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Abstract: Hypoxia is a hallmark of solid tumors, including hepatocellular carcinoma (HCC). Hypoxia
has proven to be involved in multiple tumor biological processes and associated with malignant
progression and resistance to therapy. Transarterial chemoembolization (TACE) is a well-established
locoregional therapy for patients with unresectable HCC. However, TACE-induced hypoxia regulates
tumor angiogenesis, energy metabolism, epithelial-mesenchymal transition (EMT), and immune pro-
cesses through hypoxia-inducible factor 1 (HIF-1), which may have adverse effects on the therapeutic
efficacy of TACE. Hypoxia has emerged as a promising target for combination with TACE in the
treatment of HCC. This review summarizes the impact of hypoxia on HCC tumor biology and the
adverse effects of TACE-induced hypoxia on its therapeutic efficacy, highlighting the therapeutic
potential of hypoxia-targeted therapy in combination with TACE for HCC.

Keywords: hypoxia; tumor microenvironment; hypoxia-inducible factor; hepatocellular carcinoma;
transarterial chemoembolization

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignancies and a
leading cause of cancer deaths worldwide [1]. Based on the Barcelona-Clinic Liver Cancer
(BCLC) staging system, HCC is divided into very early, early, intermediate, advanced, and
terminal stages. Accordingly, current treatment options for HCC include liver resection,
liver transplantation, ablation, transarterial chemoembolization (TACE), systemic therapies,
and best supportive care [2]. The former three therapies, as potentially curative treatments,
are only suitable for the very early and early stages. However, the majority of HCC patients,
particularly in China, are diagnosed at the intermediate or advanced stages, and TACE and
systemic therapies have been the mainstays of treatment for HCC [3,4].

TACE is a well-established locoregional therapy for patients with unresectable HCC.
The concept of TACE is to induce a comprehensive effect of cytotoxicity and ischemia
through the intraarterial infusion of chemotherapeutic agents, followed by the embolization
of tumor-feeding arteries [5]. However, recent studies have shed light on the implications
of TACE-induced hypoxia in liver tumors. Hypoxia, as an integral characteristic of solid
tumors, has proven to be involved in multiple tumor biological processes and associated
with malignant progression and resistance to conventional chemotherapy and radiother-
apy [6]. Similar results were reported in HCC after TACE. The hypoxic microenvironment
induced by TACE results in the activation of hypoxia-inducible factors (HIFs) and the
overexpression of vascular endothelial growth factor (VEGF) in residual tumors [7–13].
Accordingly, anti-angiogenic therapy has been combined with TACE to treat HCC [14].
However, given the fact that angiogenesis is one of the tumor’s biological responses to
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hypoxia, direct hypoxia-targeted therapy may represent a more effective strategy than
anti-angiogenic therapy for HCC. In this review, we describe the relationship between
hypoxia and HCC, with a focus on the implications of TACE-induced hypoxia for efficacy
and the therapeutic potential of the combination of TACE with hypoxia-targeted therapy
against HCC.

2. The Role of Hypoxia in HCC Biology

Hypoxia is an integral characteristic of most solid tumors, including HCC [15,16].
Much has been learned regarding the molecular pathways of hypoxia and the impact of
hypoxia on HCC biology. HIFs, and the HIF-1 transcription factor in particular, regulate
the cellular response to hypoxia. By functionally interacting with other transcription fac-
tors, HIF-1 activates the transcription of many target genes that code for proteins that
are involved in angiogenesis, glucose metabolism, cell survival/proliferation, and inva-
sion/metastasis, thereby triggering a series of biological reactions [16]. This can contribute
to the development and progression of HCC. Firstly, hypoxia contributes to hepatocar-
cinogenesis [17]. Chronic hepatitis and cirrhosis cause fibrosis, which disrupts the normal
vascular system, reduces hepatic blood supply, and thus leads to hypoxia [18]. Hypoxia
and HIF-1 enhance the stemness of HCC cells and promote carcinogenesis [19]. Hypoxia
can also induce hexokinase II [20] and insulin-like growth factor (IGF)-2 [21] to stimulate
HCC growth and myeloid cytokine-1 [22] to impede HCC apoptosis. Secondly, a hypoxic
environment induces angiogenesis in cirrhotic and HCC tissues [18]. Under hypoxia, HIF-1
is activated and induces the production of angiogenic factors [23], such as VEGF [24], basic
fibroblast growth factor (bFGF) [24], and IGF-2 [21,25]. Although these factors promote
tumor angiogenesis [18], the newly formed blood vessels fail to alleviate the hypoxic envi-
ronment due to their disorganization and distortion [26,27]. Thirdly, hypoxia influences
abnormal glucose metabolism in cancer cells, promoting the Warburg effect [28], where
cells prefer glycolysis to mitochondrial ATP synthesis even in the presence of oxygen [29].
HIFs drive this metabolic shift by upregulating glycolytic enzymes such as pyruvate dehy-
drogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA) [30–33]. This metabolic
adaptation supports the energy needs of hypoxic cancer cells, sustaining their growth
and survival [34]. Fourthly, hypoxia promotes metastasis through the HIF-1 pathway [35],
which regulates the expression of genes involved in HCC invasion and metastasis [36–38].
Hypoxia contributes to tumor cell detachment, adhesion, and migration by downregulating
the expression of epithelial cadherin (E-cadherin) [39,40], upregulating the expression of
integrin genes [41], stimulating the release of matrix metalloproteinase (MMP)-2 [42] and
the urokinase plasminogen activator (uPAR) [43], and inducing the production of autocrine
motility factors (AMFs) such as hepatocyte growth factor (HGF) [43–45]. Fifthly, hypoxia
is related to resistance to radiotherapy and chemotherapy by regulating multiple cellular
adaptive responses and gene expressions [46–48], and by inducing cell cycle arrest or retar-
dation [49–51]. Finally, hypoxia significantly affects the immune response by maintaining
an immunosuppressive tumor microenvironment (TME) [52,53]. Hypoxia-induced HIF
impairs the function or infiltration of immune cells and further prevents the activation
of immune effector cells by upregulating complex regulatory molecules [54,55]. Hypoxia
also recruits immunosuppressive cells to block the immune response [52,56]. These pro-
cesses promote the immune escape of tumor cells and lead to drug resistance in anti-tumor
immunotherapy. Taken together, hypoxia forms a complex network in HCC, playing a
comprehensive and critical role in hepatocarcinogenesis, angiogenesis, abnormal glucose
metabolism, metastasis, drug resistance, and immunosuppression.

