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Abstract: One flavonoid glycoside with demonstrated therapeutic potential for several illnesses,
including cancer, is hesperidin. However, because of its limited bioavailability and solubility, it is only
marginally absorbed, necessitating a delivery mechanism to reach the intended therapeutic target.
Additionally, the cytoskeleton of crustaceans yields chitosan, a naturally occurring biopolymer with
mucoadhesive properties that has been used to improve the absorption of advantageous chemical
substances like flavonoids. Chitosan/hesperidin nanoparticles (Hes-Nanoparticles) were made
using the ion gelation technique. The synthesis of Hes-Nanoparticles was confirmed by several
characterization methods, including the swelling test, zeta potential, particle size, FTIR, XRD, TEM,
and SEM. DPPH and ABTS were used to demonstrate radical scavenging activity in antioxidant
assays of chitosan, hesperidin, and the synthesized Hes-Nanoparticles. In addition, by a viability
assay against MDA-MB-231, the anticancer efficacies of chitosan, hesperidin, and the synthesized
Hes-Nanoparticles were assessed. Furthermore, annexin-V/PI double staining and the cycle of cell
analysis were determined by flow cytometry. The results displayed that Hes-Nanoparticles have
higher antioxidant activity than chitosan and hesperidin alone. Also, it has been demonstrated
that Hes-Nanoparticles are more effective in early cell cycle arrest, suppressing the viability of
cancer cells, and increasing cell apoptosis than chitosan and hesperidin alone. In conclusion, Hes-
Nanoparticles demonstrated more antioxidant and antitumor activities than chitosan and hesperidin
alone. Moreover, it has been established that Hes-Nanoparticles, in a highly soluble form, increase
activity in contrast to the poorly soluble form of hesperidin alone.

Keywords: antioxidant; antitumor; chitosan; hesperidin; chitosan/hesperidin nanoformulation

1. Introduction

Breast cancer is the top cause of mortality for women worldwide and the second
most common disease in terms of diagnosis globally [1]. The condition is deadly, and the
list of risk factors for breast cancer appears to be growing daily. Numerous endogenous
and exogenous variables have the potential to exacerbate the pathophysiology of breast
cancer [2]. Treating patients with breast cancer is becoming increasingly difficult due to
several factors, such as adverse effects from traditional treatments, including radiation
and chemotherapy [3]. Multidrug resistance (MDR) is one of the most dangerous issues
associated with traditional therapy [4].

Natural products with a wide range of origins may have the ability to activate several
physiological pathways, which may be advantageous for the treatment of chronic illnesses
such as cancer [5,6]. For many years, it has been difficult to properly treat cancer; as a result,
using a variety of treatment approaches is now required. Compounds originating from
plants are being investigated to help answer this difficult riddle.
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Many studies have been conducted to develop natural substances, particularly phyto-
chemicals, as cancer treatments [7]. According to recent research, natural chemicals derived
from food sources may be able to target certain breast-cancer-related pathways, which may
have a protective effect against cancers and be crucial in treating breast cancer [6,8]. A
class of polyphenolic substances known as flavonoids are produced by plants as secondary
metabolites. Numerous fruits, vegetables, and other food crops contain flavonoids. In addi-
tion to other bioactivities (such as anti-inflammation and anti-aging), they have positive
biochemical effects on several disorders (such as cancer, atherosclerosis, and cardiovascular
disease) [8,9].

Hesperidin (Hes) is a glycoside flavanone. Numerous research works have shown
hesperidin’s pharmacokinetics, bioavailability, and absorption characteristics. It is com-
monly recognized that hesperidin is a strong natural antioxidant that can lower oxidative
stress [10–12]. Numerous pharmacological characteristics, such as anti-inflammatory, an-
tibacterial, anticarcinogenic, antithrombotic, and antiviral activity, have been reported for
hesperidin [13,14]. Hes is a promising chemical, but it is rapidly excreted and has limited
bioavailability due to its strong plasma protein binding [11].

Despite its important biological functions, hesperidin is often fragile and prone to
breakdown, and it can interact negatively with dietary components such as proteins.
Hesperidin has a low partition coefficient (log Poctanol/water = 0.30) and low water
solubility (5.92 ± 0.49 µg/mL at 25 ◦C), resulting in low bioavailability [15].

Therefore, an inventive Hes formulation is necessary. Various research teams are now
working to increase the bioavailability of flavonoids using techniques like cyclodextrin
complexes, phospholipid complexes, and nanoformulation, among other modern drug
delivery strategies [16]. Nanoparticles exhibit biomimetic properties because of their high
surface ratio [17]. The surface, solubility, size, shape, bioavailability, and biodistribution of
nanoparticles are their main advantages in drug administration.

Chitosan (Cs) is a naturally occurring biopolymer with mucoadhesive characteristics;
it is produced from the cytoskeleton of crustaceans [18] and has been applied to augment
the absorption of advantageous chemical substances like flavonoids [19,20]. For instance, it
has been proven that combining tea polyphenols with chitosan nanoparticles will increase
the bioavailability and absorption of the phenols [21]. The most important functional
component of the biological activity of Cs is its primary amine group. This main amino
group is the fundamental functional group of chitosan that allows for interactions with
other molecules. Additionally, this polymer exhibits higher levels of hydrogen bond
interactions at pH 5 compared to acidic pH solutions. This is explained by the greater
built chain at pH 5 and the reduced protonation of amine groups. Chitosan is solvable
by primary amine protonation in aqueous acidic environments. On the other hand, chitin
has a sufficient amount of acetylated residues to stop polymers from dissolving in acidic
aqueous solutions.

Because of their distinct biological characteristics, which include antioxidant, anti-
allergic, anti-inflammatory, anti-coagulant, anti-cancer, anti-bacterial, anti-human immun-
odeficiency virus, anti-hypertensive, anti-Alzheimer’s, anti-diabetic, and anti-obesity ef-
fects, it is therefore believed that chitosan and hesperidin together may have a synergistic
effect [22,23].

Although several studies have manufactured chitosan-loaded nanoparticles, the ion
gelation method is considered the simplest and cheapest approach. Several factors affect
the particle size and entrapment efficiency of nanoparticles. Our study aimed to investigate
two factors: the molecular weight of chitosan and the effect of temperature (2 and 25 ◦C).
The particle size of the nanoparticles used was considerably small and can be compared
with the particle size obtained by a previous study that utilized the emulsification and
evaporation method [24]. Another study employed a solvent evaporation method, in
which expensive polymers were utilized, such as PLGA and soy phosphatidylcholine [25].
The biological effects of chitosan as a natural biodegradable with antioxidant and anti-
inflammatory characteristics, and being the only biopolymer with a positive charge, make it
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an appropriate choice to achieve the study’s objective successfully (via a slight modification
of experimental conditions, i.e., using low-temperature, as illustrated by the factorial
design). Consequently, Hes-Nanoparticles were more effective in early cell cycle arrest,
suppressing the viability of cancer cells, and increasing cell apoptosis than chitosan and
hesperidin alone. The results of this study are consistent with a previous experiment
utilizing hesperetin for the treatment of colorectal cancer [25].

