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Abstract: Computational approaches for small-molecule drug discovery now regularly scale to the
consideration of libraries containing billions of candidate small molecules. One promising approach
to increased the speed of evaluating billion-molecule libraries is to develop succinct representations
of each molecule that enable the rapid identification of molecules with similar properties. Molecular
fingerprints are thought to provide a mechanism for producing such representations. Here, we
explore the utility of commonly used fingerprints in the context of predicting similar molecular
activity. We show that fingerprint similarity provides little discriminative power between active
and inactive molecules for a target protein based on a known active—while they may sometimes
provide some enrichment for active molecules in a drug screen, a screened data set will still be
dominated by inactive molecules. We also demonstrate that high-similarity actives appear to share
a scaffold with the query active, meaning that they could more easily be identified by structural
enumeration. Furthermore, even when limited to only active molecules, fingerprint similarity values
do not correlate with compound potency. In sum, these results highlight the need for a new wave of
molecular representations that will improve the capacity to detect biologically active molecules based
on their similarity to other such molecules.

Keywords: molecular fingerprints; drug screening; similarity searching

1. Introduction

Methods for the computational identification of small molecules likely to bind to a
drug target (virtual screening) are increasingly intended to explore a space of billions of
candidate molecules [1–4]. One strategy for exploring this massive molecular search space
is to begin with a collection of molecules known or presumed to be biologically active
(hereafter referred to as actives). Those actives can then be used as the basis of a rapid
search among billions of candidates [5] for other molecules expected to demonstrate similar
activity [6,7].

The notion that small molecules with similar structures are likely to share biological
properties, coined the similar property principle (SPP) [8,9], is central to this sort of search
strategy. The SPP is simple and intuitive, and has served as the basis for predictions of
biological activity [10,11], toxicity [12–14], aqueous solubility [14,15] (logS), and partition
coefficient [16] (logP). However, structural similarity may not necessarily reflect similarity
in biological activity [17], a concept popularly addressed by the notion of an Activity
Cliff [18–20]. Furthermore, the proper definition of structural similarity depends on the
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context. For example, the quantitative structure–activity relationship focuses on the simi-
larity between the local structural features of two molecules, while similarity in biological
activity typically depends on having more global features of the molecules [21–23] (though
even these notions of local and global similarity are also not well defined).

The most common way to quantify the structural similarity of two small molecules
begins with the calculation of a so-called molecular fingerprint, a binary or count vector that
encodes structural and often chemical features [24–26]. Such a fingerprint is computed
for each molecule, then the fingerprints of molecules are compared for overlap to approxi-
mately assess molecular similarity, motivated by the notion that this measure of fingerprint
similarity will correlate with the similarity at the level of biological activity. Fingerprint
similarity has been used to effectively estimate logS and logP values [27], likely because
these values can largely be approximated from the small molecule itself without explicitly
considering interacting partners.

Other molecular properties involve a dependency on context, placing greater strain
on the utility of the SPP. For example, the biological activity of a small molecule depends
on the interaction between that molecule and the target protein binding region. Such
binding regions (or pockets) vary between different proteins, and therefore impose strong
context dependence in biological interactions. Consequently, small molecule ligand-based
fingerprint similarity may not be sufficient to capture the wide spectrum of similarities in
biological activities. Similarly, the toxicity of a small molecule depends on the molecule’s
interaction with multiple proteins, suggesting a limit to the inference power provided by
similarity at the level of molecular fingerprints.

Despite previous demonstrations of the limitations of using SPP to predict similarity
in biological activity [28,29], the technique is heavily used in drug development. This is
especially true in fingerprint-based virtual screening (VS), in part due to the computational
simplicity and speed of searching the vast chemical space of small molecules [2,30–32]. A
variety of molecular fingerprints have been devised for use in ligand-based virtual screening
(LBVS), to aid in identifying biologically active small molecules [32,33] (hereafter referred
to as actives), from within a library of small molecules. LBVS begins with a small number
of known/predicted actives (queries) for a target protein pocket, and explores a library of
other small molecules, seeking a set that is expected to also be active. This expectation is
based on the SPP, so that LBVS seeks molecules with high fingerprint similarity to one of the
queries, under the assumption that fingerprint similarity to known actives will generally
assign a higher ranking to actives than to non-actives (decoys). Martin et al. [28] have
highlighted a disconnect between empirical and computational perception of similarity,
and suggested resulting limitations in the utility of LBVS for drug binding predictions.
Here, we explore the shortcomings of simplistic molecular fingerprints in the context of
LBVS, and demonstrate that all commonly used fingerprint methods fail to sufficiently
enrich for binding activity in a library of mostly decoy molecules. We are not oblivious
to a prevailing perception that fingerprint similarity is suggestive of similarity in drug
interaction potential, and hope that this manuscript contributes to a better understanding
of the limitations of fingerprint similarity in the context of large-scale drug screening.