3. TACE of HCC

TACE is the recommended first-line therapy for patients with intermediate-stage
disease, and is, by far, the most common technique used to treat unresectable HCC [2,5]. The
rationale for TACE comes from previous findings that normal hepatic tissue receives most
of its blood supply from the portal vein, whereas hepatic malignancies receive most of their
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blood supply from the hepatic artery [57]. Therefore, it is reasonable to employ the hepatic
artery as an approach to target the tumor while preserving the normal liver tissue. TACE
treatment consists of the transcatheter intraarterial delivery of chemotherapy combined
with embolization of the tumor-feeding arteries, which result in the comprehensive effects
of cytotoxicity and ischemia against the tumor [5].

TACE can be technically divided into conventional TACE and drug-eluting beads
TACE (DEB-TACE). Conventional TACE involves the infusion of single or multiple
chemotherapeutic agents with or without ethiodized oil, followed by embolization with
particles such as gelatin sponge, polyvinyl alcohol, or calibrated microspheres [58]. In
this way, high concentrations of chemotherapeutic agents can be directly delivered to the
tumor bed. Additionally, embolization of the tumor-feeding arteries can not only induce
tumor ischemic and hypoxic necrosis but also enhance the cytotoxic effect of chemotherapy
by reducing drug washout, prolonging the interaction time between drugs and tumor
cells, and improving drug penetration within the tumor [59]. Previously, two randomized
controlled trials demonstrated that conventional TACE resulted in higher overall survival
compared to the best supportive care [60,61]. The therapeutic efficacy of conventional
TACE on HCC has been confirmed by subsequent clinical studies [62].

In contrast, DEB-TACE is defined as the administration of calibrated microspheres
onto which chemotherapeutic medication is loaded or adsorbed with the intention of
sustained in vivo drug release [63]. Drug-eluting microspheres have the ability to load
chemotherapeutic agents (e.g., doxorubicin, epirubicin, and idarubicin) and release them
in a controlled and sustained mode. Accordingly, DEB-TACE allows higher doses of
chemotherapy with lower systemic exposure, along with permanent embolization. In a
randomized phase II trial, DEB-TACE yielded an improved radiologic tumor response
and toxicity compared to conventional TACE [64]. However, the superiority of DEB-TACE
over conventional TACE has never been demonstrated in terms of overall survival (OS) in
clinical trials [65–68]. Therefore, there is currently insufficient evidence to recommend DEB-
TACE over conventional TACE. Developing novel microspheres with superior drug-loading
mechanisms and loading other drugs (e.g., drugs targeting hypoxic cells) or formulations
(e.g., oncolytic viruses and immunostimulants) will be the focus of future research in the
DEB-TACE field.

4. TAE-Induced Hypoxia and Its Implications for Tumor Biological Processes

Transarterial embolization (TAE) is an important component of TACE procedures.
However, recent studies have raised questions concerning the precise effect of embolization
on liver tumors. Research has found that diversity in the degree and duration of hypoxia
may have different effects on tumor cells. Severe or sustained hypoxia induces cell death,
whereas mild or transient hypoxia may lead to a series of adaptive responses in tumor cells,
such as activating signaling pathways that regulate cell survival, glucose metabolism con-
version, angiogenesis, infiltration and metastasis, and drug resistance, thereby allowing the
tumor cells to survive or even evolve [26]. Theoretically, the embolization of tumor-feeding
arteries results in ischemia of the tumor and subsequent tumor necrosis. Unfortunately,
due to the complexity of the blood supply for HCC and the limitations of interventional
embolization techniques, embolization of the tumor-feeding vessels may be incomplete.
This may result in part of the tumor continuing to survive and even evolving in a hypoxic
microenvironment because of the reduced blood supply.

