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Since, the ROC AUC is not well-suited for evaluating the early recognition of active molecules,
metrics such as the Boltzmann-Enhanced Discrimination of the Receiver Operating Characteristic[1]
(BEDROC) and the sum of the log of ranks statistic[2, 3] (SLR) have been proposed. To capture early
enrichment, we have calculated the Boltzmann-Enhanced Discrimination of the Receiver Operating
Characteristic (BEDROC) metric which assigns more weight to early ranked molecules:
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where n is the number of actives, N the total number of compounds, Ra = n/N , the ratio of actives
to inactives in the dataset and ri, the rank of the ith active. The parameter α is used to emphasize
early recognition. The value of α value is chosen so that 0.5% (α = 321.9), 2% (α = 80.5) or 8%
(α = 20.0) of the top-ranked molecules account for 80% of the BEDROC score.

We also report the normalized form of the sum of log rank statistic[3] (NSLR):

−
∑n log ri

N

− i=1 log
i
N

NSLR = ∑i
n
=1 (S2)

where n is the number of actives among the N available compounds and ri is the rank of the ith active.
The negative logarithm emphasizes early recognition. The denominator in the equation provides a
theoretical maximum when a VS method ranks all actives within the first n positions. NSLR varies
between 0 and 1, where the latter is the best achievable ranking.
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FP DEKOIS DUDE MUV LIT-
PCBA

DEKOIS DUDE MUV LIT-
PCBA

AUC_S AUC_L

AVALON 0.72 0.73 0.60 0.55 0.70 0.77 0.60 0.55
ECFP0 0.70 0.77 0.53 0.50 0.70 0.77 0.53 0.50
ECFP2 0.77 0.81 0.54 0.51 0.77 0.81 0.54 0.51
ECFP4 0.76 0.80 0.54 0.51 0.77 0.81 0.54 0.51
ECFP6 0.75 0.78 0.54 0.52 0.77 0.80 0.54 0.51
FCFP0 0.66 0.69 0.54 0.52 0.66 0.69 0.54 0.52
FCFP2 0.76 0.75 0.55 0.52 0.76 0.75 0.55 0.51
FCFP4 0.78 0.76 0.54 0.52 0.78 0.76 0.55 0.51
FCFP6 0.78 0.75 0.54 0.52 0.78 0.76 0.54 0.51

DRF_S DRF_L

AVALON 0.30 0.18 0.85 0.97 0.25 0.16 0.89 0.98
ECFP0 0.33 0.13 0.97 0.96 0.33 0.13 0.97 0.96
ECFP2 0.19 0.09 0.99 1.01 0.18 0.08 0.96 0.98
ECFP4 0.19 0.09 0.99 1.00 0.18 0.09 0.99 0.99
ECFP6 0.20 0.10 0.99 0.98 0.19 0.09 0.99 1.01
FCFP0 0.35 0.23 0.41 0.42 0.35 0.23 0.41 0.42
FCFP2 0.24 0.19 0.93 1.01 0.24 0.19 0.93 1.00
FCFP4 0.20 0.15 0.93 1.01 0.20 0.16 0.93 1.01
FCFP6 0.20 0.15 0.96 0.98 0.20 0.16 0.94 1.02

Table S1: Summary of the VS screening performances using extended length fingerprints. The impact
of fingerprint length on the VS metrics was assessed using the default ("_S") length (1024 bits) and
the long ("_L") form (16384 bits).
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Figure S1: Heatmap of the area under the curve (AUC) obtained by the different fingerprints for the
targets in the benchmark datasets.
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Figure S2: Heatmap of the decoy retention factor (DRF0.1) obtained by the different fingerprints for
the targets in the benchmark datasets.
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Figure S3: Heatmap of the BEDROC (α = 20) values obtained by the different fingerprints for the
targets in the benchmark datasets.
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Figure S4: Heatmap of the enrichment factor (top 8%) obtained by the different fingerprints for the
targets in the benchmark datasets.
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Figure S5: Heatmap of the NSLR values obtained by the different fingerprints for the targets in the
benchmark datasets.
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PPARG