Chitosan/hesperidin nanoparticles (Hes-Nanoparticles) were prepared by the ionotropic
gelation technique. This is a simple, versatile method for producing high-encapsulation-
efficiency micro- and nanoparticles for medicinal and biological purposes. Many drugs
have been successfully encapsulated using this technique [10]. When two biopolymers
with opposing charges interact in an aqueous colloidal medium, a solution splits into two
liquid phases, a phenomenon known as complex coacervation [11].

Therefore, the purpose of this investigation was to evaluate the antioxidant and
antitumor activities of chitosan/hesperidin nanoparticles prepared by the ionic gelation
technique in comparison with each used alone.

2. Results
2.1. Optimization of Hesperidin Nanoparticles

Formulation optimization was performed with the aid of Minitab 16 statistical soft-
ware, based on studying two factors with two-level designs (Table 1). The first factor was
chitosan’s molecular weight (100 and 300 KD) and the second was temperature (2 and
25 ◦C) (Table 2). The results demonstrated the significant effect of temperature on particle
size; on the other hand, polymer molecular weight did not have a significant effect on the
previous response (Figures 1 and 2). The selected formula for Hes-Nanoparticles comprised
low-molecular-weight chitosan at 2 ◦C.

Zeta potential (mV) = 32.5488 + (−0.0055572) Molecular weight + (−0.283551)
Temperature + (−0.00046304) Molecular weight × Temperature

(1)

Particle size (nm) = 73.983 + (0.239949) Molecular weight + (5.29536)
Temperature + (0.0193087) Molecular weight × Temperature

(2)

Table 1. Full factorial design.

Factors 2 Base design 2, 4

Run 12 Replicates 3

Block 1 Center pts(total) 0

Table 2. The results of average particle size (nm) and zeta potential (mV) in response to full factorial
design experiment (n = 4).

Formulation Code Independent Variables Response

Cs Molecular Weight
(KD) Temperature ◦C

Particle Size
(nm)
Mean ± SD

Zeta Potential
(mV)
Mean ± SD

F1 100 2 112.4 ± 63.78 31.33 ± 9.71

F2 300 25 423.2 ± 63.40 20.32 ± 3.67

F3 100 25 278.6 ± 168.25 23.75 ± 0.66

F4 300 2 168.1 ± 135.89 30.04 ± 10.04
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2.2. Characterization of Hes-Nanoparticles
2.2.1. Swelling Test

The swelling of Hes-Nanoparticles in different media was observed for 4 h (Figure 3),
and the results demonstrated the highest swelling ratio in 0.1 N HCl (37.7) at pH 6.8
(30.1) after 1 h, while the sol fraction was almost the same in the different media. Figure 3
illustrates the higher swellability of Hes-Nanoparticles in 0.1 N HCl at pH 6.8 in comparison
to water and pH 4.6. At 0.1 N HCl, the lowest volume swelling factor (0.42) was found
(Table 3). The swelling test in 0.1 N HCl illustrated that the swelling ratio was 5.494 for
Hes-Nanoparticles and zero for Hes after 72 h.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 6 of 28 
 

 

 
Figure 3. Swelling test of Hes-Nanoparticles in different media (DW, pH 4.6, 6.8, and 0.1 NHCl). 

Table 3. Swelling ratio, sol fraction, and volume swelling factor (VSF) of Hes-Nanoparticles in 
different media. 

 Swelling Ratio VSF 
 0.5 h 1 h 3 h 4 h 4 h 

Water 15.7 ± 6.99 26.5 ± 11.66 23.1 ± 9.25 17.6 ± 6.79 0.5 
pH 4.6 26.5 ± 11.23 29.7 ± 12.23 22.97 ± 8.47 19.1 ± 6.61 0.5 
pH 6.8 27.1 ± 11.41  30.1 ± 12.38 24.0 ± 9.05 19.5 ± 6.57 0.5 

0.1 N HCl 25.9 ± 10.92 37.7 ± 15.58 24.0 ± 8.99 24.1 ± 8.55 0.42 
 Sol fraction  
 0.5 h 1 h 3 h 4 h  

Water 0.94 ± 0.009 0.96 ± 0.005 0.96 ± 0.006 0.95 ± 0.013  
pH 4.6 0.96 ± 0.004  0.97 ± 0.002  0.96 ± 0.003 0.95 ± 0.008   
pH 6.8 0.96 ± 0.003 0.97 ± 0.002 0.96 ± 0.005 0.95 ± 0.004   

0.1 N HCl 0.96 ± 0.004 0.97 ± 0.001 0.96 ± 0.004 0.96 ± 0.004  

2.2.2. Percentage Yield and Loading Capacity 
The yield as a percentage was 91.51 ± 2.7%. The entrapment efficiency (EE) was 

85.92 ± 1.9%, and the loading capacity (LC) was 30.69 ± 0.66% (Table 4). 
  

Figure 3. Swelling test of Hes-Nanoparticles in different media (DW, pH 4.6, 6.8, and 0.1 N HCl).

Table 3. Swelling ratio, sol fraction, and volume swelling factor (VSF) of Hes-Nanoparticles in
different media.

Swelling Ratio VSF

0.5 h 1 h 3 h 4 h 4 h

Water 15.7 ± 6.99 26.5 ± 11.66 23.1 ± 9.25 17.6 ± 6.79 0.5

pH 4.6 26.5 ± 11.23 29.7 ± 12.23 22.97 ± 8.47 19.1 ± 6.61 0.5

pH 6.8 27.1 ± 11.41 30.1 ± 12.38 24.0 ± 9.05 19.5 ± 6.57 0.5

0.1 N HCl 25.9 ± 10.92 37.7 ± 15.58 24.0 ± 8.99 24.1 ± 8.55 0.42

Sol fraction

0.5 h 1 h 3 h 4 h

Water 0.94 ± 0.009 0.96 ± 0.005 0.96 ± 0.006 0.95 ± 0.013

pH 4.6 0.96 ± 0.004 0.97 ± 0.002 0.96 ± 0.003 0.95 ± 0.008

pH 6.8 0.96 ± 0.003 0.97 ± 0.002 0.96 ± 0.005 0.95 ± 0.004

0.1 N HCl 0.96 ± 0.004 0.97 ± 0.001 0.96 ± 0.004 0.96 ± 0.004

2.2.2. Percentage Yield and Loading Capacity

The yield as a percentage was 91.51 ± 2.7%. The entrapment efficiency (EE) was
85.92 ± 1.9%, and the loading capacity (LC) was 30.69 ± 0.66% (Table 4).
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Table 4. Polymeric Hes-Nanoparticle characterization *.

