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Abstract: Down Syndrome (DS), characterized by trisomy of chromosome 21, leads to the overexpres-
sion of several genes contributing to various pathologies, including cognitive deficits and early-onset
Alzheimer’s disease. This study aimed to identify the intersection genes of two polyphenolic com-
pounds, apigenin and naringenin, and their potential therapeutic targets in DS using network phar-
macology. Key proteins implicated in DS, comprising DYRK1A, APP, CBS, and ETS2, were selected
for molecular docking and dynamics simulations to assess the binding affinities and stability of the
protein–ligand interactions. Molecular docking revealed that naringenin exhibited the highest bind-
ing affinity to DYRK1A with a score of −9.3 kcal/mol, followed by CBS, APP, and ETS2. Moreover,
molecular docking studies included positive control drugs, such as lamellarin D, valiltramiprosate,
benserazide, and TK216, which exhibited binding affinities ranging from −5.5 to −8.9 kcal/mol.
Apigenin showed strong binding to APP with a score of −8.8 kcal/mol, suggesting its potential
in modulating amyloid-beta levels. These interactions were further validated through molecular
dynamics simulations, demonstrating stable binding throughout the 100 ns simulation period. Root
mean square deviation (RMSD) and root mean square fluctuation (RMSF) analyses indicated minimal
fluctuations, confirming the stability of the complexes. The findings suggest that apigenin and
naringenin could serve as effective therapeutic agents for DS by targeting key proteins involved in
its pathology. Future studies should focus on in vivo validation, clinical trials, and exploring com-
bination therapies to fully harness the therapeutic potential of these compounds for managing DS.
This study underscores the promising role of network pharmacology in identifying novel therapeutic
targets and agents for complex disorders like DS.

Keywords: Down Syndrome; network pharmacology; apigenin; naringenin; molecular docking

1. Introduction

Down Syndrome (DS) is a genetic disorder caused by the presence of an extra copy of
chromosome 21, known as trisomy 21 [1–3]. This chromosomal abnormality is most com-
monly detected in persons with intellectual disability, impacting approximately 1 in 700 live
births [4]. DS is characterized by a range of physical and cognitive impairments, including
developmental delays, intellectual disability, and distinctive facial features [2]. Individuals
with DS also have a higher prevalence of congenital cardiac problems, respiratory and
auditory impairments, Alzheimer’s disease (AD), and several autoimmune disorders [5,6].
Overexpression of genes located on chromosome 21 contributes to the intricate pathophysi-
ology of DS [7,8]. The genes dual-specificity tyrosine-phosphorylation-regulated kinase
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1A (DYRK1A), amyloid precursor protein (APP), cystathionine beta-synthase (CBS), and
E26 transformation-specific transcription factor 2 (ETS2) play crucial roles in the cognitive
and developmental impairments observed in individuals with DS [9–11]. DYRK1A is
associated with deficits in neurodevelopment, while increased expression of APP results in
an upregulation of amyloid-beta production, initiating the onset of early-onset AD [11,12].
CBS plays a crucial part in the metabolism of homocysteine, and any dysfunction in this
process can lead to cardiovascular diseases and cognitive impairments [13]. ETS2 con-
tributes to abnormal cell proliferation and apoptosis, hence increasing the complexity of
DS pathogenesis [14]. Network pharmacology is an emerging discipline that integrates
systems biology and pharmacology to offer a holistic understanding of drug mechanisms
and interactions within biological networks [15,16]. Network pharmacology distinguishes
itself from traditional pharmacology by considering the complex interplay of multiple
targets and pathways, instead of merely focusing on individual target interactions [15].
This approach is particularly suitable for complex disorders like DS, where the advance-
ment of the disease involves multiple genes and proteins [17]. Network pharmacology
combines computational methods, bioinformatics, and systems biology to identify new
treatment targets and understand the mechanisms by which bioactive molecules function.
Researchers can utilize it to construct and analyze interaction networks, discern crucial
nodes, and predict the ramifications of modifying these nodes [18]. This comprehensive
method provides a deep understanding of the therapeutic potential of chemicals and their
impacts on disease networks.

Previous studies have examined the therapeutic potential of several chemicals in DS
using both laboratory-based and live organism models [2,19,20]. Various studies have
demonstrated that polyphenolic compounds have the capacity to control significant path-
ways involved in DS, owing to their anti-inflammatory, antioxidant, and neuroprotective
properties [21,22]. Studies have shown that polyphenols like resveratrol and curcumin
can reduce oxidative stress and improve cognitive function in Down Syndrome (DS)
mice [20,23,24]. Blocking the enzyme DYRK1A has been identified as a potential therapy
strategy, as studies have shown that DYRK1A inhibitors can improve cognitive impair-
ments in DS animals [25]. Apigenin and naringenin (Figure 1), two naturally occurring
polyphenolic compounds, have garnered attention for their potential neuroprotective
qualities [26–29]. Apigenin, found in various fruits and vegetables, has demonstrated
anti-inflammatory, antioxidant, and potentially anticancer properties [29]. Naringenin,
mostly found in citrus fruits, is well known for its anti-inflammatory and antioxidant
characteristics and has shown potential in controlling metabolic disorders [30,31]. The
aim of this study was to investigate the therapeutic potential of apigenin and naringenin
in DS by identifying the shared genes and their potential targets using network pharma-
cology. The reason for selecting these polyphenols is based on their previously shown
ability to preserve the brain and their power to control important pathways involved in
neurodegenerative diseases [27,32]. The primary objective of this study was to ascertain
the binding affinities and interactions between apigenin and naringenin and four crucial
proteins linked to DS: DYRK1A, APP, CBS, and ETS2. The proteins were chosen based on
their significant role in the pathophysiology of DS. The aim of our study was to employ
molecular docking and molecular dynamics simulations to elucidate the stability and
specificity of the interactions between these polyphenols and the target proteins. Molecular
docking is a computer technique employed to determine the most favorable interactions
between small compounds and their target proteins [33]. This technique provides useful
insights about the possible efficacy of the drugs [33,34]. Molecular dynamics simulations
further validate the enduring stability of these connections, improving our understanding
of the dynamic behavior of the protein–ligand complexes [35,36]. This study employs
network pharmacology to examine the treatment efficacy of apigenin and naringenin in
DS. We aim to employ computational approaches and bioinformatics, in conjunction with
experimental validation, to identify novel therapeutic targets and elucidate the mechanisms
of action of these polyphenols. The findings of this study have the capacity to facilitate the
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development of effective treatment strategies for managing DS, showcasing the promise of
network pharmacology in addressing complex hereditary disorders.
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Figure 1. Chemical structure of (A) apigenin and (B) naringenin.