Central to these processes is the role of HIF-1α. Previous research has indicated a no-
table increase in HIF-1α, VEGF, hexokinase II, cyclooxygenase-2 (COX-2), and programmed
death-ligand 1 (PD-L1) levels in tumors following TAE [7,13,69–72]. In two previous animal
studies, elevated expression of HIF-1α was reported in liver tumors after TAE [69,73]. A
subsequent animal study used a modified Clark-type microelectrode research system to
measure pO2 and found that TAE rapidly reduced tumor oxygenation [8]. The study also
found that positive HIF-1α staining was detected predominately in viable tumor cells in
the tumor peripheral zone, which displayed a distribution pattern similar to that observed
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in hypoxic areas marked by pimonidazole [8]. These studies suggest that the TAE of liver
tumors resulted in HIF-1α overexpression as a result of intratumoral hypoxia generated by
the procedure.

Two previous clinical studies measured VEGF levels in serum and plasma in HCC
patients and found that the VEGF levels increased significantly after TAE [9,10]. Similar
results were observed in another clinical study comparing VEGF expression in tumor
specimens between HCC patients pretreated with TACE and without TACE [11]. Subse-
quent animal studies confirmed that TAE-induced hypoxia resulted in increased VEGF
expression, promoting the neovascularization of residual tumors [12,13]. Another initial
clinical study found that the expression of hexokinase II mRNA was increased in tumor
tissue in some HCC patients pretreated with TAE, and hexokinase II mRNA expression
was significantly correlated with HIF-1α protein expression. In addition, both HIF-1α
and hexokinase II protein expressions were co-localized in the cancer cells adjacent to
necrotic areas. This study suggests that HCC may switch the metabolic profile to glycolysis
through HIF-1α [7]. In addition, a recent clinical study demonstrated the upregulation
of HIF-1α and COX-2 proteins together with epithelial-to-mesenchymal transition (EMT)
alteration in HCC tissues following TACE treatment, which was associated with a negative
correlation with overall survival [71]. Also, a preclinical study demonstrated that hypoxia
selectively upregulated PD-L1 on myeloid-derived suppressor cells (MDSCs) via HIF-1α.
Blocking PD-L1 under hypoxia enhanced MDSC-mediated T cell activation by modulating
MDSC cytokine production of interleukin 6 (IL-6) and interleukin 10 (IL-10) [72]. Taken
together, these results suggest that hypoxia after TAE of liver tumors is involved in tumor
angiogenesis, energy metabolism, EMT, and immune processes, which may have adverse
effects on the therapeutic efficacy of TAE.

5. Hypoxia-Targeted Therapy for HCC

Tumor hypoxia has emerged as an attractive therapeutic area due to its essential role
in cancer. However, extensive basic research and clinical trials are still required to validate
its potential therapeutic value. Based on the therapeutic mechanism of action, four general
strategies were developed in the past 20 years.

5.1. Targeting HIF and HIF-Related Hypoxia Signaling

HIF-1α/HIF-2α inhibitors can be categorized as indirect or direct. Indirect HIF in-
hibitors regulate upstream and downstream effectors in the HIF pathway, while direct in-
hibitors decrease HIF mRNA expression, protein synthesis, or DNA binding. Several recent
HIF inhibitors that show promising potential in treating HCC, such as RO7070179 (EZN-
2968) [74], CT-707 [75], PT-2385 [76], meloxicam [77], and various natural agents [78–82]
(e.g., camptothecin analogs, curcumin, sanguinarine, resveratrol, ginsenosides). Addition-
ally, in 2021, belzutifan (PT2977) was approved by the U.S. Food and Drug Administration
(FDA) for renal cell carcinoma (RCC) and other tumors in patients with von Hippel-Lindau
syndrome [83,84], making it the first selective HIF-2 inhibitor to receive approval. However,
its efficacy in HCC remains to be determined.

5.2. Prodrugs Activated by Hypoxia

Hypoxia-activated prodrugs (HAPs) are inactive compounds that are converted into
active drugs via enzymatic or metabolic processes under hypoxic conditions, especially
hypoxic tumor cells within the body [85]. HAPs may be able to bypass drug resistance
mechanisms that are commonly associated with traditional chemotherapy while minimiz-
ing damage to healthy tissue [85,86]. Several bioreductive prodrugs have reached clinical
trials for the treatment of HCC, such as tirapazamine (TPZ) [87], TH-302 (evofosfamide) [88],
CEN-209 (SN30000), Myo-inositol trispyrophosphate (ITPP) [89], and PR-104 [90].
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5.3. Hypoxia-Selective Gene Therapy

Antisense gene therapy targeting HIF-1, as one of the gene therapies, refers to con-
structing recombinant plasmids of antisense HIF-1α, transferring these plasmids into
hypoxic cells, and transcribing antisense RNA to exert the inhibitory effect of HIF-1α [91].
Oncolytic adenovirus (Ovs) that targets hypoxic tumors selectively infects tumor cells
by utilizing internal gene mutation or the metabolic reprogramming of tumor cells and
then replicates tumor cells to kill target cells or to indirectly kill tumors by stimulating the
immune system’s antitumor response [92,93]. In addition, genetic engineering approaches
can be used to construct high-affinity NK (haNK) cells, which can improve tolerance against
acute hypoxia and maintain the functions of NK cells to kill cancer cells [94]. Hypoxia-
directed enzyme prodrug gene therapy uses anaerobes to transfer functional genes to
the tumor hypoxia zone [95]. However, current studies have shown that the HIF-specific
strategy of using hypoxia-selective gene therapy is controversial.

