potential, it is important to consider its compatibility
with existing medications used for autoimmune diseases. MTX is a well-established
medication for managing autoimmune diseases such as rheumatoid arthritis and psoriatic
dermatomyositis. Like all drugs, MTX has several side effects including the development
of hepatotoxicity. GAL exerted its hepatoprotective effects in a rat model of MTX-induced
hepatotoxicity by suppressing inflammation through the downregulation of NF-κB p65,
iNOS, and the proinflammatory cytokines TNF-α, IL-1β, and IL-6. Furthermore, GAL
alleviated oxidative stress induced by MTX by reducing the levels of ROS, NO, and MDA,
and by upregulating antioxidant enzymes and molecules (GSH, SOD, and CAT), thereby
mitigating MTX-induced hepatotoxicity [86]. The therapeutic potential of combining MTX
with GAL for rheumatoid arthritis remains unexplored. Further research is warranted to
investigate their efficacy and safety in this context.

3. Mechanism of Action of GAL against Arthritis: In Vivo and In Vitro Studies

GAL was studied for its potential therapeutic properties against bone disorders. Its
anti-proliferative properties were shown to inhibit the growth of cancer cells and promote
apoptosis in osteosarcoma [182]. GAL also exhibits immune protective effects by enhancing
the immune system’s response to infections and reducing inflammation. These properties
make GAL a promising candidate for the treatment of various bone disorders, such as
osteoporosis and rheumatoid arthritis.

3.1. Effect of GAL on Osteoarthritis (OA)

Osteoarthritis (OA) is a prevalent form of arthritis characterized by joint degenera-
tion [183]. Several studies suggest that GAL could be a potential treatment for OA, as
shown in Table 4.
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Table 4. A synopsis of the in vitro and in vivo studies assessing GAL’s impact on OA.

Model and GAL’s Dose Effect on Disease Progression Signaling Pathway and
Antioxidant Defense Reference

In vivo

• Rat osteoblasts (ROB)
• 10−8 g/mL to 10−4 g/mL for 24 h

• Promote osteoblast
calcification

• Decrease ALP activity
N/D [184]

• Anterior Cruciate Ligament
Transection (ACLT) in SD rats

• 0.1 mL/day for 8 weeks
(5 mg/mL)

• Decrease OARSI score N/D [185,186]

• Monoiodoacetate (MIA) in
SD rats

• 10 or 100 mg/kg/day for 14 days

• Reduce CTX-II, IL-1b, IL-6,
and TNF-a levels

• Disturbance of
pro-oxidant/antioxidant.

• Reduce ROS and lipid
peroxidation levels

• Increase catalase, SOD, Gpx, and
GSH levels

[187]

• Destabilization of the medial
meniscus (DMM) in SD rats

• 20, 40 and 60 mg/kg, twice per
week for 4 weeks

• Decrease OARSI score
• Decrease MMP13 and

ADAMTS5
• Increase the levels of

COL2A1 and ACAN

N/D [188]

• Glucocorticoid-induced
osteoporosis (GIOP) in
C57BL/6 mice

• 10 or 40 mg/mL/day for 8 weeks

• Alleviate bone damage

• PKA/CREB-mediated
autophagy signaling.

• Increase in LC3B and
p-CREB levels

[189]

In vitro

• IL-1β (10 ng/mL) treated
chondrocytes

• Primary mouse bone marrow
macrophages (BMMs)

• [5–20] µM for 24 h

• Decrease iNOS and COX-2
expression

• Decrease MMP1, MMP3,
MMP13 and ADAMTS5

• Attenuate collagen II and
aggrecan degradation

• Inhibit NF-κB, MAPK and
PI3K/AKT pathways

• Inhibit phosphorylation of ERK,
JNK Akt, IKKαβ, IKBα and P65

[185,186,
190]

• Human OA primary
chondrocytes

• [0–100] µM for 24 h

• Decrease MMP13 and
ADAMTS5

• Increase the levels of
COL2A1 and ACAN

• Inhibit PI3K-AKT pathway
• Downstream oxidative stress
• Inhibit phosphorylation of PI3K

and AKT
• Activate PRELP
• Inhibit the expression of ROS

and MDA
• Promote the expression of SOD

and CAT

[188]

• Dexamethasone-treated human
Bone marrow-derived
mesenchymal stem cells (BMSCs)

• [5–20] µM for 24 h

• Promote osteogenic
differentiation

• Increase protein expression
levels of Runx2, OCN, OPN

• PKA/CREB, AKT/mTOR,
PI3K/AKT and Wnt/β-catenin

• Upregulate p-PKA/PKA and
p-CREB/CREB

• Downregulate p-mTOR/mTOR

[189]

In vivo, GAL was found to prevent cartilage destruction, slow down the development
and progression of OA, and protect articular cartilage [184–189]. In vitro, studies have
demonstrated that treatment with GAL can decrease the expression of catabolic factors in
chondrocytes, ameliorate the loss of extracellular matrix (ECM) components, and promote
osteogenic differentiation [184–186,188–190]. Mechanistically, Huang et al. identified GAL
as a potent substance with remarkable anti-inflammatory properties. It effectively reverses
the inflammatory response caused by exposure to IL-1β in rat chondrocytes, reduces the
degradation of collagen II and aggrecan, and inhibits Akt phosphorylation and NF-κB
activation [185]. Treatment with GAL significantly reduces levels of ROS, lipid peroxidation
IL-1β, IL-6, and TNF-a, while increasing levels of CAT, SOD, Gpx, and GSH.