Parameter Mean Range

% Yield 91.51 ± 2.7 88.66 to 94.0
% EE 85.92 ± 1.9 84.28 to 87.93
% LC 30.69 ± 0.66 30.1 to 31.4

Particle size (nm) 184.1 ± 20.03 161 to 196.7
Zeta potential (mV) −29.07 ± 9.78 −20.61 to −42.75

PDI 0.233 ± 0.061 0.172 to 0.295
* Mean ± SD, (n = 3).

2.2.3. Particle Size and Zeta Potential Analysis

The generated Hes-Nanoparticles were examined utilizing dynamic light scatter-
ing (DLS), showing a single peak with an average particle size of 184.1 ± 20.03 nm
(Figure 4A). Zeta potential ranged between −20.61 and −42.75 mV, with an average of
−29.07 ± 9.78 mV (Figure 4B). The average polydispersity index (PDI) was 0.233 ± 0.061
(Table 3).
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Figure 4. Particle size (A) and zeta potential (B) of Hes-Nanoparticles.

2.2.4. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)

The particle morphology, size, and shape of Hes and Hes-Nanoparticles were eval-
uated by SEM, as shown in Figure 5A. Hes particles displayed an irregular arrangement
with a rough, fibrous outer surface (magnification 20,000). Nano-Hes appeared as spheri-
cal, well-separated particle aggregates (magnification 40,000) less than 40 nm in diameter
(Figure 5B). Drug-free nanoparticles were characterized by regular, well-defined spherical
shapes (magnification 30,000) that were quite similar to Hes-Nanoparticles (Figure 5C).
Hes-Nanoparticles at lower magnification (2500) showed the cross-linking character of
the spheres produced by the ionic gelation method (Figure 5D). The TEM imaging clearly
illustrates the cross-linked spherical nanostructure particles with a diameter of less than
100 nm (26.84 to 66.64 nm) (Figure 5E).
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2.2.5. DSC Analysis

The DSC analysis was conducted for the pure components (chitosan, Hes, and NaTPP),
drug-free nanoparticles, and Hes-Nanoparticles (Figure 6). The Hes DSC thermogram re-
vealed a high endothermic peak at 257.01 ◦C and a minor peak at 125.22 ◦C, suggesting the
melting of the compound and demonstrating its crystalline form [12]. An endothermic peak
(the dehydration (TD) endothermic peak) [26] was visible in the pure chitosan at 80.05 ◦C.
A broad exothermic peak between 300 and 340 ◦C is attributed to polymer thermal degra-
dation (cleavage of glycoside bond and breakdown of acetyl and deacetylated units [26]).
The thermogram for Nano-Hes shows the complete absence of a sharp endothermic peak
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(TM at 257.01), indicating the transformation into an amorphous state; however, the first
peak becomes broader and shifts slightly to a lower temperature (102.97 ◦C, 654.1 J/g),
which could be attributed to interaction with the chitosan polymer. The drug-free nanopar-
ticle thermogram is almost identical to the DSC of pure chitosan, with two characteristic
endothermic (broader peak) and exothermic peaks (plateau flat peak). The thermogram for
NaTPP shows non-characteristic peaks.
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2.2.6. X-ray Diffraction Analysis (XRD)

XRD was performed for both Hes and Hes-Nanoparticles (X-ray powder diffractome-
ter, GNR, Italy, at 35 KV and 25 mA). The diffractogram of Hes was examined (Figure 7A),
and characteristic sharp diffraction peaks at 2θ (12.77, 14.24, 16.1, 20.18, 21.89, 22.91, and
25.43◦) were identified. On the other hand, the diffractogram of Hes-Nanoparticles showed
a much more diminished peak (Figure 7B).
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2.2.7. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis

It is possible to attribute the changes in nanoparticles to the ionic interaction between
TPP and the amine groups, because the bands for amine I N-H bending vibration at
1600/cm show a high protonated peak, and the amide II carbonyl stretch appears at
1670/cm, which changes to 1507/cm and 1697/cm, respectively. Further evidence of the
presence or interaction of TPP is provided by the P=O peak in the cross-linked chitosan [27],
which is seen at 668/cm. We therefore conclude that chitosan’s ammonium groups and the
tri-polyphosphoric groups of TPP are connected.

Hes’s FTIR spectra (Figure 8) show a distinct strong characteristic broad peak at
3418.67/cm, which is recognized as the hydroxyl (OH) group’s stretching vibration fre-
quency. The weak broad peak at 2923.09/cm is due to the hydroxyl stretching of alcohol.
The peak at 1644.35/cm denotes the presence of functional groups with the carbonyl (C=O)
prefix. The aromatic ring (stretching of -C=C-) is represented by the peak at 1517.22 cm−1.
In response to ether linkage with -C-O-C- and -C-O stretching, nonstop peaks were seen be-
tween 1067.96/cm and −1373.43/cm. The optimized Nano-Hes (Figure 8) shows slight vari-
ations, but the distinct peaks attributed to the hydroxyl group become wider (3444.72/cm),
while the peaks at 2924.23 and 1637.06/cm become less prominent. The fingerprint region
(1600 to −2000/cm) shows different peaks, with a characteristic broad peak at 543.88 cm−1
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that may result from interaction with NaTPP to produce a P=O peak. A type of interaction
between the tri-phosphoric group of NaTPP and the ammonium group of chitosan was
concluded [27]. Chitosan’s FTIR graph is shown below (Figure 8)

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 11 of 28 
 

 

2.2.7. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis 
It is possible to attribute the changes in nanoparticles to the ionic interaction be-

tween TPP and the amine groups, because the bands for amine I N-H bending vibration 
at 1600/cm show a high protonated peak, and the amide II carbonyl stretch appears at 
1670/cm, which changes to 1507/cm and 1697/cm, respectively. Further evidence of the 
presence or interaction of TPP is provided by the P=O peak in the cross-linked chitosan 
[27], which is seen at 668/cm. We therefore conclude that chitosan’s ammonium groups 
and the tri-polyphosphoric groups of TPP are connected. 