2. Results

To gain insight into the utility of various fingerprinting strategies for billion-scale
virtual drug screening, we explored the capacity of fingerprint similarity to extract a small
set of candidates that is highly enriched for molecules with activity similar to the seed
query molecules. First, we computed measures of enrichment for 32 fingerprints on four
benchmark data sets, presenting both classical ROC AUC calculations and our new decoy
retention factor (DRF) scores. We then explored the distributions of fingerprint similarity
scores across a variety of target molecules, and show that the score distributions for actives
and decoys are not sufficiently separable for billion-scale search. We also found that, where
fingerprints did occasionally find good matches among actives, the “new” actives almost
always shared a scaffold with the query active (meaning that they would be found by
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more traditional shape exploration methods). We further considered whether there is a
correlation between compound potency and active–active similarity scores, and found
that there is not. Finally, we used a data set containing more than 300,000 experimentally
confirmed inactive compounds, and found that fingerprint similarity to an active molecule
does not enable discrimination between actives and inactive. In total, these results indicate
that fingerprint similarity is not a reliable proxy for likely similar binding activity or
particularly for discovering diverse active structures.

2.1. Enrichment for Active Molecules

To assess the utility of fingerprinting strategies for selecting compounds with similar
expected activity, we computed the similarities of all compounds to a query active molecule,
and tested whether active molecules tend to be more similar to other actives than to
decoys. Specifically, for each target protein, we computed the fingerprints of each molecule
associated with that target protein. Then, for each active compound, we computed the
similarity of its fingerprint to each of the other compounds (actives and decoys) affiliated
with that target. The union of these active/decoy distance calculations was merged and
sorted by similarity, enabling calculation of DRF0.1 (see Section 4) and ROC AUC for each
fingerprint–target pair. Then, for each fingerprint–target pair, the mean value (AUC or
DRF0.1) was computed over all target proteins in the corresponding benchmark.

Table 1 presents the resulting enrichment values on each benchmark data set. The per-
formance of all fingerprints is poor for both the MUV and LIT-PCBA data sets, with AUC
values generally <0.6, and DRF0.1 values close to 1.0 (indicating small enrichment of ac-
tives relative to decoys). Performance is somewhat better on DEKOIS and DUD-E, but not
particularly strong, and is offset by concerns of benchmark bias highlighted elsewhere,
such as artificial enrichment [34–39] (enrichment due to bias in the actives or decoys),
analogue bias (limited diversity of the active molecules), and false negative bias (risk of
active compounds being present in the decoy set), all of which can cause misleading VS
results [37,39,40]. Table 1 also provides a summary of the VS performances obtained for
the fingerprint types (substructure, circular, path, text, pharmacophore). No particular fin-
gerprint strategy appears to be better suited to the problem of virtual screening. Among all
tests, the best observed DRF0.1 value was 0.09, equating to a roughly 11-fold enrichment in
actives versus inactives; in a screen of a billion molecules, this means that roughly 9 million
inactive molecules are expected to show similarity at the score threshold where 10% of
actives are retained).

Most circular and path-based fingerprints employ a standard length of 1024 bits. O’Boyle
and Sayle [41] suggested that increasing the bit-vector length from 1024 to 16,384 can improve
VS performance, though at a cost of space and run time for comparison. We evaluated the
utility of longer fingerprints for the MUV and LIT-PCBA data sets, and found that longer
fingerprints yield little to no gain in efficacy (see Table S1 in Supplementary Information).

2.2. Tanimoto Similarity Distributions Are Generally Indistinguishable

To explore the distribution of similarities between actives and decoys, we computed
Tanimoto coefficients for active–active and active–decoy molecule pairs in the DEKOIS
data set. For each target protein in DEKOIS [42], we randomly selected an active molecule,
and computed the molecular fingerprint Tanimoto similarity to all other actives and decoys
for that target. Figure 1 shows the resulting score distributions for 32 fingerprints. The dis-
tributions of active–active (blue) and active–decoy (red) Tanimoto values substantially
overlap, so that the vast majority of actives fall into a score range shared by most decoys.
(Note: a single active molecule was used as query in order to replicate a common use case
for fingerprints in virtual screening. Similarly overlapping distributions are observed when
merging the results of using all DEKOIS actives as query seeds, but with a more complex
visual landscape due to a mixture of similarity distributions.)
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Table 1. Summary of the VS performances in terms of the AUC and DRF (p = 0.1) for the 32 finger-
prints tested on the DEKOIS, DUDE, MUV and LIT-PCBA data sets. Each row with no background
corresponds to a fingerprint. Each row with a grey background corresponds to the family of finger-
prints given in the preceding rows, and shows the mean value for that family. See also heatmaps of
the different metrics for the data sets in Figures S1–S5 in the Supplementary Information.