5.4. Target Other Hypoxia-Associated Biological Processes and Pathways

Hypoxia-induced effects are multifaceted, and the molecular events underlying the
adaptive response to hypoxia in HCC involve an intricate interplay. The exploration
of VEGF signaling is a well-established and widely utilized field of study [96]. Various
angiogenesis inhibitors that suppress VEGF have demonstrated efficacy for HCC [97–100].
Currently, combination therapies with VEGF inhibitors are being extensively investigated
in clinical trials [101–103]. In addition, a novel crosstalk between inflammatory and hypoxic
TME was revealed to be associated with the PI3K/AKT/mTOR pathway [104], which can
be regulated by ruscogenin to reduce the expression of VEGF and HIF-1α, among others,
and thus inhibit HCC metastasis [105]. Numerous other biological processes and pathways
associated with hypoxia, such as biotherapy targeting anoxic tumor bacteria [106,107]
and metabolic dysregulation related to hypoxia [108,109], have also been investigated for
treating HCC. However, their feasibility and true efficacy still need to be further explored.

6. Combination of Hypoxia-Targeted Therapy and TACE for HCC

While hypoxia-targeted treatment has demonstrated potential in vitro studies, its
effectiveness in clinical trials is frequently constrained. The researchers suggest that this
limitation may stem from the heterogeneity in tumor types and levels of hypoxia within the
tumor. It is hypothesized that combining hypoxic tumor-targeting drugs with interventional
embolization could lead to mutually beneficial and synergistic anti-tumor outcomes in the
treatment of liver cancer. This section aims to summarize the available drugs or pathways
that target hypoxic tumor cells in combination with TACE for the treatment of HCC. The
combination of hypoxia-targeted therapy and TACE for HCC is summarized in Tables 1–3.

6.1. Combination of HIF-Related Pathway Inhibitors and TACE
6.1.1. HIF-1

Melatonin (MLT) is an endogenous hormone secreted by the pineal gland [110]. The
anti-tumor mechanism of MLT is primarily to inhibit tumor angiogenesis by inhibiting
the HIF-1α/VEGF signaling pathway [111,112]. As early as 2002, TACE, in combination
with MLT, was used to treat patients with advanced primary HCC [113]. The results
demonstrated that MLT reduced hepatic impairment following TACE and enhanced the
immune activity of patients. Recently, MLT was loaded on a temperature-sensitive nano
gel, p(N-isopropyl-acrylamide-co-butyl methylacrylate) (PIB-M), for tumor embolism in
VX2 rabbit models by Chen et al. [114]. The results of the study confirm that MLT can
inhibit the growth and migration of HepG2 and LM3 cells by targeting HIF-1α, MMP-2,
MMP-9, and E-cadherin in vitro. Furthermore, the concentration of MLT in the tumor after
embolization remains at a high level for the following three days, which suggests that this
sustained effect on the tumor cells and TME may be achieved.

A number of natural compounds have been demonstrated to inhibit HIF-1α and VEGF.
A combination with TACE has been shown to have promising evidence of targeting hypoxia,
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indicating potential for clinical translation in the treatment of hepatocellular carcinoma.
Furthermore, 10-Hydroxycamptothecin (HCPT), a camptothecin analog, is a naturally
occurring alkaloid with antitumor activity. Camptothecin analogs can mediate S-phase
cytotoxic effects through the induction of a stable DNA topoisomerase I (Topo I) complex,
which can lead to DNA linkage breaks. The ability to inhibit HIF-1 has also been found.
Our previous work [115] found that the levels of HIF-1, VEGF, and microvessel density
(MVD) were comparable following the intrahepatic arterial infusion of distilled water and
HCPT+TACE (p > 0.05), indicating that HCPT significantly inhibits the expression of HIF-1
and angiogenesis in postembolization hepatic tumors. This finding suggests that HCPT
may have a broader application in this clinical setting. Curcumin is a highly polyphenolic
molecule that has been reported to inhibit the viability of cancer cells and is commonly used
to prevent or treat a variety of diseases. Dai et al. [116] observed that the levels of tumor
HIF-1α, VEGF, and MVD were significantly reduced in the liposomal curcumin combined
with TAE in their initial study. Further investigations [117] revealed that, in addition
to the aforementioned findings, curcumin liposome was capable of inhibiting survivin
levels, significantly inhibiting cell viability, and promoting apoptosis in the G1 phase by
regulating apoptosis-related molecules. The ginsenoside Rg3 was found to inhibit the
nuclear localization of HIF-1α by binding to HIF-1α [118]. Ginsenoside Rg3 in combination
with TAE has been shown to significantly decrease CD31, VEGF expression, and levels of
the anti-apoptotic Bcl-2 at both mRNA and protein levels, while significantly increasing
pro-apoptotic gene caspase-3 and Bax expression in VX2 rabbit tumor models [119]. A
subsequent prospective controlled clinical trial [120] demonstrated that the combination of
ginsenoside Rg3 and TACE provided a greater survival benefit than TACE alone in patients
with HCC. Additionally, the trial indicated that Rg3 alleviated some of the adverse effects
and blood anomalies associated with TACE.