2. Results
2.1. Protein–Protein Interactions (PPI) Analysis

The STRING database is a computational aspect that contains both anticipated and
observed protein–protein interactions between possible therapeutic targets and other human
proteins. The interactions are derived from a computer program estimation, knowledge trans-
fer between organisms, and interactions aggregated from primary databases. They encompass
physical and functional associations. The significance of protein–protein interactions (PPI)
stems from its variety, adaptability, and precision. Studies on interactions between proteins
have demonstrated an association between the targets (Figure 2). The DYRK1A, APP, CBC,
and ETS 2 networks have 11, 11, 11, and 11 nodes and 22, 28, 53, and 35 edges, respectively.
The higher nodes’ appearance indicates an increased level of connectedness. The circle-shaped
structure denotes the network nodes that represent different proteins. Additionally, the red
color demonstrates the query protein, and the stacked line shows the edges that represent the
protein–protein association.

2.2. Molecular Docking Analysis

The primary goal of the molecular docking investigation was to identify the optimal
polyphenol–protein interaction. To conduct molecular docking between the two polyphenols
and their respective four proteins, PyRx tools AutoDock Vina wizard (V 1.2.5) was used. After
molecular docking, the lead compounds’ binding affinities ranged from −7.2 to −9.3 kcal/mol,
whereas the positive control drug’s binding affinities ranged from −5.5 to −8.9 kcal/mol
(Table 1). Naringenin calculated the highest binding affinities of −9.3 kcal/mol and
−8.0 kcal/mol with DYRK1A and CBS, respectively, whereas the apigenin showed a nega-
tive higher binding score of −8.8 kcal/mol and −7.3 kcal/mol with APP and ETS2, respec-
tively. The positive control drug lamellarin D showed a binding score of −8.9 kcal/mol
for DYRK1A, whereas valiltramiprosate, benserazide, and TK216 exhibited docking scores
of −5.5, −6.4, and −7.1 kcal/mol for APP, CBS, and ETS2 proteins, respectively. The lead
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compounds apigenin and naringenin were calculated to have better native binding scores
than the control drugs for every protein target.
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Figure 2. Protein–protein interactions of (A) DYRK1A, (B) APP, (C) CBC, and (D) ETS2.

Table 1. Molecular docking scores of the selected two polyphenols (apigenin and naringenin) and
positive control drugs with four proteins.

S. No. Receptor Name
Docking Score (kcal/mol)

Apigenin Naringenin Lamellarin D Valiltramiprosate Benserazide TK216

1 DYRK1A −9.2 −9.3 −8.9 - - -
2 APP −8.8 −8.6 - −5.5 - -
4 CBS −7.8 −8.0 - - −6.4 -
5 ETS2 −7.3 −7.2 - - - −7.1

2.3. Protein–Ligand Interaction Analysis from Molecular Docking

The two polyphenols were retrieved for further analysis and molecular interac-
tions were visualized through the Maestro module of the Schrodinger suite, as shown
in Figures 3–6 for the four protein–ligand complexes. Different types of non-bonded inter-
actions between receptors and ligands, like hydrogen bonds, glycine bonds, metal bonds,
electrostatic bonds, salt bridges, and hydrophobic bonds were generated and are depicted
in Table 2. DYRK1A, ILE165, GLY166, LYS167, PHE170, VAL173, LYS175, VAL185, ALA186,
ILE187, LYS188, GLU203, LEU207, VAL222, LEU236, PHE238, GLU239, MET240, LEU241,
SER242, TYR243, ASN244, ASP247, HIS285, LEU294, LEU295, CYS296, ILE305, VAL306,
ASP307, PHE308, and GLY309 are common interacting residues for both apigenin and
naringenin. On the other hand, APP, LEU78, ASP80, GLY82, SER83, SER84, ASN85, PHE86,
ALA87, VAL88, VAL117, PRO118, TYR119, THR120, GLN121, GLY122, LYS123, TRP124,
ALA148, ILE150, ASP154, LYS155, PHE156, PHE157, ILE158, TRP163, GLY165, ILE166,
LEU167, GLY168, ILE174, ALA175, ARG176, and GLY278 are common, for CBS, THR68,
ALA69, PRO70, ALA71, LYS72, SER73, PRO74, LEU77, PRO78, LEU81, LYS82, LYS83, ILE84,