Hes’s FTIR spectra (Figure 8) show a distinct strong characteristic broad peak at 
3418.67/cm, which is recognized as the hydroxyl (OH) group’s stretching vibration fre-
quency. The weak broad peak at 2923.09/cm is due to the hydroxyl stretching of alcohol. 
The peak at 1644.35/cm denotes the presence of functional groups with the carbonyl 
(C=O) prefix. The aromatic ring (stretching of -C=C-) is represented by the peak at 
1517.22 cm−1. In response to ether linkage with -C-O-C- and -C-O stretching, nonstop 
peaks were seen between 1067.96/cm and −1373.43/cm. The optimized Nano-Hes (Figure 
8) shows slight variations, but the distinct peaks attributed to the hydroxyl group be-
come wider (3444.72/cm), while the peaks at 2924.23 and 1637.06/cm become less prom-
inent. The fingerprint region (1600 to −2000/cm) shows different peaks, with a character-
istic broad peak at 543.88 cm−1 that may result from interaction with NaTPP to produce a 
P=O peak. A type of interaction between the tri-phosphoric group of NaTPP and the 
ammonium group of chitosan was concluded [27]. Chitosan’s FTIR graph is shown be-
low (Figure 8)  

 
Figure 8. FTIR analysis of Hes, Hes-Nanoparticles, and chitosan. 

2.2.8. In Vitro Drug-Release Study 
The dissolution of Hes and Hes-Nanoparticles in 0.1 N HCL at pHs of 4.6 and 6.8 

was performed. Figure 9 demonstrates that Hes and Nano-Hes show almost the same 
behavior. The percentage of drugs released at pH 4.5 was 24.5% for Hes-Nanoparticles 
and 21.5% for Hes. On the other hand, for pH 6.8, this was 30.3% for Nano-Hes in com-
parison to 30.8% for Hes. On the other hand, the dissolution in 0.1 N HCL showed a 
complete release of Hes from the Hes-Nanoparticles after 2 h (99.1%), while only 29.18% 
after 24 h was released from the Hes powder (Figure 9C). 

0

20

40

60

80

100

120

-6000 -5000 -4000 -3000 -2000 -1000 0

%
 T

ra
ns

m
itt

an
ce

Wave number (Cm-1)

Hes Hes-Nanoparticles Chitosan

Figure 8. FTIR analysis of Hes, Hes-Nanoparticles, and chitosan.

2.2.8. In Vitro Drug-Release Study

The dissolution of Hes and Hes-Nanoparticles in 0.1 N HCL at pHs of 4.6 and 6.8 was
performed. Figure 9 demonstrates that Hes and Nano-Hes show almost the same behavior.
The percentage of drugs released at pH 4.5 was 24.5% for Hes-Nanoparticles and 21.5% for
Hes. On the other hand, for pH 6.8, this was 30.3% for Nano-Hes in comparison to 30.8%
for Hes. On the other hand, the dissolution in 0.1 N HCL showed a complete release of Hes
from the Hes-Nanoparticles after 2 h (99.1%), while only 29.18% after 24 h was released
from the Hes powder (Figure 9C).
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The dissolution in 0.1 N HCl was repeated utilizing a 900 mL dissolution medium
to best achieve the sink condition. The dissolution illustrated the % of drugs released
from Hes and Hes-Nanoparticles (Figure 10), demonstrating the higher solubility of Hes-
Nanoparticles in comparison to Hes. The proportion of the drug that had been dissolved
after 20 and 90 min (Q20% and Q90%) for Hes and Hes-Nanoparticles was one of the
dissolving parameters calculated. Hes’s Q20% and Q90% values were 20.63 and 27.7%,
respectively, while Hes-Nanoparticles’ Q20% and 90% values were 46.8 and 98.88, respec-
tively.
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2.3. Antioxidant Activity Assay
2.3.1. DPPH Radical Scavenging Assay

The radical scavenging activity of DPPH was measured to evaluate antioxidant activity
(Figure 11). In the DPPH assay, the treatments of chitosan, Hes, and Nano-Hes demon-
strated concentration-dependent DPPH radical scavenging activities (Figure 11). Nano-Hes
showed a higher effect than chitosan and Hes. The mean scavenging concentrations (IC50,
expressing 50% of scavenging) were 67.44 ± 2.4, 25.4 ± 1.3, and 19.63 ± 0.9 µg/mL for
chitosan, Hes, and Hes-Nanoparticles, respectively, whereas the IC50 of ascorbic acid as a
positive control was 2.85 µg/mL (Figure 11).
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nanoparticles.
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2.3.2. ABTS Radical Scavenging Assay

The results of the ABTS assay were comparable to those of the DPPH assay, and the
antioxidant effect of the Hes-Nanoparticles was greater than chitosan and Hes (Figure 12).
The IC50 values of the ABTS scavenging assay were established to be 94.66 ± 5.3, 58.79 ± 2.4,
and 35.41 ± 1.2 µg/mL for chitosan, Hes, and Hes-Nanoparticles, respectively; however,
the IC50 of gallic acid as a positive control was 2.61 µg/mL (Figure 12).
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2.4. Antitumor Activity
2.4.1. Viability Test for Chitosan, Hes, and Hes-Nanoparticles Demonstrated Anticancer
Efficacy against MDA-MB-231 (Breast Cancer Cell Line)

Table 5 presents the inhibitory effects of chitosan, Hes, and Hes-Nanoparticles on a
breast cancer cell line (MDA-MB-231), with IC50 values of 116.63 ± 2.96, 110.82 ± 5.89, and
90.83 ± 5.15 µg/mL, respectively. Chitosan was used at concentrations of 0–125 µg/mL.
The lowest concentration (25 µg/mL) recorded a maximum viability of 87.44% and a lower
inhibition effect of 12.65 ± 1.22%; however, the highest inhibition of 49.17 ± 2.38% was
recorded with the highest concentration of free chitosan (125 µg/mL) (Table 5).

In the same context, Hes was also used at concentrations of 0–125 µg/mL, and the
lowest concentration (25 µg/mL) recorded the highest viability of 73.53 ± 1.75% with
a lower inhibition effect of 26.47 ± 1.6%. The highest inhibition of 53.76 ± 1.93% was
recorded with the highest amount of Hes (125 µg/mL) (Table 5).

Furthermore, Hes-Nanoparticles were also used at concentrations of 0–125 µg/mL, and
the lowest concentration (25 µg/mL) recorded the highest viability of 66.69 ± 5.42% with a
lower inhibition effect of 33.3 ± 2.4%. However, the highest inhibition of 63.46 ± 2.8% was
recorded with the highest amount of Hes (125 µg/mL) (Table 5).