Several other anticancer drugs have also been found to improve the efficacy of TACE
by influencing hypoxia signaling, either directly or indirectly. Repeated TACE-induced
hepatic hypoxia was found to exacerbate the progression of fibrosis in peritumoral liver
tissue, which was associated with the increased expression of carbon tetrachloride, HIF-
1α, transforming growth factor-β1 (TGF-β1), and VEGF. The progression of fibrosis and
the deterioration of liver function subsequent to TACE may be mitigated and slowed by
the HIF-1α inhibitor LW6 [121]. The antitumor effects of arsenic trioxide (ATO)-loaded
CSM-TACE have been investigated in VX2 HCC rabbit models. The results indicated that
the expression of HIF-1α, VEGF, twist, N-calmodulin, waveform protein, and MMP-9 was
decreased in the combined treatment group, while the expression of E-calmodulin was
increased [122]. In models of a VX2 liver xenograft tumor, the combination of rapamycin
with TACE has also been demonstrated to exhibit anti-tumor neovascularization activity
and to inhibit the expression levels of iNOS, HIF-1α, VEGF, Bcl-2, and Bax. The arterial
infusion of rapamycin was found to be more effective than intravenous injection, and large
doses were observed to present better efficacy [123]. In addition, AMD3100, a chemokine
(C-X-C motif) receptor 4 (CXCR4) antagonist, was shown to enhance the therapeutic efficacy
of TACE (doxorubicinlipiodol emulsion) in rats with HCC. AMD3100 was found to reduce
TACE-induced MVD in HCC tissues by decreasing the expression of HIF-1α and VEGF.
Furthermore, it has been shown to promote apoptosis and reduce cell proliferation in
HCC [124].

6.1.2. HIF-2

In the context of HIF, HIF-1α is primarily implicated in the acute hypoxic process
of the tumor. In contrast, HIF-2α is actively involved in the chronic hypoxic process and
exhibits a stronger prognostic correlation with TACE relative to HIF-1α [125]. Furthermore,
it has been demonstrated that sorafenib downregulates HIF-1α expression, shifting the
hypoxic response from the HIF-1α- to the HIF-2α-dependent pathway. This results in
the up-regulation of HIF-2α, which renders hypoxic HCC cells insensitive to sorafenib
and induces the expression of VEGF and cyclin D1 [126]. The role of HIF-2 may be
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underestimated, which may explain why trials of HIF-2 inhibitors in combination with
TACE are relatively rare. A recent study [127] utilized a multifunctional polyvinyl alcohol
(PVA)/hyaluronic acid (HA)-based microsphere (PT/DOX-MS) loaded with doxorubicin
and PT-2385, a potent HIF-2α inhibitor, to improve the treatment of HCC. The results
showed that PT/DOX-MS can block tumor cells in the G2/M phase. The introduction
of PT-2385 effectively suppresses the expression levels of HIF-2α in hypoxic HCC cells,
thereby downregulating the expression levels of Cyclin D1, VEGF, and TGF-α. Additionally,
the combination of doxorubicin and PT-2385 can jointly inhibit the expression of VEGF.
This suggests that HIF-2α may be an ideal target for TACE therapy.

Table 1. Summary of the therapeutic strategies of TACE combined with HIF-related pathway
inhibitors for HCC.

HIF Isoform Year Refs. Outcome Targets
Affected Cancer Hallmark Affected

HIF-1

2023 [114]
Melatonin could inhibit tumor cell

proliferation and migration by
targeting HIF-1α and VEGF-A.

HIF-1α

↓HIF-1α
↓VEGF-A
↓MMP-2
↓MMP-9

↑E-cadherin

2015 [121]

HIF-1α inhibitor LW6 attenuated the
hypoxia-induced fibrosis progression

in vivo. HIF-1α by HIF-1α-siRNA
significantly decreased the expression

of TGF-β1 and VEGF in
hypoxic hepatocytes.

HIF-1α

↓HIF-1α
↓VEGF
↓TGF-β1

↓Collagen I
↓α-SMA
↓Fibrosis

2010 [115] 10-hydroxycamptothecin is a
HIF-1α inhibitor. HIF-1α

↓HIF-1α
↓VEGF
↓MVD

2015 [116] Liposomal curcumin could block
HIF-1α-mediated angiogenesis. HIF-1α

↓HIF-1α
↓VEGF
↓MVD

2019 [117]

Curcumin liposome suppressed
HIF-1α and survivin levels and

inhibited the angiogenesis in VX2
rabbits after TAE.