FP
AUC DRF

DEKOIS DUDE MUV LIT-PCBA DEKOIS DUDE MUV LIT-PCBA
AP2D 0.64 0.66 0.49 0.51 0.55 0.39 1.24 1.00
AT2D 0.78 0.79 0.58 0.55 0.20 0.12 0.86 0.83
AVALON 0.72 0.73 0.60 0.55 0.30 0.18 0.85 0.97
ESTATE 0.71 0.75 0.53 0.50 0.31 0.17 0.98 0.94
FP3 0.68 0.77 0.51 0.52 0.45 0.20 0.89 0.83
FP4 0.74 0.80 0.58 0.54 0.30 0.12 0.89 0.91
MACCS 0.71 0.75 0.55 0.54 0.33 0.18 0.99 0.93
PUBCHEM 0.76 0.76 0.55 0.54 0.28 0.20 1.06 0.97
RDK5 0.76 0.75 0.58 0.56 0.24 0.16 0.90 0.89
RDK6 0.70 0.70 0.59 0.58 0.38 0.29 0.86 0.82
RDK7 0.62 0.63 0.58 0.59 0.74 0.70 0.98 0.85
KR 0.72 0.74 0.54 0.51 0.31 0.19 1.05 0.96
SIGNATURE 0.72 0.72 0.55 0.54 0.33 0.23 0.97 0.99
SUBSTRUCTURE 0.71 0.73 0.56 0.54 0.36 0.24 0.96 0.91
ASP 0.80 0.79 0.58 0.53 0.17 0.12 0.89 0.99
DFS 0.79 0.78 0.55 0.52 0.18 0.14 0.98 1.01
FP2 0.79 0.78 0.55 0.54 0.20 0.14 1.01 0.90
LSTAR 0.78 0.78 0.54 0.51 0.19 0.13 0.97 1.03
TT 0.80 0.80 0.61 0.56 0.15 0.10 0.72 0.85
PATH 0.75 0.75 0.57 0.54 0.18 0.13 0.91 0.96
ECFP0 0.70 0.77 0.53 0.50 0.33 0.13 0.97 0.96
ECFP2 0.77 0.81 0.54 0.51 0.19 0.09 0.99 1.01
ECFP4 0.76 0.80 0.54 0.51 0.19 0.09 0.99 1.00
ECFP6 0.75 0.78 0.54 0.52 0.20 0.10 0.99 0.98
FCFP0 0.66 0.69 0.54 0.52 0.35 0.23 0.41 0.42
FCFP2 0.76 0.75 0.55 0.52 0.24 0.19 0.93 1.01
FCFP4 0.78 0.76 0.54 0.52 0.20 0.15 0.93 1.01
FCFP6 0.78 0.75 0.54 0.52 0.20 0.15 0.96 0.98
MAP4 0.81 0.83 0.56 0.54 0.14 0.07 0.91 0.85
MHFP 0.81 0.81 0.54 0.53 0.17 0.10 0.97 0.94
RAD2D 0.76 0.77 0.53 0.53 0.23 0.14 0.99 0.93
CIRCULAR 0.76 0.77 0.54 0.52 0.26 0.11 0.98 0.99
P2PPHAR2D 0.66 0.74 0.51 0.54 0.50 0.25 1.20 0.94
P3PPHAR2D 0.71 0.76 0.52 0.55 0.33 0.16 1.17 0.93
PHARMACOPHORE 0.75 0.76 0.54 0.53 0.42 0.21 1.19 0.94
LINGO 0.77 0.79 0.54 0.54 0.21 0.10 1.02 0.91

Most of the fingerprints in Figure 1 present a thin high-Tanimoto tail for actives (blue)
that is not seen for decoys (red), suggesting that perhaps a small fraction of actives could
be discriminated from decoys by establishing a high score threshold—in other words, it
may be possible to select a threshold that delineates regions of early enrichment. However,
consider the ECFP2 fingerprint, which shows an apparently compelling right tail in the
active–active plot (blue), such that it appears to be reasonable to establish a Tanimoto cutoff
of 0.5. In DEKOIS, there are 423 active matches to active queries above this threshold.
Though the right tail of the active–decoy distribution (red) is imperceptible in this plot, it
still contains ∼0.0064% of the decoys. Extrapolating to a library of 3.7 billion candidates,
as we used in Venkatraman et al. [2], we expect to see ∼23.7M decoys with Tanimoto ≥ 0.5,
so that the active-to-decoy ratio is ∼1:56,000. Setting the Tanimoto threshold to 0.75 leads
to an expected ratio of ∼1:68,000 (57 actives to ∼3.9 M expected decoys). This is likely
an overly pessimistic view of the decoy ratio risk, since the compounds in the decoy set
are intended to be more similar to the actives than would be a random molecule from a
billion-scale library. Even so, it highlights the fact that even small false discovery rates
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can produce an overwhelmingly large number of false matches when the target base is
sufficiently large. Moreover, see the next section for an exploration of the expected novelty
of these high-scoring matches.

Figure 1. Ridgeline plots showing the distribution of the Tanimoto fingerprint similarities calculated
between a randomly selected active molecule for each target protein and all other actives (shown in
blue) and decoys (in red) for that target. Data taken from the DEKOIS data set. The distribution of
similarity scores between the active query and other active molecules is largely indistinguishable
from the distribution of similarity scores to random molecules. Where the active (blue) distribution
does show a fatter high-scoring tail than the inactive distribution (suggesting potential for early
enrichment by using a high score threshold), a search against a large target database will still produce
filtered sets that are massively dominated by inactives (see text).