Pharmaceuticals 2024, 17, 1090 5 of 19

GLY85, ASP86, ASN113, VAL118, ASP120, ARG121, ILE122, SER123, LEU124, ARG125,
MET126, GLU128, ARG161, SER227, ALA231, HIS232, ASP234, THR235, THR236, and
GLY239. ETS2, LEU369, LEU370, GLU371, LEU372, LEU373, HER374, ASP375, LYS376,
SER377, CYS378, GLN379, SER380, PHE381, ILE382, SER383, TRP384, THR385, GLY386,
ASP387, GLY388, GLU390, LYS392, PRO454, GLU455, LEU457, HIS458, ALA459, ILE460 are
the common interacting amino acids that serves as active site for apigenin and naringenin
while binding with specific target protein. The positive control drugs for each receptor
also bound with multiple common interacting residues (Table 1) that suggested that the
selected two ligands apigenin and naringenin are bound at the same active site of each
receptor (Supplementary Figure S1). The DYRK1A protein control drug lamellarin D
has similar binding amino acids positions at ILE165, GLY166, LYS167, PHE170, VAL173,
ALA186, LYS188, GLU203, LEU207, VAL222, LEU236, PHE238, GLU239, MET240, LEU241,
SER242, TYR243, ASN244, ASP247, LEU294, VAL306, ASP307, PHE308, and GLY 309,
respectively, with the apigenin and naringenin binding pose. The APP protein control drug
valiltramiprosate mutual binding site residues were LEU78, ASP80, GLY82, SER83, SER84,
ASN85, PHE86, ALA87, VAL117, PRO118, TYR119, THR120, GLN121, GLY122, TRP124,
ILE150, PHE156, ILE166, LEU167, GLY168, ILE174, ALA175, ARG176, ASP276, and GLY278,
respectively. For the CBS protein control drugs benserazide, communal amino acids were
THR68, PRO70, ALA71, LYS72, SER73, PRO74, LEU81, LYS82, LYS83, ILE84, GLY85, ASP86,
THR87, ASN113, ASP120, ARG121, ILE122, LEU124, ARG125, GLU128, SER227, ALA231,
HIS232, THR235, THR236, and GLU239, respectively, and the ETS2 protein control drug
TK216 conjoint binding residues was LEU369 with two lead compounds.

Table 2. Molecular interaction of apigenin and naringenin with four targeted receptors.

Receptor Compound Name Interacting Bonds

DYRK1A (Dual-Specificity
Tyrosine-Phosphorylation-

Regulated Kinase 1A)

Apigenin

LEU164, ILE165, GLY166, LYS167, PHE170, VAL173, LYS175, VAL185, ALA186, ILE187,
LYS188, GLU203, LEU207, VAL222, LEU236, PHE238, GLU239, MET240, LEU241,

SER242, TYR243, ASN244, ASP247, HIS285, LEU294, LEU295, CYS296, ILE305, VAL306,
ASP307, PHE308, GLY309, SER310

Naringenin

ILE165, GLY166, LYS167, PHE170, VAL173, VAL174, LYS175, VAL185, ALA186, ILE187,
LYS188, GLU203, LEU207, VAL222, LEU224, LEU236, PHE238, GLU239, MET240,

LEU241, SER242, TYR243, ASN244, ASP247, LEU294, LEU295, CYS296, ILE305, VAL306,
ASP307, PHE308, GLY309

Lamellarin D
ILE165, GLY166, LYS167, GLY168, PHE170, VAL173, ALA186, LYS188, GLU203, LEU207,

VAL222, LEU236, PHE238, GLU239, MET240, LEU241, SER242, TYR243, ASN244,
ASP247, GLU291, ASN292, LEU294, VAL306, ASP307, PHE308, GLY 309

APP (Amyloid
Precursor Protein)

Apigenin

LEU78, ASP80, GLY82, SER83, SER84, ASN85, PHE86, ALA87, VAL88, VAL117, PRO118,
TYR119, THR120, GLN121, GLY122, LYS123, TRP124, ALA148, ILE150, ASP154, LYS155,
PHE156, PHE157, ILE158, TRP163, GLY165, ILE166, LEU167, GLY168, ILE174, ALA175,

ARG176, GLY278.

Naringenin

LEU78, ASP80, GLY82, SER83, SER84, ASN85, PHE86, ALA87, VAL88, VAL117, PRO118,
TYR119, THR120, GLN121, GLY122, LYS123, TRP124, ALA148, ILE150, ASP154, LYS155,
PHE156, PHE157, ILE158, TRP163, GLY165, ILE166, LEU167, GLY168, ILE174, ALA175,

ARG176, GLY278

Valiltramiprosate
LEU78, ASP80, GLY82, SER83, SER84, ASN85, PHE86, ALA87, VAL117, PRO118,

TYR119, THR120, GLN121, GLY122, TRP124, ILE150, PHE156, ILE166, LEU167, GLY168,
ILE174, ALA175, ARG176, ASP276, GLY278

CBS (Cystathionine
Beta-Synthase)

Apigenin

THR68, ALA69, PRO70, ALA71, LYS72, SER73, PRO74, LEU77, PRO78, LEU81, LYS82,
LYS83, ILE84, GLY85, ASP86, ASN113, VAL118, LYS119, ASP120, ARG121, ILE122,
SER123, LEU124, ARG125, MET126, GLU128, ARG161, SER227, ASN228, LEU230,