HIF-1α

↓HIF-1α
↓VEGF
↓MVD

↓Survivin
↓Proliferation
↑Apoptosis

2013 [119]

Ginsenoside Rg3 combined with TAE
could effectively inhibit tumor

growth by inhibiting tumor
angiogenesis and inducing cancer

cell apoptosis.

VEGF

↓VEGF
↓CD31

↓Angiogenesis
↑Caspase-3

↑Bax

2016 [120]

The combination of ginsenoside Rg3
and TACE provided a greater

survival benefit than TACE alone in
patients with HCC.

VEGF

↑Overall survival
↑Time to progression
↑Time to untreatable

progression
↑Disease control rate

HIF-2 2022 [127]

PT-2385 could effectively inhibit the
expression level of HIF-2α in hypoxic
HCC cells, thereby down-regulating
the expression levels of Cyclin D1,

VEGF and TGF-α.

HIF-2α

↓HIF-2α
↓VEGF
↓TGF-α

↓Cyclin D1

↓ = inhibit or reduce; ↑ = induce or increase.
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6.2. Combination of Hypoxia-Activated Prodrugs and TACE
6.2.1. Tirapazamine

Tirapazamine (TPZ), a bioreductive agent, is preferentially toxic to hypoxic cells. Un-
der hypoxic conditions, TPZ is metabolized by an intracellular reductase to form a highly
reactive radical species capable of inducing DNA single- and double-strand breaks and
chromosome aberrations, resulting in cell death. In the presence of oxygen, the TPZ radical
is oxidized back to the parent molecule, thereby largely preventing radical-induced dam-
age [128]. In 2011, Sonoda et al. [129] found that the combination of intraperitoneal TPZ
and TAE with gelatin microspheres significantly reduced the tumor growth rate compared
with TAE or TPZ treatment alone in the rabbit VX2 model. Subsequently, another study by
Lin et al. [130] reported that the combination of intravenous TPZ and hepatic arterial liga-
tion had synergistic tumor-killing activity against hepatocellular carcinoma (HCC) in HBx
transgenic mice. The safety findings of the toxicological study by Liu et al. [131] involving
rats supported the clinical usage of the intraarterial injection of TPZ in combination with
embolization. Several follow-up Phase I trials [132,133] demonstrated the safety and tolera-
bility of intraarterial TPZ with TAE/TACE for HCC, yielding promising tumor responses.
Li et al. [8] prepared TPZ-loaded CalliSpheres microspheres (CSMTPZs) and found that
CSMTPZ therapy exhibited advantages in terms of hypoxia-selected cytotoxicity, tumor
apoptosis and necrosis, animal survival, and safety over the conventional combination of
TPZ and TAE in the rabbit VX2 model.

6.2.2. TH-302

TH-302 (evofosfamide) is a 2-nitroimidazole-triggered HAP of the cytotoxin bromo-
isophosphoramide mustard [134]. The dinitroimidazole structure is fragmented with
an alkylating agent, dibromoisophosphoramide mustard, that selectively binds to the
DNA and kills the tumor cells. Thus, it exerts little activity in the normoxic zone and
has fewer side effects on normal tissues. TH-302 has shown broad-spectrum anticancer
efficacy in multiple human cell lines and xenograft models [88,135–139]. In the rabbit VX2
model, Duran et al. [140] combined the conventional TACE and TH-302 by mixing the
doxorubicin/Lipiodol emulsion and TH-302, followed by embolization with 100–300 µm
bland beads. The results indicate that conventional TACE+TH-302 induced smaller tumor
volumes, lower tumor growth rates, higher necrotic fractions, and exhibited no addi-
tional toxicity profile compared to conventional TACE. Another rabbit VX2 model by Ma
et al. [141] involved the preparation of TH-302-loaded poly (lactic-co-glycolic acid) (PLGA)-
based TACE microspheres. The results demonstrated that the TH-302 loaded microspheres
exhibited sustained drug release in the liver tissue and superior anti-tumor efficacy in
comparison to TH-302 injection and TH-302+lipiodol. Furthermore, no significant toxicity
was observed throughout the treatment period.

Table 2. Summary of the therapeutic strategies of TACE combined with hypoxia-activated prodrugs
for HCC.

Compound Year Refs. Outcome Targets
Affected

Cancer Hallmark
Affected

Tirapazamine

2011 [129]
The combination of TPZ i.p. and
gelatin microspheres (GMS) i.a.

enhanced the antitumor effect of TPZ.

Hypoxic
tumor ↓Tumor growth

2016 [130]

At levels below the threshold oxygen
levels created by hepatic artery

ligation (HAL), TPZ was activated
and killed the hypoxic cells, but

spared the normoxic cells.

Hypoxic
tumor

↑Necrosis
↑Apoptosis
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Table 2. Cont.