2.3. Tanimoto Score Distributions, and Their Utility in Scaffold Hopping

The LIT-PCBA data set [43] contains binding activity data for 15 proteins, each with
13 to 1563 confirmed active molecules and 3345 to 358,757 confirmed inactives/decoys (see
Table 2). We computed the ECFP4 fingerprint for each of the 2.6 M active and inactive small
molecules. For each protein, we first selected the molecule with best affinity to serve as the
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‘active query’, then computed the Tanomito similarity measure (Tc) between seed and all
other molecules (actives and decoys) for that protein. Figure 2 presents Tc distributions.
Each plot shows, for a single protein, the fraction of actives (blue) and decoys (red) that are
recovered (Y-axis) as a function of Tc (X-axis). One important observation is that for most
proteins, the molecule with the highest similarity (active or decoy) to the active query has a
Tc < 0.5, which is below commonly used thresholds for expected shared bioactivity [44–46].
In addition, for most proteins, Tc distributions are indistinguishable, though three proteins
(GBA, OPRK1, and PPARG) demonstrate early enrichment for actives. We manually
inspected all high-scoring actives (Tc > 0.5) for these three enriched proteins (see Figure 3
and Supplementary Figures S6 and S7), and observed that high-scoring actives were almost
entirely bioisosteres, with easily predictable results of exchanging an atom or atom-group
with a similar atom or group. The lack of scaffold diversity among matches with scores
discernible from high-volume decoy noise casts doubt on the utility of fingerprint similarity
for exploring novel candidate drug spaces.

Figure 2. Cumulative percent of total actives (blue) and decoys (red) encountered (Y-axis) as a
function of decreasing Tanimoto coefficient, using ECFP4 fingerprints. For each protein, the molecule
with the best binding affinity was used as the query molecule (the molecule for which the Tanimoto
score was computed for each other molecule, active or inactive).
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Figure 3. In the LIT-PCBA analysis, early enrichment was observed for OPRK1—for all Tanimoto
coefficients t >∼0.2, the fraction of actives with Tanimoto score > t is much larger than the fraction of
decoys with that score (see Figure 2). This suggests that fingerprints produce useful early enrichment
of active molecules, at least for this one protein target. We sought to understand if the high-scoring
actives represented novel drug candidates that could not be easily identified by simple modifications
to the active drug used as a fingerprint query. There are only 24 actives in the OPRK1 data set,
and only 5 of these showed Tanimoto score > 0.5 to the initial query; we manually inspected the
structures of these compounds. All 5 are built on the same scaffold as the query (in red), and are
obvious variations that should be identified through standard enumeration (i.e., no new scaffold are
explored). Similar plots are provided for GBA and PPARG in Supplementary Figures S6 and S7.

Table 2. LIT-PCBA provides sets of confirmed actives and inactives for 15 protein binding partners.

Protein Actives Inactives

ADRB2 17 311,748
ALDH1 5363 101,874
ESR_ago 13 4,378
ESR_antago 88 3,820
FEN1 360 350,718
GBA 163 291,241
IDH1 39 358,757
KAT2A 194 342,729
MAPK1 308 61,567
MTORC1 97 32,972
OPRK1 24 269,475
PKM2 546 244,679
PPARG 24 4,071
TP53 64 3,345
VDR 655 262,648
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2.4. Evaluation on a Target with Many Validated Inactive Molecules

The previous experiments depend on benchmarks containing computationally iden-
tified decoys that almost entirely have not been experimentally validated as inactive.
The MMV St. Jude malaria data set [47] provides an alternative perspective on the utility
of fingerprint similarity for activity prediction in the context of verified decoys. It con-
tains a set of 305,810 compounds that were assayed for malaria blood stage inhibitory
activity. Among these molecules, 2507 were classified as active, while the remaining
303,303 compounds were classified as inactive.

For each active molecule, we computed Tanimoto similarity to every other active
and all inactives. Figure 4 shows bar plots for each fingerprint, with each plot showing
the fraction of inactives (red) and actives (blue) with Tanimoto similarity values Tab ≥ c
for values of c = (0.1, 0.2, . . . , 0.9) and 0.99. In general, the remaining fraction of actives
only slightly exceeds the remaining fraction of inactives, indicating minimal enrichment
of actives at increased Tanimoto similarity values. MAP4 shows an apparent relative
abundance of actives, but note enrichment is still only ∼10-fold; also note that <1.5% of
actives show Tanimoto similarity >0.1 to another active, raising concerns about how to
establish meaningful MAP4 thresholds.

One important caveat for this data set is that the target binding pocket of each active
is unknown, so that it is possible that some actives target one pocket while other actives
target another pocket. Even so, the lack of visible signal of predictive enrichment from
fingerprint similarity is notable.