ALA231, HIS232, ASP234, THR235, THR236, GLY239

Naringenin

THR68, ALA69, PRO70, ALA71, LYS72, SER73, PRO74, LEU77, PRO78, LEU81, LYS82,
LYS83, ILE84, GLY85, ASP86, THR87, LYS108, GLU110, ASN113, VAL118, ASP120,

ARG121, ILE122, SER123, LEU124, ARG125, MET126, ILE127, GLU128, ASP129,
ARG161, SER227, ALA231, HIS232, ASP234, THR235, THR236, GLU239

Benserazide
THR68, PRO70, ALA71, LYS72, SER73, PRO74, LEU81, LYS82, LYS83, ILE84, GLY85,

ASP86, THR87, ASN113, ASP120, ARG121, ILE122, LEU124, ARG125, GLU128, SER227,
LEU230, ALA231, HIS232, THR235, THR236, GLU239
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Table 2. Cont.

Receptor Compound Name Interacting Bonds

ETS2 (E26
Transformation-Specific
Transcription Factor 2)

Apigenin
LEU369, LEU370, GLU371, LEU372, LEU373, HER374, ASP375, LYS376, SER377, CYS378,
GLN379, SER380, PHE381, ILE382, SER383, TRP384, THR385, GLY386, ASP387, GLY388,

GLU390, LYS392, PRO454, GLU455, LEU457, HIS458, ALA459, ILE460

Naringenin
LEU369, LEU370, GLU371, LEU372, LEU373, HER374, ASP375, LYS376, SER377, CYS378,
GLN379, SER380, PHE381, ILE382, SER383, TRP384, THR385, GLY386, ASP387, GLY388,

GLU390, LYS392, PRO454, GLU455, LEU457, HIS458, ALA459, ILE460

TK216

ALA355, THR358, GLY359, SER360, GLY361, PRO362, ILE363, GLA364, LEU365, TRP366,
GLN367, PHE368, LEU369, LYS392, ALA400, TRP403, ARG406, LYS407, ASN408,

LYS409, PRO410, LYS411, MET412, ASN413, TYR414, GLU415, LYS416, LEU417, SER418,
ARG419, GLY420, LEU421, TYR423, TYR424, TYR425, ASP426, LYS427, ILE429, CYS444
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Figure 6. The molecular docking interaction of E26 transformation-specific transcription factor 2 with
two lead compounds of apigenin and naringenin and the positive control drug TK216. The left side
denotes the 3D protein–ligand structure and the right side denotes the formation of several bonds by
the ligand complexed with protein.
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2.4. Molecular Dynamic Simulation

The stability of protein–ligand complexes was confirmed in an artificial environment
through MD simulation. To determine the stability of protein–ligand complexes, a 100 ns
MD simulation was carried out. Results of MD simulations were described by using RMSD,
RMSF, radius of gyration (Rg), and solvent-accessible surface area (SASA).

2.5. RMSD Analysis

The stability of the respective apo protein (negative control) of DYRK1A, APP, CBC,
and ETS2, of each protein with the lead ligands (apigenin and naringenin), and respec-
tive protein drugs’ (positive control) complex structure was assessed by measuring the
RMSD of the Cα atoms during the 100 ns simulation. For the DYRK1A receptor, DYRK1A
Apo, the lead apigenin and naringenin in complex with DYRK1A, and the control drug
lamellarin D showed average RMSD values of 1.73 Å, 2.58 Å, 1.67 Å, and 2.88 Å, whereas
the lowest to highest RMSD values were (0.935–2.299) Å, (0.962–3.21) Å, (0.968–2.189) Å, and
(0.912–3.466) Å, respectively, as demonstrated in Figure 7A. For APP, the average Cα-RMSD,
and lowest-highest RMSD values of the APP apo, apigenin–APP, and naringenin–App, and
control drugs APP–valiltramiprosate were 2.60 Å (0.936–4.979) Å, 2.57 Å (1.155–4.009) Å,
2.54 Å (1.043–3.775) Å, and 3.28 Å (0.934–5.174) Å, respectively. Notably, none of these com-
pounds showed significant variations when compared with apo and control drug complexes,
remaining in an equilibrium state throughout the simulation time frame (Figure 7B). In the
case of CBS, the average and lower-higher deviations of CBS apo was 2.13 Å (1.06–3.06) Å,
apigenin–CBS complex 2.21 Å (1.041–2.97) Å, naringenin–CBS was 1.92 Å (1.236–2.567) Å,
and the control drug CBS–benserazide was 2.97 Å (1.083–3.97) Å, which demonstrates struc-
tural stability during the 100 ns simulation, in contrast to the instability (Figure 7C).

Similarly, for ETS2 apo, apigenin–ETS2, naringenin–ETS2, and ETS2–TK216 (control
drug) complexes, as depicted in Figure 7D, the range was (0.83 to 1.992) Å, (0.868 to 1.545) Å,
(0.79 to 1.74) Å, and (0.758 to 1.656) Å, respectively, indicating good stability, resembling the
selected compound as promising lead agents when comparing with the positive control drug
ETS2–TK216 drug complex. In all the four receptors of DYRK1A, APP, CBS, and ETS2, the
apigenin and naringenin complexes showed better stability than all the comparable positive
drug complexes. In DYRK1A, from the 0 ns to 100 ns simulation time frame, the apo protein
and control drugs exhibited greater deviation. When the apigenin and naringenin were
complexed with the apo protein, they showed less deviation that shown when the two lead
compounds stabilized the protein structure. In case of APP, from 0 ns to 50 ns, all the structures
depicted some random deviation; after that, the apigenin and naringenin provided the less
RMSD values but the control drug showed a larger peak than the two lead compounds. The
apigenin and naringenin complexed with the APP proteins demonstrated good stability. For
CBS, the apigenin and naringenin complexes provided overlapping RMSD values with the
negative control CBS–apo protein, whereas the positive control complex showed much higher
RMSD values from the 35 ns simulation time to the 100 ns simulation time frame. Finally, for
the ETS2 receptors, the two lead compounds’ complexes and control drug complex showed
almost similar ranges of RMSD values from the start to almost the end of the 100 ns simulation
time, but after the 85 ns simulation time, TK216 control drugs demonstrated a much higher
peak than the lead compound complexes.