Active Query
CN(CCOc1ccc(CC(C([N-]2)=O)SC2=O)cc1)c1ncccc1

Active hit with Tanimoto >=0.5 (ECFP4)

CCc1cnc(CCOc2ccc(CC(C([N-]3)=O)SC3=O)cc2)cc1

Same scaffold; non-obvious
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Figure S6: In the LIT-PCBA analysis, early enrichment was observed for PPARG – for all Tanimoto
coefficients t > 0.2, the fraction of actives with Tanimoto score > t is much larger than the fraction
of decoys with that score (see Figure 2 in the main text). We manually inspected the structure of
the 1 compound with Tanimoto score > 0.5 to the initial query. This compound is built on the same
scaffold as the query (in red), but is a non-obvious variant on that scaffold.
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GBA

Active Query
Cc(cc1)cc(Cl)c1NC(CN(c1cc(C)cc(C)c1)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O)=O

Active hits with Tanimoto >=0.5 (ECFP4)

Cc1cc(N(CC(Nc2c(C)c(C)ccc2)=O)S(c(c(C)nc([O-])n2)c2[O-])(=O)=O)cc(C)c1
Cc1cc(N(CC(Nc(cc2)ccc2Br)=O)S(c(c(C)nc([O-])n2)c2[O-])(=O)=O)cc(C)c1
CCc(cc1)ccc1NC(CN(c1cc(C)cc(C)c1)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O)=O
Cc1cc(N(CC(Nc2ccc(C(F)(F)F)cc2)=O)S(c(c(C)nc([O-])n2)c2[O-])(=O)=O)cc(C)c1
CCC(C)NC(CN(c1cc(C)cc(C)c1)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O)=O 
Cc1cc(N(CC(NC2CCCC2)=O)S(c(c(C)nc([O-])n2)c2[O-])(=O)=O)cc(C)c1
Cc1cc(N(CC(NC2CCCCCC2)=O)S(c(c(C)nc([O-])n2)c2[O-])(=O)=O)cc(C)c1
CC(CC1)CCC1NC(CN(c1cc(C)cc(C)c1)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O)=O
CCOc(cc1)ccc1N(CC(Nc1ccc(C)cc1)=O)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O
CCOc(cc1)ccc1NC(CN(c(cc1)ccc1OCC)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O)=O
CCOc(cc1)ccc1N(CC(Nc(cccc1)c1F)=O)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O
CCOc(cc1)ccc1N(CC(Nc1c(C)c(C)ccc1)=O)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O
CCOc(cc1)ccc1N(CC(Nc1cc(C)c(C)cc1)=O)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O
CCc(cc1)ccc1NC(CN(c(cc1)ccc1OC)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O)=O
CCOc(cc1)ccc1N(CC(Nc1c(C)cccc1C)=O)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O
CCc(cc1)ccc1NC(CN(c(cc1)ccc1OCC)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O)=O
Cc1nc([O-])nc([O-])c1S(N(CC(NC1CCCC1)=O)c(cc1)ccc1OC)(=O)=O
CCOc(cc1)ccc1N(CC(NCCc(cc1)ccc1Cl)=O)S(c(c(C)nc([O-])n1)c1[O-])(=O)=O
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Same scaffold, obvious

Same scaffold; non-obvious.

Figure S7: In the LIT-PCBA analysis, early enrichment was observed for GBA – for all Tanimoto
coefficients t > 0.2, the fraction of actives with Tanimoto score > t is much larger than the fraction
of decoys with that score (see Figure 2). There are 163 actives in the GBA data set. We manually
inspected the structures of the 18 compounds with Tanimoto score > 0.5 to the initial query. All 18
appear are built on the same scaffold as the query (in red), and all but one is an obvious variation
that should be identified through standard enumeration (i.e. no new scaffolds are explored).
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