Pharmaceuticals 2024, 17, 999 13 of 24

Table 5. The activity of chitosan, Hes, and Hes-Nanoparticles against breast cancer cell line (MDA-
MB-231, incubation for 48 h) with IC50 = 116.63 ± 2.96 µg/mL, IC50 = 110.82 ± 5.89 µg/mL and
IC50 = 110.82 ± 5.89 µg/mL, respectively *.

Chitosan Concentration
(µg/mL) Viability (%) Inhibition (%)

0 100 0
25 87. 44 ± 3.9 12.65 ± 1.22
50 73.11 ± 9.13 26.88 ± 1.15
75 65.13 ± 2.6 34.87 ± 2.35
100 55.43 ± 3.66 44.57 ± 2.38
125 53.17 ± 1.08 49.17 ± 3.05

Hes Concentration
(µg/mL) Viability (%) Inhibition (%)

0 100 0
25 73.53 ± 1.75 26.47 ± 1.6
50 65.74 ± 3.35 34.26 ± 2.24
75 60.65 ± 3.95 39.35 ± 1.42

100 52.62 ± 5.99 47.38 ± 2.52
125 47.24 ± 1.07 53.76 ± 1.93

Hes-Nanoparticle Concentration
(µg/mL) Viability (%) Inhibition (%)

0 100 0
25 66.69 ± 5.42 33.3 ± 2.4
50 60.31 ± 9.05 39.69 ± 1.22
75 56.66 ± 1.71 43.34 ± 3.40

100 48.62 ± 0.7 51.38 ± 1.52
125 36.54 ± 2.5 63.46 ± 2.8

* Data are expressed as mean ±SD, n = 3. Hes: Hesperidin and Hes-Nanoparticles: chitosan/hesperidin nanopar-
ticles.

2.4.2. Cell-Cycle Analysis

The cell-cycle analysis of chitosan, Hes, and Hes-Nanoparticles using flow cytometry
is shown in Figure 13A–C, with different cell-cycle phases (G0/G1, S, and G2/M). The
treatment with chitosan indicated a G2/M-phase cell-cycle arrest from 43.6% in untreated
cells to 25% in treated cells. In the same context, cells treated with Hes showed a G2/M-
phase cell-cycle arrest from 43.6% in untreated cells to 24.4% in treated cells. Furthermore,
cells treated with Hes-Nanoparticles displayed a sharp G2/M-phase cell-cycle arrest from
43.6% in untreated cells to 4.5% in treated cells.
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2.4.3. Annexin V/PI Double-Staining

The apoptotic cells influenced by chitosan, Hes, and Hes-Nanoparticles were revealed
by annexin-V/PI double staining, as revealed in Figure 14. The MDA-MB-231 breast
cancer cell line treated with Nano-Hes showed an increase in apoptotic cells from 10.4% in
untreated cells to 20.7% in treated cells.
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Figure 14. Estimation of apoptotic cell populations of breast cancer cell line (MDA-MB-231) in
untreated (control) (A) and after treatment with chitosan (B), Hes (C), and Hes-Nanoparticles (D),
determined by annexin V/PI double staining based on IC50 concentrations detected by MTT assay
using flow cytometry. The lower-right quadrant shows cells in apoptosis. Hes: hesperidin. Hes-
Nanoparticles: chitosan/hesperidin nanoparticles.

3. Discussion

Worldwide, cancer is second only to cardiovascular illnesses as the main cause of
death [25,28]. New effective medicines and treatment methods are desperately needed
since the prevalence of cancer is steadily rising worldwide. The use of natural substances
like hesperidin (Hes) that are safe and have potent anticancer effects might lead to new
developments in the treatment of cancer [29]. Consequently, many antitumor mechanisms
of this appealing dietary bioflavonoid, such as its proapoptotic, anti-angiogenic, anti-
inflammatory, anti-proliferative, anti-invasive, and anti-metastatic properties, have been
investigated [30–34].

Hes is a significant and commercially accessible flavonoid; however, because of its
incredibly poor water solubility, its use has been restricted in many industries. According
to reports, flavonoids’ changes in solubility may have an impact on their biological activi-
ties [35]. Consequently, chitosan (Cs) has been recognized as a useful tool for therapeutic
application due to its adaptable attributes such as expansion and degradability, which
aid in managing medicine release rates [36]. Therefore, this study aimed to compare the
antioxidant and antitumor activities of Cs, Hes, and Hes-Nanoparticles.

An experiment with a factorial element provides the chance to investigate the impact
that various variables may have on response, making it possible to explore the interactions
between elements in an experiment by altering the levels of all the factors simultaneously,



Pharmaceuticals 2024, 17, 999 15 of 24

rather than one at a time. Two factors, chitosan’s molecular weight (low and intermediate)
and temperature (2 and 25 ◦C), were investigated. Two-level full factorial designs provide
guidance for further research because they can detect significant trends. The current study
revealed the significant effect of temperature on particle size (the lower the temperature,
the smaller the particle size); however, lower temperature had a non-significant effect on
zeta potential [37]. A non-significant effect of chitosan’s molecular weight was observed on
both particle size and zeta potential.

The IG technique has many benefits, such as the bioavailability of medicinal formula-
tions, which are significantly boosted by encapsulation. Nearly 100% encapsulation effi-
ciency is possible when the interactions between the polymer and the drug are ideal [38–40].
The formulation has muco-adhesion, as well as other essential biological properties, because
natural and biodegradable biocompatible polymers are used.

Particles between 200 and 300 nm are thought to be suitable for bypassing RES,
glomerular filtration, and biological barriers [41]. Established by the light scattering brought
on by the particles’ Brownian motion, dynamic light scattering (DLS) determines particle
size [42]. In drug delivery systems utilizing nanoparticles, the system size has an impact
on the interaction with tissues and specific cell structures, as well as on pharmacokinetics
and clearance [43].

When Cs nanoparticles were examined under TEM or SEM, they were often spherical.
Moreover, sizes in dry-state conditions (TEM) were lower than those of hydrodynamic size
(DLS) [44]. The lower magnification of SEM illustrates cross-linked particles.

The DSC thermogram of the Hes-Nanoparticles revealed that the endothermic melting
peak of Hes was absent, showing that Hes was completely encased in amorphous nanopar-
ticles that had the distinct thermal characteristics of pure Hes [45]. There were certain
chemical reactions between hesperidin and chitosan (maybe via the formation of hydrogen
bonds). This finding can be explained by the disappearance of the characteristic exothermic
peak (polymer thermal degradation) of chitosan in the thermogram of Hes-Nanoparticles;
on the other hand, the exothermic peak became plateau-like in the drug-free nanoparticle
thermogram.