2.5. Fingerprint Similarity Values Do Not Correlate with Compound Potency

The previous sections demonstrate that fingerprint similarity has limited utility in
discriminating active molecules from decoys. An alternative use of fingerprints could be
to take a set of candidates that have already (somehow) been highly enriched for active
compounds, and rank them according to expected potency. For the LIT-PCBA data set,
these potency values for drug–target pairs were retrieved from PubChem [48]: AC50 (“Half-
maximal Activity Concentration”, defined as the concentration at which the compound
exhibits 50% of maximal activity).

For each target protein in the LIT-PCBA data set, we selected the most potent active
molecule, and computed fingerprint similarities for all other actives for the corresponding
target. We evaluated the correlation of fingerprint similarity value to observed AC50
by computing the Kendall rank correlation [49]. Figure 5 presents a heatmap of these
correlation values (τ) for each fingerprint across 15 protein targets, and demonstrates
that all fingerprints exhibit poor correlation, with values ranging between −0.53 to 0.54,
and generally only slightly higher than zero. This indicates that the fingerprints evaluated
are unlikely to yield a ranked set of enriched highly potent compounds, in agreement with
the observations of Vogt and Bajorath [50].

To give insight into these summary statistics represented by the heatmap squares in
Figure 5, we prepared scatter plots corresponding to three of the target/fingerprint pairings
(Figure 6). The middle plot shows the relationship between fingerprint similarity and
AC50 values for the target/fingerprint pair with median Kendall correlation (target = VDR,
fingerprint = SIGNATURE), and is representative of most of the target/fingerprint pairs; it
shows essentially no correlation between fingerprint similarity and AC50 values (τ = 0.01).
The first and last scatter plots show fingerprint similarity and AC50 values for the tar-
get/fingerprint with the highest (ADRB2, FFCP0) and lowest (PPARG, ASP) correlation
values. Note that Kendall rank correlation values for FCFP0 with targets other than ADRB2
(τ = 0.54) vary from −0.30 to 0.05 and for ASP with targets other than PPARG (τ = −0.53)
from −0.23 to 0.18. Though some protein/fingerprint combinations show apparent correla-
tion between fingerprint similarity and AC50, most show a near total lack of correlation;
deviations (positive or negative correlation) are observed in proteins with a small number
of actives, which are thus more prone to stochastic or biased observations of correlation.
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Figure 4. For compounds in the St. Jude malaria data set, bar plots show the fraction of the inactives
(in red) and actives (in blue) exceeding Tanimoto similarity cutoffs by the different fingerprints.
Tanimoto similarities were calculated using each active as the query; mean and standard deviation
(based on the 2507 actives) are shown as error bars.
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Figure 5. Heatmap of the Kendall rank correlation (τ) between fingerprint Tanimoto (Tc) similarities
calculated between the most active compound for a given target and the potency values (AC50) of the
actives for that target.
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Figure 6. Scatter plot of the fingerprint similarities (Tc) and the potencies (AC50) of active compounds
for ADRB2 (using FCFP0 fingerprint), VDR (SIGNATURE fingerprint), and PPARG (ASP fingerprint).

3. Discussion

Computational methods hold the promise of expanding the diversity of small molecule
drug candidate targeting for specified protein binding pockets. To fulfill this promise, these
methods must be supported by succinct molecular representation schemes that enable
the rapid identification of molecules that are functionally similar to known or suspected
active molecules while presenting non-trivial molecular similarity. The results of this
study demonstrate that molecular fingerprints, and specifically the measurement of molec-
ular similarity based on those fingerprints, are not generally effective at discriminating
molecules with similar binding activity from those with dissimilar activity; furthermore, we
have shown that where some early enrichment is observed, it tends to highlight candidate
molecules that would arise from a simple structural perturbation. In addition to explic-
itly highlighting the weakness of molecular fingerprints for drug similarity assessment,
the results also suggest that fingerprints are unlikely to be useful for the calculation of
classification confidence or applicability domain [51]. In total, these results suggests that
the task of the rapid evaluation of molecular similarity must move beyond the fingerprint
representation of molecules.

The binding of a ligand to a target is a function of the target protein, the ligand,
and other nearby molecules. In complicated cases, the role of nearby molecules can include
cases where cooperation between multiple molecules is required for a binding event to
occur. The ensemble properties of all the participant molecules should be considered to
define similarity in the context of biological activity related to protein–ligand binding—a
task difficult to achieve by focusing on ligand structure alone. The difficulty is poignantly
highlighted by the fact that a simple atom count-based descriptor performs slightly worse
than some fingerprint-based descriptors in defining similarity in biological activity [52].
When multiple active ligands are present for a target, with diverse chemical and structural
properties differentiating consequential features from inconsequential ones in a binding
event, fingerprint-based methods can possibly identify a novel active compound for that
target. Multiple recent studies have shown success following that approach [53–55]. How-
ever, in most practical cases, such information is not available. It is important to understand
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the limitation of defining “similarity” based on fingerprints in the context of biological ac-
tivity and use such methods in conjunction with other orthogonal methods for a successful
design of VS.