2.6. RMSF Analysis

The protein complexes with the selected polyphenols’ RMSF values are illustrated in
Figure 7E–H. The apo protein, two lead ligands apigenin and naringenin, and the control
drug lamellarin D in complex with DYRK1A exhibited average fluctuations of 0.95 Å, 1.00 Å,
0.846 Å, and 0.93 Å, respectively (Figure 7E). In the DYRK1A receptor, the apigenin exhibited
GLN 320 (10.085 Å), the LYS 412 (5.279 Å), and the lamellarin D exhibited GLN 320 (9.198 Å),
LYS 412 (4.923) Å residual positions have large peaks, whereas the naringenin compound did
not show any major fluctuations in 100 ns simulation time. The average fluctuation for the
APP apo protein, two polyphenols and the control drugs were 1.09 Å, 1.13 Å, 1.09 Å, and
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1.30 Å, respectively, for the APP protein, while and at the end, the protein’s amino acid has
high points due to presence of terminal carbon groups (Figure 7F). The APP–valiltramiprosate
complexes showed a larger peak at VAL214 (6.76 Å), whereas the apigenin and naringenin
did not show any significant variation. In the case of CBC, the average fluctuation for the
CBS apo, apigenin, naringenin, and control drug benserazide complexes were 1.02 Å, 1.18 Å,
0.98 Å, and 1.33 Å, respectively. The THR 193 (3.12 Å), GLY 246 (2.81 Å), and GLU 297 (2.42 Å),
residues from the apigenin complex demonstrated higher peaks, whereas the benserazide
complex showed a larger peak at SER63 (12.08 Å), as illustrated in Figure 7G. The CBS apo
protein in all of the three compound complexes showed several random peaks from the five to
fifty amino acids positions, due to presence of N-terminal at the protein’s beginning site. After
that, there were no significant high fluctuations for the rest of the residual positions. In the
ETS2 receptors, average RMSF values of 0.75 Å, 0.72 Å, 0.74 Å, and 0.72 Å were observed
for the ETS2 apo protein, the two selected polyphenols (apigenin and naringenin), and the
TK216 control drug complexes respectively. All the complexes provided multiple rocketed
peaks, but the overall fluctuation position below 3.0 Å depicted that the ETS2 protein is also
stable when it binds with the apigenin and naringenin lead compounds. High reached peaks
at the SER 339, GLY 345, SER 260, ASP387, and LYS 411 residual fluctuations have been
generated (Figure 7H). The selected lead complexes from the respective receptors fluctuated
in an optimal range with their amino acid positions.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 11 of 21 
 

 

lowest to highest RMSD values were (0.935–2.299) Å, (0.962–3.21) Å, (0.968–2.189) Å, and 
(0.912–3.466) Å, respectively, as demonstrated in Figure 7A. For APP, the average Cα-
RMSD, and lowest-highest RMSD values of the APP apo, apigenin–APP, and naringenin–
App, and control drugs APP–valiltramiprosate were 2.60 Å (0.936–4.979) Å, 2.57 Å (1.155–
4.009) Å, 2.54 Å (1.043–3.775) Å, and 3.28 Å (0.934–5.174) Å, respectively. Notably, none 
of these compounds showed significant variations when compared with apo and control 
drug complexes, remaining in an equilibrium state throughout the simulation time frame 
(Figure 7B). In the case of CBS, the average and lower-higher deviations of CBS apo was 
2.13 Å (1.06–3.06) Å, apigenin–CBS complex 2.21 Å (1.041–2.97) Å, naringenin–CBS was 
1.92 Å (1.236–2.567) Å, and the control drug CBS–benserazide was 2.97 Å (1.083–3.97) Å, 
which demonstrates structural stability during the 100 ns simulation, in contrast to the 
instability (Figure 7C). 

 
Figure 7. Graphs showing the protein carbon alpha of RMSD values (Left), and RMSF values (Right). 
The apo protein is depicted in blue, apigenin is marked orange, naringenin is marked green and the 
control drug for each receptor is shown in yellow. Apigenin and naringenin RMSD values when 
complexed with (A) DYRK1A, (B) APP, (C) CBC, and (D) ETS2, and apigenin and naringenin RMSF 
values when complexed with (E) DYRK1A, (F) APP, (G) CBC, and (H) ETS2. 