Considering the FTIR spectra, the constant peak observed in Hes-Nanoparticles be-
tween 420.74 cm−1 and 466.70 cm−1 is caused by the out-of-plane and in-plane deformation
of rings of Hes that have disappeared, confirming the encapsulation of Hes [24]. The
characteristic peak of the hydroxyl group stretching vibration became broader, which may
be due to the formation of hydrogen bonding with the Cs amino group [24]. This expected
chemical reaction between the Cs amino group and Hes hydroxyl group was consistent
with the DSC results. The FTIR spectra of drug-free nanoparticles and chitosan are identical
to Cs with a drug ratio of 1.5:1 (W/W).

The XRD of Nano-Hes showed the entire disappearance of the distinctive sharp peaks
at 2 theta of Hes with a crystalline structure. In the Nano-Hes pattern, these peaks were
diminished, suggesting their amorphous nature [46].

The dissolution results were consistent with the swelling test, showing enhanced solu-
bility in 0.1 N HCl, and reaching the complete dissolution of Nano-Hes after 90 min. This
can be explained by the solubility characteristic of Cs in an acidic medium (pKa = 6.5) [47].

Moreover, this enhanced solubility can be attributed to the increased surface area
according to the New Whitney equation and the ability of hydrogen bond formation [48].

Furthermore, the outcomes of this study show that Hes-Nanoparticles had greater
antioxidant activity than Hes and Cs alone. On top of that, it is shown that Nano-Hes
outperformed Cs and Hes alone in early cell cycle arrest, cancer cell viability suppression,
and enhanced cell apoptosis.

The rise in the solubility and dissolution rates of Hes-Nanoparticles may be the cause
of their increased antioxidant activity. Nano-sized medicines preferentially enter tumor
tissue via permeable tumor capillaries, and are then maintained in the tumor bed due to
decreased lymphatic outflow. “The enhanced permeability and retention (EPR) effect” is
the term used to describe this phenomenon [49].
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Crucially, reactive radicals can obtain electrons from antioxidants, which changes them
into more stable and non-reactive species [50]. As an example, the antioxidant activity of
flavonoids, such as Hes, refers to their capacity to transfer an electron or a hydrogen atom,
as well as the potential for interactions with other antioxidants [51].

In the same context, the results indicated that the nanoformulation of Hes-Nanoparticles
might have improved their possible antioxidant activity. Therefore, nano-formulations
may change many physical characteristics, boosting antioxidants’ efficacy [52]. According
to earlier research, Hes directly contributes to the scavenging of reactive oxygen species
(ROS) through the inhibition of oxidases, reducing α-tocopheryl radicals, metal-chelating
action, and the activation of antioxidant enzymes. Hes can also lower superoxide ions
in vitro [53,54].

Simultaneously, a unique approach to cancer treatment through the use of antioxidants
has garnered significant interest recently. Strong antioxidant properties have been discov-
ered in flavonoids, such as hesperidin. Hesperidin has demonstrated antiproliferative
and anticancer effects in human cancer cells [55]. Hesperidin and luteolin’s anticancer
properties were examined by [56], using human breast cancer cell lines (MCF-7). The
findings displayed that apoptosis was triggered by both intrinsic and extrinsic mechanisms,
that anti-apoptotic Bcl2 was downregulated, and that pro-apoptotic Bax was upregulated.
The cells’ viability was also reduced in a way that depended on both time and dosage.
Furthermore, in MCF-7 cells, hesperidin and luteolin markedly decreased miR-21 while
raising miR-16 and −34a levels. Accordingly, the study found that luteolin and hesperidin
had a promising effect on breast cancer cell lines [57]. The preventive effects of hesperidin
on lung cancer invasion, apoptosis, and proliferation have been looked into in different
research studies [50]. Hesperidin was applied in varying quantities to treat NCl-H460
and A549 cells. The outcome demonstrated a dose-dependent, substantial reduction in
NCl-H460 and A549 cell invasion and activity. Additionally, hesperidin triggered cell death,
elevated p53 expressions, and blocked the interaction between p53 and MDMX [58]. The
results indicated that hesperidin might be a possible option for the management of different
kinds of cancer.

It has been demonstrated that hesperidin induces both internal and extrinsic pathways,
which in turn stimulate apoptotic cell death in several cancer cells [59]. The current
approach has shown that adding hesperetin to chitosan nanoparticles improves hesperetin
binding and internalization, which increases the killing of cancer cells. Chemotherapeutic
medicines, resulting in the effective internalization of nanoparticles into lysosomes by
cancer cells, have been demonstrated, leading to an increase in cancer cell death [24].

4. Materials and Methods
4.1. Materials

Low-molecular-weight chitosan (50–190 KD), deacetylated degree 90%, was purchased
from Sisco Research Laboratories Pvt. Ltd. (SRL), Mumbai, India. Intermediate-molecular-
weight chitosan (100–300 KD), deacetylated degree 93–95%, was obtained from Lanxess
Company, Thane, India. Sodium tripolyphosphate (85% pure, STPP) was bought from
Lanxess Company, India, and acetic acid (purity of 96%) was produced by Research-Lab
Fine Chem Industries, Mumbai, India. Also, deionized water was bought from Stakpure,
Waters, Milford, MA, USA. High analytical grades were possessed by all other reagents.

4.2. Methods
4.2.1. Optimization of Hesperidin Nanoparticles (Hes-Nanoparticles)

A modified ionic gelation technique was used to create chitosan–tripolyphosphate
nanoparticles [60]. Chitosan was dissolved at 3% (w/v) in acetic acid with the aid of a
magnetic stirrer (Stuart, Calibre Scientific USA) for 25 min (300 rpm at 50 ◦C); then, Hes
was dispersed into chitosan solution and stirring was continued for an additional one hour.
The pH was adjusted to 5 with the aid of 10% sodium hydroxide. Sodium tripolyphosphate
(STPP) was dissolved in deionized water to prepare a 1% solution, and then its pH was
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adjusted with the aid of NaOH (4% w/v) to 5. Some experiments were performed at a
lower temperature. The STPP solution was incubated in an ice bath on a magnetic stirrer
(300 rpm); the temperature of the solution was stable at 2 ◦C. The chitosan/Hes mixture
was added dropwise to the previous solution with the aid of a 20 mL syringe (1.8G X1.1/2)
with continuous stirring. The stirring was continued for an additional one hour (300 rpm),
and the ratio between chitosan, Hes, and NaTPP was 1.5:1:0.5 W/W, respectively. The
solution was homogenized for one hour at a speed of 20,000 RPM (IKA, T23, Digital, Ultrax,
Staufen, Germany). Ultracentrifugation of the resulting mixture was conducted via a
cooling centrifuge for ten minutes at −4 ◦C at 10,000 rpm (Centurion Scientific, Chichester,
UK). The nanoparticles were washed with deionized water twice and then collected for
further freeze-drying (Christ Benchtop Freeze dryer, Osterode am Harz, Germany). The
supernatant and wash solution was mixed for the determination of entrapment efficiency
(EE). Chitosan cross-linked with STPP as control nanoparticles was prepared with the same
procedure, except for the addition of Hes powder.

