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Abstract: Targeting epidermal growth factor receptor (EGFR) mutants is a promising strategy for
treating non-small cell lung cancer (NSCLC). This study focused on the computational identification
and characterization of potential EGFR mutant-selective inhibitors using pharmacophore design
and validation by deep learning, virtual screening, ADMET (Absorption, distribution, metabolism,
excretion and toxicity), and molecular docking-dynamics simulations. A pharmacophore model
was generated using Pharmit based on the potent inhibitor JBJ-125, which targets the mutant EGFR
(PDB 5D41) and is used for the virtual screening of the Zinc database. In total, 16 hits were retrieved
from 13,127,550 molecules and 122,276,899 conformers. The pharmacophore model was validated
via DeepCoy, generating 100 inactive decoy structures for each active molecule and ADMET tests
were conducted using SWISS ADME and PROTOX 3.0. Filtered compounds underwent molecular
docking studies using Glide, revealing promising interactions with the EGFR allosteric site along with
better docking scores. Molecular dynamics (MD) simulations confirmed the stability of the docked
conformations. These results bring out five novel compounds that can be evaluated as single agents
or in combination with existing therapies, holding promise for treating the EGFR-mutant NSCLC.

Keywords: NSCLC; JBJ-125; deep learning; pharmacophore; virtual screening; molecular docking;
molecular dynamics; ADMET

1. Introduction

Lung cancer is a major global health concern owing to its high mortality rates. Non-
small cell lung cancer (NSCLC) is the most prevalent, accounting for over 80% of lung
cancer cases [1]. However, the effectiveness of early-stage treatment with chemotherapeutic
agents targeting wild-type epidermal growth factor receptor (EGFR) in NSCLC remains
uncertain, as previous research has suggested limited benefits for patient survival [2]. EGFR
is a transmembrane protein belonging to the ERBB (erythroblastic leukemia viral oncogene
homologue) family of receptor tyrosine kinases (RTKs) [3]. The EGFR family comprises
four members: ERBB1, ERBB2, ERBB3, and ERBB4 [4]. EGFR contains extracellular ligand-
attachment domains and is divided into four subdomains (I, II, III, and IV). Subdomains
I and III, also known as L1 and L2, are responsible for binding growth factors, whereas
subdomains II and IV, or CR1 and CR2, facilitate protein dimerization [5]. First- and
second-generation EGFR tyrosine kinase inhibitors (TKIs) were initially designed to target
the ATP binding site but faced challenges due to resistance [6]. Although third-generation
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TKIs have been developed to address this issue, they face challenges, such as C797S muta-
tion emergence [6]. Consequently, alternative and effective treatment strategies should be
urgently explored. Allosteric site targeting is a promising approach in this regard [7]. It
involves binding to regions other than the active site, thereby influencing protein confor-
mation and downstream signaling pathways [8]. By targeting allosteric sites, EGFR activity
and downstream signaling may be inhibited, thereby hindering cancer cell proliferation.
In addition, adverse effects associated with the existing treatments for NSCLC may be
overcome [9]. Previous studies have suggested that Leu747, Met766, Leu777, Leu788,
Ile789, Met790, Phe856, and Asp855 constitute an EGFR allosteric site [8]. Another study
by Singh et al. identified Lys745, Leu788, Thr854, Asp855, and Phe856 as the amino acids
that interact with potential allosteric inhibitors [10]. So, targeting these residues can be a
way to develop potential allosteric inhibitors. Recent studies have investigated compounds
such as JBJ-125 (Figure 1A) and JBJ-063 (Figure 1B), which show promise for overcoming
resistance mutations like L858R/T790M/C797S. Beyettet. al. reported the synergistic effect
of JBJ-125 and osimertinib against TKI resistance [11].
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Figure 1. (A) JBJ-125. (B) JBJ-063.

Now, to investigate potential new compounds, in silico techniques like molecular
docking are often applied, which helps in observing the interactions such as hydrogen
bonds, hydrophobic bonds, pi-pi stacking, etc. [12]. This study aimed to identify dis-
tinguished derivatives, referencing JBJ-125. By targeting the allosteric sites, we aimed to
contribute to the development of effective therapies for NSCLC, particularly for overcoming
drug resistance.

2. Result
2.1. Pharmacophore Model Generation

The pharmacophore model was constructed based on the structural features of the
reference ligand JBJ-125, a known potent EGFR mutant selective inhibitor (PDB 5D41),
using the Pharmit tool. Ten pharmacophoric features (Table 1), including three aromatic
rings, one hydrogen bond donor, three hydrogen bond acceptors, and three hydrophobic
rings (Figure 2) were identified. By employing the default parameters within the Pharmit
server, the Zinc database was screened using this pharmacophore model.

Table 1. Pharmacophore model features along with X, Y, Z coordination and radius.