Compound Year Refs. Outcome Targets
Affected

Cancer Hallmark
Affected

Tirapazamine

2021 [131]

The safety findings of this
toxicological study involving rats

supported the clinical usage of the IA
injection of TPZ in combination

with embolization.

Hypoxic
tumor

ALT
Total bilirubin

Histopathology

2021 [133] TPZ may be synergistic with TAE. Hypoxic
tumor

Tumor responses were
evaluated using

mRECIST criteria

2022 [132]

TPZ i.a., in combination with TAE,
was well tolerated and showed

promising efficacy signals in
intermediate-stage HCC.

Hypoxic
tumor

Tumor responses were
evaluated using

mRECIST criteria

2022 [8]
TPZ may exert synergistic

tumor-killing activity with TAE for
liver cancer.

Hypoxic
tumor

↑Necrosis
↑Apoptosis

TH-302

2017 [140]
Evofosfamide in combination with

conventional TACE enhanced
anticancer effects.

Hypoxic
tumor

↓Ki-67
↑γ-H2A.X
↑Annexin V
↑Caspase-3
↑Apoptosis

2020 [141]
TH-302 is a hypoxia-activated

prodrug targeting the intra-tumoral
hypoxic environment.

Hypoxic
tumor

↑Necrosis
↑Apoptosis

↓ = inhibit or reduce; ↑ = induce or increase.

6.3. Combination of Gene Therapy and TACE
6.3.1. Hypoxia Pathway-Related Gene Therapy

RNA modulation is a common modality for HIF-related gene therapy. Previous studies
have proposed the use of the RNA interference (RNAi) of HIF-1α to enhance the efficacy
of TAE in the treatment of HCC. RNAi is a process whereby the expression of specific
genes is silenced by the introduction of small interfering RNAs (siRNAs), endogenous
microRNAs (miRs), and other short double-stranded RNAs [142]. The study by Chen
et al. [143] confirmed that RNAi of HIF-1α improves the efficacy of TAE in the treatment of
HCC. Its resulting HIF-1α silencing effectively inhibits the increase in VEGF expression and
MVD after TAE, inhibits liver tumor growth, and reduces the number of lung metastases.
The results of their subsequent study [144], which employed ultrasound-guided HIF-1α
RNAi, demonstrated an improvement in the efficacy of TACE in the treatment of HCC,
thereby further confirming previous findings. Moreover, the study by Ni et al. [145] yielded
comparable outcomes. In this study, the iodized oil emulsion was prepared by combining
lipiodol with a siRNA transfection compound, which was then delivered via the hepatic
artery during the TAE procedure. In the rabbit VX2 model by Guo et al. [146], the TAE with
drug-free microspheres combined with intraarterial transfection of HIF-1α shRNA on HCC
demonstrated superior anti-tumor efficacy compared to monotherapy.

The combination of TACE with HIF-related gene knockdown represents a promising
therapeutic approach for the treatment of HCC. Liu et al. [147] found that the myocardial
infarction-associated transcript (MIAT)/miR-203a/HIF-1α axis could affect the efficacy
of TAE. MIAT and HIF-1α were highly expressed, and miR-203a was lowly expressed in
hypoxia-stimulated hepatocellular carcinoma cells after TACE. The MIAT gene regulated
the miR-203a/HIF-1α axis, and MIAT knockdown enhanced TAE-mediated antitumor
effects by upregulating miR-203a and downregulating HIF-1α. In addition, the lentivi-
ral delivery (LV-H721) of the CRISPR/Cas9 protein and an HIF-1α-specific small guide
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RNA (sgRNA) resulted in highly efficient HIF-1α modification. One study employed the
CRISPR/Cas9-mediated knockdown of HIF-1α [148]. The results demonstrated that the
lentiviral delivery of CRISPR/Cas9 protein and HIF-1α-specific sgRNA was an effective
method for modifying HIF-1α. Furthermore, the combination of CRISPR/Cas9-mediated
HIF-1α knockdown and TAE was found to significantly suppress tumors and prolong the
survival time of HCC mice.

6.3.2. Hypoxia-Targeted Oncolytic Virus

In 2008, Altomonte et al. [149] proposed a novel method of treatment for HCC in rats,
termed viroembolization. This approach involved the co-administration of recombinant
vesicular stomatitis virus (VSV) with degradable starch microspheres (DSM), which were
injected through the hepatic artery. The researchers observed that viral embolization
induced apoptosis in tumor margins that survived embolization, significantly reducing
intratumoral CD31 staining. Additionally, the procedure prevented neointimal formation
after embolization, recruited NK cells and CD8+ T cells for infiltration, and led to massive
tumor necrosis. The study by Sun et al. [150] demonstrated, for the first time, that the portal
infusion of adeno-associated viral vectors expressing antisense HIF1-α downregulated
HIF-1α and its downstream effectors, including VEGF, glucose transporter 1 (GLUT1), and
LDHA, and enhanced the inhibitory effect of TAE on the growth of HCC in rats. Zhang
et al. [151] synthesized a hypoxia-replicative oncolytic adenovirus (HYAD) and constructed
VX2 HCC rabbit models by HYAD perfusion combined with PVA embolization. The results
showed that HYAD was expressed and replicated in the presence of HIF-1α expression
or hypoxia in in vitro experiments. In the in vivo experiments in the VX2 model, HYAD
perfusion combined with PVA embolization resulted in the highest expression and the
longest expression duration compared with HYAD perfusion alone, wild adenovirus type
5 (WT) perfusion combined with PVA embolization, and WT perfusion alone.