4.2.2. Characterization of Hes-Nanoparticles
Swelling Test

Pre-weighed Hes-Nanoparticle powder was submerged in an excessive swelling
medium (DW, 0.1 N HCl, buffer pH 4.6 and 6.8) at 37 ◦C. After blotting the excess solution
off the surface with the aid of filter paper, the hydrogel was taken out of the solution
at different intervals (0.5, 1, 3, and 4) and weighed. A swelling test in 0.1 N HCL was
conducted at 37 ◦C for 72 h to compare the swelling behavior between HES and Hes-
Nanoparticle powder. After the filtration of the filter, the residues were weighed again. The
mean values of measurements made in triplicate were calculated according to the following
equations to determine the swelling ratio.

Swelling ratio =
Ws − Wd

Wd
(3)

Volume swelling factor =
Vt

V0
(4)

Sol fraction =
Wi − Wd

Wi
(5)

Here, Wd is the mass after it has dried, and Ws is the mass after it has swelled [61].
In contrast, Vt and V0 represent the starting and remaining volumes, respectively [62].
The proportionate rise in weight of the hydrogel caused by water absorption is known
as the swelling ratio. The sol fraction is the percentage of the polymer that, following
a cross-linking process, is not attached to a cross-linked network. Sol fraction declines
over time, reflecting polymer loss and indicating the degree of hydrogel deterioration and
degradation [63].

The Percentage Yield

The percentage yield (%) of the nanoparticles is a key factor since it can be used to
predict the likelihood of industrial scale-up and the feasibility of a procedure. The total
amount of powder was determined after lyophilization using an analytical weighing scale
(Sartorious, Ann Arbor, MI, USA), and the yield % was calculated using the formula below.

Thepercentageyield =
Total amount of HNP

Total amount of all ingredients (STPP + chitosan + drug)
× 100 (6)

Drug Entrapment Efficiency (DEE)

Both the loading capacity (LC) and drug entrapment efficiency (DEE) were computed
using the indirect technique. After the centrifuged supernatant and wash were collected,
the amount of entrapped drug was calculated using a calibration curve. The complete
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analysis was carried out in three duplicates to minimize handling errors. While DEE is the
proportion of the medication that is successfully encapsulated inside the system from the
entire drug that was initially added, LC is the percentage of the drug that is successfully
loaded on the specific mass of nanoparticles. DEE and LC can be calculated according to
the following equations.

%DEE = (Totaldrugconc. − Supernatantdrugconc. / Totaldrugconc. × 100) (7)

%LC =
Totalamountofdrugadded − Amountofuntrappeddrug

TotalmassofHNPs
× 100 (8)

Average Particle Size and Zeta Potential Evaluation

The effectuality of nanoparticles is dependent on their particle size; on the other
hand, zeta potential is a marker of colloidal stability [64]. The Zeta Sizer Nano (Malvern
Panalytical Ltd., Enigma Business Park, Malvern, UK) was used to assess particle size and
zeta potential.

Scanning Electron Microscopy (SEM)

SEM analyses were performed to evaluate the shape and surface characteristics of Hes,
Hes-Nanoparticles, and drug-free nanoparticles. After being dissolved in alcohol using a
sonicator, Hes and the lyophilized Nano-Hes were distributed over a glass slide, allowed
to dry completely, and then transferred to the top of a metal cup on a silicon electro-
conductive chip. Using a 10 kV electron acceleration voltage field-emission scanning
electron microscope (JEOL, JSM-6510LV, Tokyo, Japan) at various magnifications, the
materials were coated with gold for one minute on their stubs.

Transmission Electron Microscopy (TEM)

The nanoparticles were suspended in ethyl alcohol; after that, the samples were
mounted on a carbon grid and dried. The samples were observed and photographed with a
transmission electron microscope (TEM, JEM2100F electron microscope, JEOL, Ltd., Tokyo,
Japan).

Thermal Stability (DSC)

Utilizing TA devices from Waters LIC in the USA, the thermal behavior of the raw
material samples was investigated using differential scanning calorimetry (chitosan, NTPP,
and Hes), considering the drug-free nanoparticle samples and the Hes-Nanoparticles. A
microbalance (Sartorius, Göttingen, Germany) was used to precisely weigh each sample
(3–4 mg), and the samples were heated from 50 to 350 ◦C at a rate of 10 ◦C/min.

X-ray Diffraction Analysis (XRD)

Chitosan, Hes, and Hes-Nanoparticles underwent XRD analysis. The X-ray diffrac-
tograms based on Bragg’s law were acquired using an XRD diffractometer (APD2000 pro,
GNR, Italy; software CRYSTAL IMPACT (2003–2014), Bonn, Germany) with CuK radia-
tion, 35 kV of monochromatic voltage, and a 25 mA electric current. The range of the 2 θ

diffraction angle was 4.95◦ to 79.75◦.

Fourier-Transform Infrared Spectroscopy (FTIR) Analysis

The FTIR analysis, which was performed to evaluate the interactions and compatibility
of the formulation’s components, emphasized the stability of the suggested system [65].
Hes and chitosan powder in addition to Hes-Nanoparticles and drug-free nanoparticles
were analyzed using BRUKER (Billerica, MA, USA).

In Vitro Drug-Release Study

Comparative dissolution patterns in different pHs (4.6 and 6.8) were identified to
compare the dissolving behaviors of Hes and Hes-Nanoparticles. The volume of dissolution
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media was 100 mL, and the speed of rotation was 75 rpm at 37 ◦C (Stuart, Calibre Scientific,
Holland, MI, USA). Precisely weighted samples with an equivalent of 10 mg of Hes were
transferred into a dialysis membrane sac (dialysis tubing 29.6 × 45 mm, (FREY Scientific,
Nashua, NH, USA) and dropped onto the dissolving media. Samples of the dissolution
medium (5 mL) were collected at numerous time interludes (0.5, 1, 2, 3, 4, and 24 h). Fresh
medium (5 mL) was used to make up for samples that were withdrawn.