In recent years, deep learning strategies have entered the drug discovery toolkit
(e.g., [56–58]), but these have not yet solved the problem of rapid virtual screening. Though
the path forward is not clear, we suggest that it is vital that molecules be represented in
such a way that the potential context of the molecule (i.e., information about the potential
binding target) can be considered when evaluating the similarity of molecules. We sus-
pect that future successful strategies will emphasize the surface properties of the small
molecule [59,60], and will represent both the compound and the target protein not as a
monolith, but as a collection of surface patches [61–63]. These, we believe, will enable a
more context-dependent emphasis on features of importance to particular interactions,
without interference from unimportant features.

4. Materials and Methods
4.1. Fingerprint Representations

The palette of fingerprints evaluated in this study (Table 3), can be broadly classified
into those based on (i) path, (ii) circular features, (iii) pharmacophore, and (iv) pre-defined
generic substructures/keys [64]. Circular and path-based fingerprints are generated using
an exhaustive enumeration of (linear/circular) fragments up to a given size/radius, which
are then hashed into a fixed-length bit vector. The SIGNATURE descriptor [65] generates
explicitly defined substructures, which are mapped to numerical identifiers (no hashing
involved). The LINGO fingerprint [16] works directly with the SMILES strings (rather than
the usual dependence on a molecular graph representation), by fragmenting the strings
into overlapping substrings.

Table 3. Molecular fingerprints evaluated in this study. Abbreviations: Topological torsion (TT),
Extended Connectivity Fingerprint (ECFP), Functional Class Fingerprint (FCFP), Atom Pair (AP2D),
Atom Triplet (AT2D), All Star Paths (ASP), Depth First Search (DFS).

TYPE FAMILY DESCRIPTION SIZE (bits)

AP2D [66] SUBSTRUCTURE Topological Atom Pairs 4096
ASP [67] PATH All-Shortest Path encoding 4096
AT2D [67] SUBSTRUCTURE Topological Atom Triplets 4096
AVALON SUBSTRUCTURE Enumerates paths and feature classes 1024
DFS [68] PATH All-path encodings 4096
ECFP_0 [69,70] CIRCULAR Extended-connectivity fingerprint of diameter 0 1024
ECFP_2 [69,70] CIRCULAR Extended-connectivity fingerprint of diameter 2 1024
ECFP_4 [69,70] CIRCULAR Extended-connectivity fingerprint of diameter 4 1024
ECFP_6 [69,70] CIRCULAR Extended-connectivity fingerprint of diameter 6 1024
ESTATE [70,71] SUBSTRUCTURE Fingerprint based on E-State fragments 79
FCFP_0 [69,70] CIRCULAR Feature-class fingerprint of diameter 0 1024
FCFP_2 [69,70] CIRCULAR Feature-class fingerprint of diameter 2 1024
FCFP_4 [69,70] CIRCULAR Feature-class fingerprint of diameter 4 1024
FCFP_6 [69,70] CIRCULAR Feature-class fingerprint of diameter 6 1024
FP2 [72] PATH Indexes linear fragments up to 7 atoms in length –
FP3 [72] SUBSTRUCTURE Based on 55 SMARTS patterns defining functional groups –
FP4 [72] SUBSTRUCTURE Based on SMARTS patterns defining functional groups –
KR [70,73] SUBSTRUCTURE Klekota–Roth SMARTS-based fingerprint 4860
LINGO [16,70] TEXT Fragmentation of SMILES strings –
LSTAR [67] PATH Local Path Environments 4096
MACCS [74] SUBSTRUCTURE Molecular ACCess System structural keys 166
MAP4 [75] CIRCULAR Combines substructure and atom-pair concepts 2048
MHFP [76] CIRCULAR Encodes circular substructures 2048
P2PPHAR2D [77] PHARMACOPHORE Pharmacophore pair encoding 4096
P3PPHAR2D [77] PHARMACOPHORE Pharmacophore triplet encoding 4096
PUBCHEM [70,78] SUBSTRUCTURE Substructure fingerprint 881
RAD2D [22] CIRCULAR Topological Molprint-like fingerprints 4096
RDK5 [79] SUBSTRUCTURE Encodes substructures at most 5 bonds long 1024
RDK6 [79] SUBSTRUCTURE Encodes substructures at most 6 bonds long 1024
RDK7 [79] SUBSTRUCTURE Encodes substructures at most 7 bonds long 1024
SIGNATURE [65,70] SUBSTRUCTURE Based on an array of atom signatures –
TT [66] PATH Based on bond paths of four non-hydrogen atoms –
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All fingerprints were generated using open-source software. Routines in the RDKit [79]
library were used to compute the AVALON, ERG, RDK5, RDK6, RDK7, MHFP, and TT
fingerprints. FP2, FP3 and FP4 fingerprint similarities were calculated directly using the
OpenBabel toolbox [72]. The other fingerprints were calculated using custom software that
makes use of the jCompoundMapper [67] and Chemistry Development Kit [70] libraries.

Although a number of similarity metrics have been used [80], the most common
measure of fingerprint similarity is the Tanimoto coefficient [81]: Tab = |Fa ∩ Fb|/|Fa ∪ Fb|,
where Fa and Fb are the fingerprints of molecules a and b, respectively—this is equiva-
lent to the Jaccard index over fingerprint bit vectors. Tanimoto coefficient values range
between 1 (identical fingerprints, though not necessarily identical compounds) and 0
(disjoint fingerprints).