Su et al. also observed that GAL significantly reduces the mRNA and protein expres-
sion levels of C-terminal cross-linked telopeptide of type II (CTX-II) [187]. Furthermore,
Wang et al. showed that GAL has the ability to suppress the inflammatory response that
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is induced by IL-1β and ameliorate African Caribbean Leukaemia Trust (ACLT)-induced
cartilage degeneration by effectively inhibiting the NF-κB pathway, as well as the JNK and
ERK pathways [186]. Lin et al. demonstrated that GAL prevents ECM degradation by acti-
vating Proline and Arginine Rich End Leucine Rich Repeat Protein (PRELP) and inhibiting
the PI3K-AKT signaling pathway. This helps in safeguarding chondrocytes from oxidative
stress by inhibiting the expression of ROS and MDA while promoting the expression of
SOD and CAT [188]. Moreover, Li et al. found that GAL suppresses RANKL-induced
ERK-MAPK, p38-MAPK, and NF-κB signaling pathways in bone marrow macrophages
by attenuating phosphor-ERK, phosphor-p38, and phosphor-p65, while stabilizing IκB-α
expression [190]. Recently, Zeng et al. explored the effects of GAL on autophagy and osteo-
genesis in bone marrow stromal cells (BMSCs). The results showed that GAL enhanced the
PKA/CREB signaling pathway in BMSCs, inducing autophagy and increasing osteogenic
differentiation [189]. This suggests that GAL directly inhibits osteoclastogenesis via the
NF-κB and MAPK signaling pathways, offering a potential avenue for preventing bone
loss associated with OA.

3.2. Effect of GAL on Rheumatoid Arthritis (RA)

The antioxidant and immunomodulatory properties of GAL in RA were investigated
in several studies [191–194]. GAL was found to prevent osteoclastic bone destruction and
inhibit osteoclastogenesis by reducing RANKL-induced JNK, p38, and NF-κB activation in
osteoclast precursors and in mice with collagen-induced arthritis [191]. Santos et al. demon-
strated that GAL effectively reduces the production of ROS in neutrophils and inhibits
myeloperoxidase (MPO) activity [194]. Furthermore, GAL can inhibit the expression of
inflammatory mediators such as IL-1β, TNF-α, IL-18, PGE2, and NO in a dose-dependent
manner in RA fibroblast-like synovial cells (RAFSCs), as well as the expression of iNOS
and COX-2. Additionally, GAL can increase the activity of SOD and decrease MDA con-
tent in a dose-dependent manner [192]. Fu et al. discovered that GAL could suppress
pro-inflammatory signaling in synoviocytes through the inhibition of the NF-κB/NLRP3
pathway, making it a potential therapeutic agent for RA [192]. Finally, GAL can also sup-
press inflammation, cell proliferation, migration, and invasion, while promoting apoptosis
in rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs) by modulating the PI3K/AKT
pathway [193]. All these studies are summarized in Table 5.

Table 5. A synopsis of the in vitro and in vivo studies assessing GAL’s impact on RA.

Model and GAL’s Dose Effect on Disease Progression Signaling Pathway and
Antioxidant Defense Reference

In vivo

• Collagen-induced arthritis
(CIA) in DBA/1J mice

• 10, 50, or 100 mg/kg for
25 days

• Reduce arthritis score and
paw edema

• Improve bone/cartilage
destruction, synovial hyperplasia,
and pannus formation

• Reduce production of IL-1b,
TNF-a, IL-17 and RANKL

N/D [175]

• Collagen-induced arthritis
(CIA) in SD rats

• 10, 20, and 40 µg for 4 weeks

• Improve bone/cartilage
destruction, synovial hyperplasia,
and pannus formation

• Improve histological score
• Increase body weight
• Decrease TNF-α, IL-1β, and

IL-6 levels

• Downregulate
PI3K/AKT/mTOR
signaling pathway

• Inhibit of pPI3K, pAKT, and
pmTOR protein levels

[178]
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Table 5. Cont.

Model and GAL’s Dose Effect on Disease Progression Signaling Pathway and
Antioxidant Defense Reference

In vitro

• Co-cultures of bone
marrow-derived
macrophages and primary
osteoblasts

• 1, 10, and 20 mg/mL

• Inhibit osteoclast formation
• Decrease TNF-α, IL-1β, and

IL-17 levels

• Suppress phospho-JNK and
phospho p38 MAPK

• Inhibit NF-kB/p65 and IkBa
phosphorylation level

• Increase IkBa level

[175]

Human neutrophil-10 µM Suppress O2
−, ROS and MPO N/D [176]

• Primary human RA
fibroblast-like synovium cells
(RAFSCs)