Dissolution in 0.1 N HCl (900 mL) was performed using USP type II equipment
(Copley Scientific, Nottingham, UK). The paddles revolved at a speed of 75 rpm, while
the temperature was kept at 37 ◦C. Accurately weighted samples equivalent to 10 mg
of Hes were added to the dissolving media. Samples of the dissolution medium (3 mL)
were filtered via a 0.2 mm syringe filter and examined spectrophotometrically (Shimadzu
RF-6000, Kyoto, Japan) at 238 nm. A new medium was used to make up for samples that
were withdrawn. Three separate dissolving experiments were run, with samples being
taken at 10, 20, 40, and 90 min.

4.2.3. Antioxidant Activity Assay
DPPH Radical Scavenging Assay

The DPPH radical scavenging experiment was carried out for chitosan, Hes, and
Hes-Nanoparticles at different concentrations (3.9, 7.8, 15.62, 31.25, 62.5, 125, 250, 500,
and 1000 µg/mL) using the method described in [66]. The absorbance at 517 nm was
measured using a UV/visible spectrophotometer (UV-VIS Milton Roy). Ascorbic acid
was used as a reference chemical. The IC50 value was obtained by using the Log dose
inhibition curve (n = 3). The percentage of DPPH scavenging effect was determined using
the following formula:

DPPH scavenging effect (%) or percent inhibition = A0 − A1/A0 × 100 (9)

where A0 represents the absorbance of the control response and A1 represents the ab-
sorbance in the presence of a test or standard sample.

ABTS Radical Scavenging Assay

ABTS radical scavenging activity was identified for chitosan, Hes, and Hes-Nanoparticles
at different concentrations (3.9, 7.8, 15.62, 31.25, 62.5, 125, 250, 500, and 1000 µg/mL), follow-
ing [67] with minor adjustments. A spectrophotometer was used to measure the absorbance
at 734 nm following a 6 min incubation period. The following formula was employed to
assess antioxidant activity:

%Inhibition= (A control − A sample)/A control × 100 (10)

A control = Absorption of the negative control with solution preparation.
A sample = Sample absorbance after six minutes.
Gallic acid was used as a reference chemical. A graph showing the concentration of

the sample required to scavenge 50% of the ABTS free radicals (n = 3) was used to obtain
the IC50 value.

4.2.4. Antitumor Activity

Viability test for chitosan, hes, and hes-nanoparticles demonstrated anticancer efficacy
against MDA-MB-231 (breast cancer cell line).

The breast cancer cell line (MDA-MB-231) was acquired from the National Cancer
Institute in Cairo, Egypt. The tumor cells were cultured in a 37 ◦C humid environment with
5% carbon dioxide using Corning 96-well tissue culture plates. The cells were suspended
in the medium at a concentration of 5 × 104 cells/well. Next, after 48 h of exponential
development, the cells were treated with chitosan, Hes, or Hes-Nanoparticles at doses of
0, 25, 50, 75, 100, and 125 (µg mL−1, 48 h). Subsequently, each well was supplemented
with 10 µL of the 12 mM MTT stock solution (Vybrant® MTT Cell Proliferation Assay Kit,
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V-13154) and incubated for 4 h at 37 ◦C. Following a thorough mixing with the pipette,
50 µL of DMSO was added to each well, and the mixture was incubated for 10 min at 37 ◦C.
Utilizing a microplate reader (ELx 800, Bio-Tek Instruments Inc., Santa Clara, CA, USA) at
540 nm, the absorbance was measured [68]. The optical densities of the treated cells (A)
and the untreated cells (B) are represented by the following formula:

Rate of inhibition (%): (A/B) × 100 (11)

Furthermore, the IC50 was computed using the GraphPad Prism 10.2.3 program (San
Diego, CA, USA).

Cell-Cycle Analysis

After treatment with chitosan, Hes, or Hes-Nanoparticles, the MDA-MB-231 breast
cancer cell line’s cell-cycle distribution was investigated by utilizing flow cytometric analy-
sis of the IC50 values discovered by the MTT test. Following the stimulation of the cells with
Hes, Nano-Hes, or chitosan, the culture media were carefully removed, PBS was added,
and the mixture was gently agitated before the PBS was taken out. One milliliter of trypsin
was added, vigorously mixed, and allowed to digest in the incubator. The trypsin digestion
process was finished by removing the cells from the incubator and placing them in a 3 mL
serum-containing medium. Using a pipette, the cells were resuspended and put into the
centrifuge tube. The supernatant was then extracted using centrifugation at 1000 rpm for
five minutes at room temperature [69]. Following this, three milliliter PBS resuspension
cells were added. After 75% alcohol was used to revive the cells, they were chilled at
4 ◦C for the duration of the night. Then, we collected the supernatant after centrifuging at
1000 rpm for five minutes at room temperature. Following three PBS washes, the cell cycle
was assessed using flow cytometry (BD AccuriTM C6 Plus Flow Cytometer). A propidium
iodide staining solution was then added, and the cells were stained for thirty minutes at
37 ◦C [69]. BD Biosciences’ AccuriTM C6 software was used to calculate the percentage of
cells in each cell-cycle phase.

Annexin-V/PI Double-Staining Assay

A well plate was injected with cells that were in the exponential growth phase. Fol-
lowing the cell-collection process, the culture media were slurped into the centrifuge tube,
the cells were cleaned with 1 mL of 1× Binding Buffer, and the cell pellet was resuspended
in 100 µL of 1× Binding Buffer. The cells were then centrifuged at 300× g for 10 min.
Subsequently, every 106 cells were treated with 10 µL of annexin-V tagged with a fluo-
rescent dye (annexin V-FITC), which was carefully mixed and incubated for 15 min at
room temperature without light. Then, 500 µL of 1× Binding Buffer was added to each
106 cells for a second round of washing. The cells were then centrifuged at 300× g for
ten minutes, and the cell pellet was resuspended in 500 µL of 1× Binding Buffer. Lastly,
5 µL of propidium iodide solution was added right before the BD AccuriTM C6 Plus Flow
Cytometer was used for analysis [70].

4.3. Statistical Analysis

Every experiment was carried out at least three times. Mean ± SD is used to express
all data.

5. Conclusions

Finally, nanotechnology is greatly improving the efficient delivery of bioactive ma-
terials. In the realm of food medicine, using nanoscience has already been shown to be
a revolutionary technical breakthrough. Hesperidin-loaded nanoparticles may be able
to improve some of the therapeutic uses of pure hesperidin, such as the management of
cardiovascular, viral, and respiratory disorders, and cancer.
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