Similarly, for ETS2 apo, apigenin–ETS2, naringenin–ETS2, and ETS2–TK216 (control 
drug) complexes, as depicted in Figure 7D, the range was (0.83 to 1.992) Å, (0.868 to 1.545) 

Figure 7. Graphs showing the protein carbon alpha of RMSD values (Left), and RMSF values (Right).
The apo protein is depicted in blue, apigenin is marked orange, naringenin is marked green and the
control drug for each receptor is shown in yellow. Apigenin and naringenin RMSD values when
complexed with (A) DYRK1A, (B) APP, (C) CBC, and (D) ETS2, and apigenin and naringenin RMSF
values when complexed with (E) DYRK1A, (F) APP, (G) CBC, and (H) ETS2.
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2.7. The Radius of Gyration (Rg)

The two lead compounds, apigenin and naringenin, and the respective protein control
drugs’ stability in complex with the DYRK1A, APP, CBC, and ETS2 receptors were calcu-
lated based on their Rg values to a 100 ns simulation run time, as outlined in Figure 8A–D.
The apigenin in complex with DYRK1A, APP, CBC, and ETS2 receptors showed average
Rg values with least and highest Rg fluctuation difference ranges of 3.67 Å (0.177 Å), 3.66 Å
(0.151 Å), 3.67 Å (0.169 Å), and 3.66 Å (0.142 Å), while naringenin exhibited 3.69 Å (0.144 Å),
3.67 Å (0.181 Å), 3.68 Å (0.172 Å), and 3.68 Å (0.525 Å) respectively. The average Rg values
of DYRK1A, APP, CBs, and ETS2 protein positive control drugs of DYRK1A–lamellarin
D, APP–valiltramiprosate, CBS–benserazide, and ETS2-TK216 were 4.37 Å, 3.55 Å, 3.35 Å,
and 4.18 Å, respectively, whereas the lowest to highest Rg values were (4.29–4.47) Å,
(2.27–3.98) Å, (3.05–3.88) Å, and (3.60–4.48) Å, respectively. In DYRK1A, the two lead
compounds, apigenin and naringenin, exhibited lowest Rg values from the 0 ns to 100 ns
simulation time. For APP, the apigenin and naringenin showed the very lowest peaks
throughout the simulation time, whereas the control drug demonstrated random fluctu-
ation until the 20 ns simulation time. After that, it overlapped with the lead compound
complex. In CBS, the control drugs showed lower Rg values than the two lead compounds,
but these did not stabilize, due to presenting some major fluctuations from 50 ns to the
end of the simulation. Finally, for ETS2, apigenin and naringenin lower Rg values when
comparing with the control drugs. The control drugs demonstrated several higher peaks,
with greater Rg values. Of all the selected receptors, the apigenin and naringenin demon-
strated an acceptable range of Rg fluctuations compared to their respective positive control
drugs. The measured Rg value demonstrated better stability in 100 ns simulations, with
lower fluctuation, suggesting that apigenin and naringenin with their respective protein
complexes significantly improved compactness.

2.8. Solvent-Accessible Surface Area

In this study, the apigenin (lead) in complex with DYRK1A, APP, CBC, and ETS2 proteins
demonstrated an average fluctuation of 55.31 Å2, 109.88 Å2, 91.07 Å2, and 120.53 Å2, respec-
tively. The naringenin showed an average fluctuation of 66.91 Å2, 81.88 Å2, 53.54 Å2, and
122.57 Å2, respectively, as shown in in Figure 8E–H. When compared with each protein’s pos-
itive control drugs, DYRK1A–lamellarin D, APP–valiltramiprosate, CBS–benserazide, and
ETS2–TK216, average SASA values were calculated as 110.42 Å2, 74.88 Å2, 115.79 Å2, and
192.54 Å2, respectively. This result indicates that two polyphenols displayed a lower range
of surface area exposed to the solvent in complex with DYRK1A, APP, CBC, and ETS2
receptors (Figure 8). In DYRK1A, the positive control drug complex demonstrated a larger
peak than the selected ligands from the start to the end of the 100 ns simulation. For APP,
the apigenin complex demonstrated several high peaks after the 70 ns simulation, whereas
the naringenin showed better stability when compared with the control drugs. For CBS,
the selected polyphenols showed stable SASA values, whereas the control drug showed
some fluctuations. After that, the SASA values of the apigenin and control drug complexes
gradually increased up to 50 ns simulation. Then the lead compounds exhibited stability,
but the control drug complex showed larger fluctuations. Finally, for ETS2, the apigenin
and naringenin complexes provided better SASA values than those of the of positive control
drug from the 100 ns simulation timeframe. This result suggests that there was effective
exposure of amino acid residues to the identified compound in the complex systems.
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3. Discussion

Computer-aided drug design (CADD) has been widely used for more than three
decades to screen, develop, and construct molecular candidates with therapeutic signifi-
cance [37]. These methods are a combination of different approaches including molecular
docking, and molecular dynamics (MD) simulation that help to optimize and screen com-
pounds more effectively [38,39]. In current times, molecular docking has emerged as a
widely used technique for elucidating the interaction between a target protein and potential
small molecule compounds [38]. Initially, the approaches can suggest possible compounds
that can be used for drug design [38]. MD simulation can then confirm the stability of
these desirable molecules to the target protein. In the past, numerous small molecules
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have been discovered using CADD methods [40,41]. These molecules have successfully
proven effective in lab settings and are now considered innovative therapies for treating
Down Syndrome [42,43]. The current study employed network pharmacology to identify
the prevalent genes of apigenin and naringenin in DS as prospective targets for therapy.
Network pharmacology is a developing field that integrates systems biology and computa-
tional methods to understand the interaction networks between medicines and their targets.
The binding affinities and interactions of apigenin and naringenin, which are naturally
occurring polyphenolic compounds, were examined with important proteins involved in
DS, namely DYRK1A, APP, CBS, and ETS2. The findings indicate that these chemicals may
have potential therapeutic uses in the management of DS.