4.2. Benchmarking Data Sets

Numerous benchmarking data sets have been developed over the years to evaluate VS
methods [39,82]. Each data set contains a set of active compounds (with known/documented
activity for the target of interest) and a corresponding set of inactives/decoys. While the
definition of actives is consistent, there is some variance in the question of what should
be considered a ‘decoy’. Some benchmarks include only confirmed inactive molecules,
while others add compounds presumed to be non-binding [39,83,84]. Data set composition
can impact VS evaluation, such that both the artificial under- and over-estimation of
enrichment have been well documented [39,85,86]. To account for benchmark-specific
biases and error profiles, we opted to explore fingerprint efficacy across the full set of
benchmarks. This evaluation pool provides a diverse perspective on the performance of
molecular fingerprints, indicating that limited ability to differentiate decoys from active
molecules is not simply due to a specific design flaw found in a single benchmark.

In this study, we employ four different VS data sets to explore the utility of molecular
fingerprinting strategies for prediction of similar activity. These data sets are briefly
summarized in Table 4 and described below.

Table 4. Comparison between different VS data sets. In all cases, the actives may not bind to the
same pocket of the target.

Data Set Active Source Decoy Generation Comments

DUD-E ChEMBL09

Total of 0.65% from
experiments. Total of 99.35%
generated choosing different
topologies with similar
chemical properties using 2D
similarity methods.

No rigorous method to remove
false positives. Decoys biased
towards 2D similarity methods.

DEKOIS DUD (from
literature) [87]

Decoys generated choosing
different topologies with
similar chemical properties
using 2D similarity methods.

Low active to decoy ratio.
Decoys biased towards 2D
similarity methods

MUV PubChem
BioAssay

Unbiased distribution of
decoys from experimentally
available data.

Data processed to remove false
positives and assay artifacts [88].
Low active-to-decoy ratio.

LIT-PCBA PubChem
BioAssay

Decoys were chosen from
experimentally available
data and pruned to have
chemical properties similar
to actives.

High active to decoy ratio.
Actives may not bind to the same
pocket of a target. Variable
performance in 2D and 3D
similarity search and docking
across different target sets. Data
processed to remove false
positives and assay artifacts [88].
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DUD-E: Directory of Useful Decoys, Enhanced [89]: DUD-E is a widely used data set
for VS benchmarking, containing data for 102 protein targets. Each target is represented
by an average of ∼224 active ligands, ∼90 experimental decoys, and ∼14,000 computa-
tional decoys. Compounds are considered active based on a 1 µM experimental affinity
cutoff, and experimental decoys are ligands with no measurable affinity up to 30 µM.
Computational decoy ligands are selected from ZINC [83] to have 50 physical properties
(rotatable bonds, hydrogen bond acceptors/donors, molecular weight, logP, net charge)
similar to the actives, but with low fingerprint (Daylight [90]) Tanimoto coefficient Tab < 0.5.
(Note: this means that computational decoys are, by construction, expected to have low
fingerprint similarity).
MUV: Maximum Unbiased Validation [91]: MUV data sets are based on bioactivity data
available in PubChem [48]. This benchmark consists of sets of 30 actives (taken from
confirmation assays) and 15,000 decoys (drawn from corresponding primary screens)
for each of the 17 targets. The goal of the experimental design is to obtain an optimal
spread of actives in the chemical space of the decoys. Since the data are taken from
high-throughput screening assays that can be affected by experimental noise and artifacts
(caused by unspecific activity of chemical compounds), an assay filter is applied to remove
compounds interfering with optical detection methods (autofluorescence and luciferase
inhibition) and potential aggregators.
DEKOIS: The Demanding Evaluation Kits for Objective In silico Screening (DEKOIS) [42]
benchmark is based on BindingDB [92] bioactivity data (Ki, Kd, or IC50 values). The DEKOIS
data set is derived from a set of 15 million molecules randomly selected from ZINC, which
are divided into 10,752 bins based on their molecular weight (12 bins), octanol–water
partition coefficient (8 bins), number of hydrogen bond acceptors (4 bins), number of
hydrogen bond donors (4 bins), and number of rotatable bonds (7 bins). Active ligands are
also placed into these pre-defined bins. For each active ligand, 1500 decoys are sampled
from the active’s bin (or neighboring bins, if necessary). These are further refined to a final
set of 30 structurally diverse decoys per active. The DEKOIS data set includes 81 protein
targets found in the DUD-E data set.
LIT-PCBA: The LIT-PCBA benchmark [43] is a curated subset of the PubChem BioAssay
database [48], containing data from experiments where more than 10,000 chemicals were
screened against a single protein target, and dose–response curves identified at least
50 actives. Active ligands identified in a bioassay experiment are not guaranteed to bind
to the same pocket of the target protein; to overcome this concern, LIT-PCBA includes
only targets with representative ligand-bound structures present in the PDB, such that
the PDB ligands share the same phenotype or function as the true active ligands from the
bioassay experiments. The LIT-PCBA data set was further refined to contain only targets
for which at least one of the VS methods (2D fingerprint similarity, 3D shape similarity,
and molecular docking) achieved an enrichment in true positives (i.e., the most challenging
protein targets have been removed, so that enrichment results are, by design, expected
to show good results). Targets in the LIT-PCBA have a variable active to decoy ratio that
ranges from as low as 1:20 to 1:19,000.