• 1, 5, and 10 ng/mL for 24 h

• Decrease IL-1β, TNF-α, IL-18,
PGE2 and NO levels

• Inhibit iNOS and COX-2
expression levels

• Downstream oxidative stress
• Suppress NF-κB/NLRP3

signaling pathway
• Decrease SOD activity and

increase MDA content
• Decrease ASC,

pro-caspase-1/caspase-1, p-IκBα,
p-NF-κB, IL-1β and
NLRP3 expression

[177]

• Rheumatoid arthritis
fibroblast-like synoviocytes
(RAFLSs)

• [10–160] µM for 24, 48, and
72 h

• Suppress inflammation,
proliferation, migration and
invasion

• Promote apoptosis of RAFLSs

N/D [178]

4. Conclusions and Future Perspectives

The encouraging findings from the mentioned studies suggest that GAL, a natural
flavonoid compound found in various plants such as Alpinia officinarum and Alpinia
galanga, holds potential as a therapeutic agent for treating rheumatoid arthritis (RA). The
search strategy involved querying PubMed using MeSH terms, covering publications from
1985 to 2024. GAL was shown to possess significant anti-inflammatory and antioxidative
properties, which could be beneficial in reducing the inflammation and joint damage
associated with RA. The compound functions by inhibiting the production of inflammatory
mediators and reducing oxidative stress within the joints.

However, further research is necessary to determine the synergistic effects of GAL
compared to the first-line drug for treating RA, such as methotrexate. Additionally, its
potential additive and protective effects against the side effects of conventional RA drugs
need a thorough evaluation. Understanding the precise mechanisms of action and potential
interactions with other medications is crucial.

Clinical studies are also required to assess the safety and efficacy of GAL in humans
before considering its widespread use. This involves investigating the optimal dosage, the
potential adverse effects, and understanding how GAL may interact with other medications
commonly used in RA treatment.

If proven effective and safe, GAL could provide a natural alternative to conventional
anti-inflammatory drugs, such as NSAIDs and DMARDs, which often have side effects with
prolonged use. Moreover, these study findings could pave the way for the development of
other natural compounds with similar therapeutic potential, offering new avenues for the
treatment of inflammatory diseases beyond RA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17070963/s1, Table S1: Summary of the Chemical and Physical
Properties of Galangin.
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Abbreviations

AKT: AKT serine/threonine kinase; ACSL4: Acyl-CoA Synthetase Long-Chain Family Mem-
ber 4; AD: Atopic Dermatitis; AP-1: Activator protein 1; CAT: Catalase; CCL17: Chemokine (C-C
motif) ligand 17; CD8+ T cells: Cytotoxic T cells; CIH: Concanavalin A-induced Hepatitis; COX-
2: Cyclooxygenase-2; CRs: Complement receptors; CXCL10: C-X-C motif chemokine ligand 10;
DCs: Dendritic cells; DNMT3A: DNA methyltransferase 3A; DPP-4: Dipeptidyl peptidase 4; Egr-
1: Early growth response protein 1; ERK: Mitogen-activated protein kinase; FcγRs: Fc gamma
receptors; GAL: GAL; GSH: Reduced glutathione; GPx: Glutathione peroxidase; HMGB1: High
mobility group box protein 1; HO-1: Heme oxygenase-1; HRP: Horseradish peroxidase; IFN-γ:
Interferon gamma; IgE: Immunoglobulin E; IgG2a: Immunoglobulin G subclass 2a; IKBa: Inhibitor
of kappa B alpha; IKKβ: I kappa B kinase beta; IL-1β: Interleukin 1 beta; IL-4: Interleukin 4; IL-5:
Interleukin 5; IL-6: Interleukin 6; IL-12: Interleukin 12; IL-13: Interleukin 13; IL-31: Interleukin
31; IL-32: Interleukin 32; IRAK-1: Interleukin-1 receptor-associated kinase 1; JAK: Janus kinase;
JNK: c-Jun N-terminal kinase; LPS: Lipopolysaccharide; M1 macrophages: Macrophage subtype
with pro-inflammatory properties; M2 macrophages: Macrophage subtype with anti-inflammatory
properties; MAPK: Mitogen-activated protein kinase; MCP-1: Monocyte chemoattractant protein 1;
MDA: Malondialdehyde; MHC-II: Major histocompatibility complex class II; MIP-1α: Macrophage
inflammatory protein 1 alpha; MMPs: Matrix metalloproteinases; MPO: Myeloperoxidase; N/D:
Not determined; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3:
NOD-like receptor family pyrin domain containing 3; NO: Nitric oxide; NOX-1: NADPH oxidase-1;
Nrf2: Nuclear factor (erythroid-derived 2)-like 2; OVA: Ovalbumin; p65: RelA protein p65 subunit
of NF-κB; PCO: Protein carbonyls; PD-L1: Programmed death ligand 1; PI3K: Phosphatidylinositol-
3-kinase; PGE2: Prostaglandin E2; PPARγ: Peroxisome proliferator-activated receptor gamma; RA:
Rheumatoid arthritis; RAS: Renin-angiotensin system; ROS: Reactive oxygen species; SOD: Superox-
ide dismutase; TBARS: Thiobarbituric Acid Reactive Substances.
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