DYRK1A, also known as dual-specificity tyrosine-phosphorylation-regulated kinase 1A,
plays a critical role in the development of DS because it is excessively expressed in indi-
viduals with an extra copy of chromosome 21 [44,45]. The excessive expression of this
gene leads to the neurodevelopmental impairments observed in DS [11]. Prior research
has shown that suppressing DYRK1A can alleviate cognitive and developmental abnor-
malities in models of DS [11]. A study emphasized the potential of DYRK1A inhibitors in
enhancing cognitive functioning in mouse models with Down Syndrome [25]. The results
of our molecular docking analysis are consistent with these findings, indicating that both
apigenin and naringenin have high binding affinities to DYRK1A compared with existing
positive controls. Naringenin exhibited the most favorable binding score of −9.3 kcal/mol,
indicating a strong interaction. These findings indicate that these drugs have the potential
to be efficient inhibitors of DYRK1A, which could potentially improve certain neurological
symptoms associated with DS. The APP gene, situated on chromosome 21, is excessively
expressed in individuals with DS, resulting in heightened synthesis of amyloid-beta and
the premature start of AD in DS patients [46,47]. The presence of amyloid-beta plaques
is a characteristic feature of AD pathogenesis [48]. Prior studies have demonstrated that
polyphenols have the ability to regulate the aggregation of amyloid-beta and diminish
its harmful effects on the nervous system [23,49]. Ono et al. (2003) conducted studies
that showed polyphenols such as resveratrol have the ability to hinder the aggregation of
amyloid-beta and decrease the formation of plaques [50]. Both apigenin and naringenin had
significant binding affinities to APP in this study, with apigenin displaying a binding score
of −8.8 kcal/mol. This interaction implies that these polyphenols may regulate the activity
of APP and the generation of amyloid-beta, thereby decreasing symptoms resembling
Alzheimer’s disease in individuals with Down Syndrome [50,51]. This is consistent with
previous research on the neuroprotective benefits of polyphenols in models of AD.

CBS is crucial in the function of homocysteine metabolism [52]. CBS dysfunction
results in increased homocysteine levels, which are linked to cardiovascular illnesses
and cognitive deficits [53,54]. Research has indicated that polyphenols have the ability to
impact the process of homocysteine metabolism and enhance cardiovascular well-being [55].
Research reports have emphasized the impact of polyphenols in regulating homocysteine
levels and safeguarding against cardiovascular illnesses [55,56]. The results of our study
showed that naringenin exhibited a high affinity for CBS, as indicated by a docking score
of −8.0 kcal/mol. This indicates that naringenin may assist in regulating homocysteine
levels in individuals with DS, hence reducing some of the cardiovascular and cognitive
consequences linked to high homocysteine levels. E26 transformation-specific transcription
factor 2 (ETS2) plays a role in controlling cell growth and programmed cell death [57,58].
The excessive expression of ETS2 in DS results in aberrant cell growth and heightened
programmed cell death, which contributes to the development of several recognized
disorders in DS [58]. A research study has demonstrated that manipulating the expression
of ETS2 can impact the growth and death of cells in DS models [14]. Our investigation
demonstrates that apigenin and naringenin have the potential to modulate the pathways
involving ETS2. Both compounds had notable binding affinities, with apigenin displaying
a docking score of −7.3 kcal/mol. These interactions have the potential to assist in the
management of cellular abnormalities in DS by decreasing aberrant cell growth and death.
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The molecular docking research yielded comprehensive information regarding the binding
affinities and interactions of apigenin and naringenin with the four target proteins. The
binding values demonstrated robust affinities, specifically towards DYRK1A and CBS.
The investigation of the interaction identified several non-covalent interactions, such as
hydrogen bonds, that play a vital role in maintaining the stability and specificity of the
protein–ligand complexes. As an illustration, naringenin demonstrated the strongest
attraction to DYRK1A, with a value of −9.3 kcal/mol, suggesting a durable and powerful
interaction. Subsequently, there was a relationship between it and CBS, which exhibited
a notable propensity for binding. Apigenin, however, demonstrated the highest binding
score with APP, indicating its potential ability to regulate amyloid-beta levels in DS.

The stability of these interactions over time was confirmed by MD simulations. The
RMSD and RMSF indicated that the protein–ligand complexes maintained stability during
the whole simulation time [59]. The analysis of the Rg and SASA offered more understand-
ing of the density and external exposure of the complexes, respectively [60]. The RMSD
measurements suggest that the complexes reached equilibrium early in the simulation and
exhibited little variation afterwards. As an example, the DYRK1A–naringenin complex
exhibited an average RMSD of 1.67 Å, indicating consistent and strong binding during the
100-nanosecond simulation. Similarly, the complex formed by the APP protein and apigenin
showed an average RMSD of 2.57 Å, suggesting that the interactions between them are
stable. These findings indicate that the interaction between apigenin and naringenin with
the target proteins is durable, which is essential for their potential therapeutic benefits. The
RMSF values identified the regions of flexibility within the proteins, which are crucial for
understanding the dynamic behavior of the complexes. The DYRK1A–naringenin complex
exhibited an average RMSF value of approximately 1.00 Å. Notably, certain residues such
as GLN 320 and LYS 412 displayed greater fluctuations. These variations offer valuable in-
formation about the protein’s adaptability and possible structural alterations when a ligand
binds to it. The Rg values provide valuable insights into the degree of compaction shown
by the protein–ligand complexes. The DYRK1A–naringenin complex displayed a consistent
and condensed shape during the simulation, as evidenced by the average Rg value of
3.69 Å. Similarly, the complex formed by the interaction of APP with apigenin displayed
an average Rg value of 3.66 Å, indicating that these complexes remain structurally intact
over a period of time.