4.3. Virtual Screening Evaluation

A common measure for the efficacy of a method’s discriminatory power depends on
the receiver operating characteristic (ROC) curve, which plots the sensitivity of a method
as a function of false labels [93]. If a classification method assigns better scores to all true
matches (actives) than to any false matches (decoys), then the area under that curve (AUC)
will be 1. A random classifier will have an AUC of 0.5.

AUC provides a measure of the sensitivity/specificity trade-off across the full sensi-
tivity range, but medicinal chemists are typically more interested in the early recognition
of active molecules [32,94], since there is little actionable value to gain in the recall of true
actives buried among thousands (or more) of decoys. As an example, consider an imaginary
method that assigns the highest scores to 10% of all active molecules, then afterwards loses
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discriminative power and assigns essentially random scores to all remaining molecules
(actives and decoys). The AUC for such a method would be not particularly good (roughly
0.6), even though the early enrichment (ranking 10% of actives with a superior score to all
decoys) provides some experimental utility.

To address this shortcoming of ROC AUC, a number of other metrics have been
devised to assess early enrichment [32,95,96]. Unfortunately, it can be difficult to extract
an intuitive meaning from these measures [97], and they are often not comparable across
test sets because their scale and value depends on the set size and number of decoys in the
test set. Here, we introduce a simple new early enrichment measure, the decoy retention
factor (DRF); DRF is easy to interpret, and generalizes across input size. We note that DRF
is only applicable in situations in which the number of active and decoy ligands is known
beforehand. For the analysis of fingerprint benchmarks, we present both DRF and AUC
values. Additional metrics such as BEDROC [94] and sum of log rank [32] are summarized
visually in the Supplementary Information.

The purpose of DRF is to identify, for a parameterized fraction p of the active molecules,
how effectively decoys are filtered from the score range containing those actives. Consider
an input containing n active compounds and d decoys, and an enrichment threshold of
p = 0.1. Since we are interested in the score of the top p fraction of actives, let x = ⌈pn⌉,
and let sp be the score of the x-th element (so that sp is the score threshold that would
recover 10% of actives). Define dp to be the number of decoys that exceed sp—this is a
fraction of the d total decoys. DRFp measures the extent to which decoys have been filtered
out of the range containing the top p actives:

DRFp =
dp

⌊pd⌋ (1)

A system that assigns scores randomly will recover a fraction p of the decoys at roughly
the same score as it sees p of the actives, so that DRFp = 1. In an ideal case, no decoys
have score greater than the x-th active element, meaning that dp = 0, and thus DRFp = 0.
A DRFp = 0.2 indicates that the number of decoys remaining is 20% of the number expected
if p of the decoys were kept (there is a 5-fold reduction in decoys). Meanwhile a DRFp > 1
indicates that the method enriches for decoys.

We find DRF to be a useful measure because it enables the prediction of the number of
decoys expected to remain in a score-filtered result set, based on the size of the underlying
library. For example, consider a library of 1 million molecules—this will consist almost entirely
of inactives (decoys), so that d ≈ 1,000,000. If we hope to discover 10% of actives, and we have
previously established that DRF0.1 = 0.05 (a 20-fold reduction in decoys relative to random
chance), then we expect to observe dp · DRFp ≈ 1,000,000 · 0.1 · 0.05 = 5000 decoys mixed
with the surviving actives. This simple calculation is important, because it can highlight
that apparently good enrichment (10- or 100-fold) may not be enough to effectively filter
out inactives when the target set includes billions of candidates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17080992/s1, Table S1: Summary of the VS screening perfor-
mances using extended length fingerprints; Figure S1: Heatmap of the area under the curve (AUC)
obtained by the different fingerprints for the targets in the benchmark datasets; Figure S2: Heatmap
of the decoy retention factor (DRF0.1) obtained by the different fingerprints for the targets in the
benchmark datasets; Figure S3: Heatmap of the BEDROC (α = 20) values obtained by the different
fingerprints for the targets in the benchmark datasets; Figure S4: Heatmap of the enrichment factor
(top 8%) obtained by the different fingerprints for the targets in the benchmark datasets; Figure S5:
Heatmap of the NSLR values obtained by the different fingerprints for the targets in the benchmark
datasets; Figure S6: In the LIT-PCBA analysis, early enrichment was observed for PPARG; Figure S7:
In the LIT-PCBA analysis, early enrichment was observed for GBA. [32,94,97]

https://www.mdpi.com/article/10.3390/ph17080992/s1
https://www.mdpi.com/article/10.3390/ph17080992/s1
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