In another aspect, data from a rabbit VX2 tumor model found transarterial viroem-
bolization (TAVE) to be the most effective modality, with more homogeneous oncolytic
virus distribution and therapeutic efficacy compared to other delivery methods (intratu-
moral injection and intravenous injection). TAVE is the optimal and safe therapy for the
treatment of immune-refractory HCC, and the synergistic effect achieves significant tumor
response, standby effect, survival benefit, and anti-tumor immune memory, providing
an innovative therapeutic approach for clinical practice [152]. It has to be acknowledged
that the combination of TACE and oncolytic virus shows great promise, whether targeting
hypoxic tumor cells or not.

Table 3. Summary of the therapeutic strategies of TACE combined with gene therapy for HCC.

Therapy Type Year Refs. Outcome Targets Affected Cancer Hallmark
Affected

Hypoxia
pathway-related

gene therapy

2012 [143]

HIF-1α RNAi visibly reduced the
expression of HIF-1α and VEGF,

suppressed tumor angiogenesis, and
attenuated metastasis.

HIF-1α
↓HIF-1α
↓VEGF
↓MVD

2015 [144]

HIF-1α RNAi could downregulate
the levels of HIF-1α and VEGF,
inhibit tumor angiogenesis, and

lessen metastases.

HIF-1α
↓HIF-1α
↓VEGF
↓MVD

2017 [145]
HIF-1α-siRNA could inhibit the
expression levels of HIF-1α and

VEGF effectively.
HIF-1α ↓HIF-1α

↓VEGF

2020 [146]

HIF-1α shRNA could decrease the
formation of blood vessels, slow

tumor growth, reduce tumor size,
and promote tumor cell apoptosis.

HIF-1α
↓HIF-1α
↓VEGF
↓CD34
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Table 3. Cont.

Therapy Type Year Refs. Outcome Targets Affected Cancer Hallmark
Affected

Hypoxia
pathway-related

gene therapy

2020 [147]

MIAT knockdown potentiated the
therapeutic effect of TAE in liver

cancer by regulating the
miR-203a/HIF-1α axis in vitro and

in vivo.

MIAT/
miR-203a/HIF-1α

↑miR-203a
↓HIF-1α

2018 [148]

The combination of
CRISPR/Cas9-mediated HIF-1α

knockdown and TAE was found to
significantly suppress tumors.

HIF-1α

↓HIF-1α
↓CD31

↓Invasiveness
↓Migration

↓Proliferation
↑Apoptosis

Hypoxia-targeted
oncolytic virus

2009 [150]

Intraportal delivery of
adeno-associated viral vectors

expressing antisense HIF-α
augmented TAE to combat
hepatocellular carcinoma.

HIF-1α

↓HIF-1α
↓VEGF
↓GLUT1
↓LDHA

↓Proliferation
↑Apoptosis

2019 [151]

Adenovirus expression protein E1A
has the properties of promoting

apoptosis, inhibiting invasion, and
inhibiting metastasis.

Hypoxic tumor
↓Proliferation
↓Migration
↑Apoptosis

↓ = inhibit or reduce; ↑ = induce or increase.

7. Conclusions

In view of the negative impact of local hypoxia on the therapeutic efficacy of TACE
for HCC, hypoxia represents a promising target for combination use with TACE. Previous
clinical phase III trials on TPZ for solid tumors showed negative results, which is likely
due to the fact that the hypoxia within tumors is not sufficient to effectively activate TPZ to
exert its hypoxia-selective cytotoxicity. In contrast, TACE generates a sufficient hypoxic
microenvironment, which is conducive to the effectiveness of TPZ. Encouraging results
have been observed in the phase I trial investigating TPZ with TAE for HCC, and phase
II trials are currently underway. Future directions in this field include a comprehensive
investigation of the role of possible interactions between hypoxia and the effect of TAE
during the TACE procedure. Additionally, there is a need to develop new formulations of
hypoxia-targeted drugs suitable for combination with TACE, such as novel HAPs that can
be suspended in lipiodol or loaded onto drug-eluting microspheres at high doses. Moreover,
nanotechnology has been utilized to deliver anti-tumor drugs and embolize tumor blood
vessels. Further studies are required to assess the feasibility of the use of nanomaterials to
deliver hypoxia-targeted drugs and their efficacy and safety as a chemoembolization agent
targeting hypoxic tumor cells. Overall, the combination of TACE with hypoxia-targeted
therapy constitutes an effective strategy, and continued investigation and innovation in
this field will be crucial to improving outcomes for patients with HCC.
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