The SASA values quantified the degree to which the protein–ligand complexes were
exposed to the solvent on their surface. The DYRK1A–naringenin complex exhibited an
average solvent-accessible surface area (SASA) value of 66.91 Å2, suggesting a stable and
limited surface exposure. This indicates that the chemicals have a strong ability to attach
to target molecules and have the potential to be easily absorbed and utilized by a living
organism. The APP–apigenin complex exhibited an average SASA value of 109.88 Å2,
suggesting a slightly increased surface exposure while remaining within a stable range.
The results of this study have important implications for the treatment of DS. Apigenin
and naringenin have been identified as possible modulators of crucial proteins implicated
in DS, which establishes a foundation for more preclinical and clinical research. These
compounds have the potential to be developed as part of a comprehensive therapeutic
strategy to effectively manage the intricate pathology of DS.

4. Materials and Methods
4.1. Protein–Protein Interaction Analysis

In this study, the species was designated as Homo sapiens with a confidence score of
0.7 and the isolated networks for the DYRK1A, APP, CBC, and ETS2 were removed. The
network was visualized by the STRING database (V9.1, Swiss Institute of Bioinformatics
Country, Lausanne, Switzerland).
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4.2. Protein Preparation

The three-dimensional structures of DYRK1A (PDB ID: 5AIK), APP (PDB ID: 4JPE),
CBC (PDB ID: 1JBQ), and ETS2 (PDB ID: 4BQA) were obtained from the RCSB Protein Data
Bank (PDB). The protein structures were prepared by removing water molecules, metal
ions, and co-factors. Nonpolar hydrogen atoms were merged and polar hydrogen atoms
were added, and charges were calculated using AutoDock Tools.

4.3. Ligand Retrieval and Preparation

Polyphenol compounds, specifically apigenin and naringenin, were identified through
an extensive literature review as potential inhibitors of Down Syndrome. The positive
control drugs lamellarin D, valiltramiprosate, benserazide, and TK216, respectively, were
selected for DYRK1A, APP, CBC, and ETS2. These polyphenols and positive control
compounds were retrieved from the PubChem database. The ligands were prepared by
detecting aromatic carbons, setting the torsion tree, assigning correct AutoDock 4 atom
types, and merging nonpolar hydrogens.

4.4. Active Site Identification and Receptor Grid Generation

The active site of each protein, defined as the region that binds with specific molecular
substrates to catalyze chemical reactions, was determined. The binding sites identified were
used to generate receptor grids for molecular docking using the PyRx virtual screening tool
AutoDock Vina.

4.5. Molecular Docking

Molecular docking studies were performed using the PyRx AutoDock Vina wizard to
predict the best binding modes between the small molecules (e.g., drugs) and the target
macromolecules (e.g., proteins). Default configuration parameters were used, and the bind-
ing energy (kcal/mol) was calculated. Complexes with the highest binding energy were
selected for further evaluation. The binding interactions of the protein–ligand complexes
were analyzed using Maestro Schrodinger.

4.6. Molecular Dynamics Simulation

A 100 ns molecular dynamics (MD) simulation was performed using Desmond v6.3 in
Schrödinger 2020-3 on a Linux environment to evaluate the stability of the protein–ligand
interactions. The simulation specifically examined the complexes generated by four target
proteins and two polyphenols, apigenin and naringenin. The TIP3P water model was
used, using an orthorhombic box shape to preserve a distance of 10 Å from the center.
Sodium (Na+) and chloride (Cl−) ions were introduced to the solution in order to achieve
neutralization, with a salt concentration of 0.15 M. The OPLS3e force field was used. The
system was reduced in size while maintaining a constant pressure (NPT) ensemble at
101,325 Pascals and a temperature of 300 K. The stability and dynamic properties of the
complexes were assessed by measuring the RMSD, RMSF, Rg, and SASA values.

5. Conclusions

This study emphasizes the possible application of apigenin and naringenin as thera-
peutic medicines for DS by specifically targeting crucial proteins implicated in the disease
pathogenesis. The results of molecular docking and MD modeling establish an excel-
lent foundation for further exploration of their therapeutic capabilities. The results align
with previous research on the neuroprotective and therapeutic benefits of polyphenols,
endorsing their utilization as a component of a multi-targeted strategy for controlling
DS. Moreover, the persistence of these molecules in attaching to important proteins like
DYRK1A and APP emphasizes their possible efficiency in altering processes important
for DS pathophysiology. In vivo studies and clinical trials should be the main emphasis
to confirm these conclusions and evaluate the safety and effectiveness of apigenin and
naringenin in DS patients. Including these polyphenols into therapeutic strategies could



Pharmaceuticals 2024, 17, 1090 17 of 19

provide a fresh way to control the complicated DS symptoms and lead to better cognitive
and neurological results for affected people.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph17081090/s1, Figure S1: A merged image of apigenin
and naringenin with their respective target proteins to facilitate a direct comparison of their binding
modes. This visual representation should provide (A) DYRK1A, (B) APP, (C) CBS, and (D) ETS2 pro-
tein’s active site. Here, apigenin showed red color and naringenin showed green color, respectively.
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