Feature X Y Z Radious

Aromatic Ring 1 8.6 −0.7 −0.1 1
Aromatic Ring 2 15.4 −3.9 −0.2 1
Aromatic Ring 3 17.6 2.2 −0.1 1

Hydrogen Bond Donor 15.9 0.1 0.5 1
Hydrogen Bond Acceptor 1 11.8 1.3 0.2 1
Hydrogen Bond Acceptor 2 14.1 1 −0.6 1
Hydrogen Bond Acceptor 3 12.7 −4.3 0.2 1

Hydrophobic Bond 1 8.6 −0.7 −0.1 1
Hydrophobic Bond 2 15.4 −3.9 −0.2 1
Hydrophobic Bond 3 17.6 2.2 −0.1 1
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Figure 2. Pharmacophore model with its features.

2.2. Virtual Screening

The Zinc database was virtually screened using the developed pharmacophore model
and the default protocol embedded within Pharmit. This screening process yielded a
collection of 16 hits that were retrieved from the database of 13,127,550 molecules and
122,276,899 conformers. In addition to these 16 hits identified as possible new compounds,
JBJ-125 was included as a reference compound for further analysis (Table 2). Subsequently,
all compounds were rigorously evaluated against Lipinski’s rule of five, ADMET analysis,
and other pertinent in silico investigations.

Table 2. List of pharmacophore-derived compounds and reference compound with code numbers.

Scheme Compound ID Code
Number SMILE

1 ZINC000012638703 BNS1 COc1cc(OC)cc(C(=O)Nc2ccccc2-c2nnn(CC(=O)N3CCCc4ccccc43)n2)c1

2 ZINC000016694801 BNS2 COc1ccccc1N(CC(=O)Nc1ccccc1Oc1ccccc1)S(=O)(=O)c1cccs1

3 ZINC000012777271 BNS3 COC(=O)c1occc1CSc1nc(NC(=O)c2ccccc2)c2c(C)c(C)oc2n1

4 ZINC000033067859 BNS4 COc1ccc(C(=O)Nc2ccccc2OCc2cc(=O)n3cccc(C)c3n2)cc1OC

5 ZINC000020617126 BNS5 COc1ccc(C)cc1NC(=O)c1cn(C)nc1C(=O)Nc1cc(C)ccc1OC

6 ZINC000020617150 BNS6 COc1ccccc1NC(=O)c1cn(C)nc1C(=O)Nc1ccccc1OC

7 ZINC000059488018 BNS7 Oc1ccc(Br)cc1/C=N/N=C1/c2ccccc2-c2nc3ccccc3nc21

8 ZINC000059488022 BNS8 O=[N+]([O-])c1ccc(O)c(/C=N/N=C2/c3ccccc3-c3nc4ccccc4nc32)c1

9 ZINC000059488016 BNS9 Oc1cc(Cl)ccc1/C=N/N=C1/c2ccccc2-c2nc3ccccc3nc21

10 ZINC000013577005 BNS10 COc1ccc(NC(=O)C[C@H]2C(=O)N(c3ccccc3)C(=S)N2CCc2ccccc2OC)cc1

11 ZINC000021535964 BNS11 Cc1cn2c(=O)cc(CSc3ccccc3NC(=O)COc3ccc(Cl)cc3)nc2s1

12 ZINC000059488021 BNS12 COc1ccc(O)c(/C=N/N=C2/c3ccccc3-c3nc4ccccc4nc32)c1

13 ZINC000229934991 BNS13 O=C(Nc1ccc(Cl)cc1)[C@@H]1[C@H](c2cccc([N+](=O)[O-])c2)C2(C(=O)
c3ccccc3C2=O)[C@H]2c3ccccc3C=NN12

14 ZINC000041077159 BNS14 COc1cccc(C(=O)Nc2ccccc2OCc2cc(=O)n3c(ncn3C(C)C)n2)c1

15 ZINC000000831474 BNS15 COc1ccccc1NC(=O)c1nc[nH]c1C(=O)Nc1ccccc1OC

16 ZINC000033067751 BNS16 COc1ccc(C(=O)Nc2ccccc2OCc2cc(=O)n3ccccc3n2)cc1OC

17 Pubchem CID 124173751 JBJ-125 C1CN(CCN1)C2=CC=C(C=C2)C3=CC4=C(CN(C4=O)C
(C5=C(C=CC(=C5)F)O)C(=O)NC6=NC=CS6)C=C3
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2.3. Pharmacophore Validation

Pharmacophore validation was performed by deep decoy. The overall process assesses
the hypothesis to discriminate among the active compounds and inactive decoys. The final
dataset was prepared with 16 known active molecules, screened from 13,127,550 molecules
and 122,276,899 conformers. From the assessment, we found an ROC (Receiver Operating
Characteristic) value of 0.778, indicating better model quality and effectiveness. An Area
Under the Receiver Operating Characteristic Curve (AUC-ROC) value of 0.5 suggests no
discriminative power (equivalent to random guessing), while 1.0 indicates perfect classifi-
cation [13]. Three types of metrics were used to evaluate the model. Performance metrics
-which evaluates the ability of machine learning models to correctly classify compounds as
actives or decoys. Higher values indicate better performance in distinguishing between
actives and decoys [14]. Property matching metrics- which evaluates how well the proper-
ties of decoys match those of the actives, to ensure that decoys are chosen based on similar
properties to actives. Thus, these metrics ensure that the decoys are appropriate controls by
having similar properties to the actives. This is important for the validity of the screening
process [15]. Finally, the structural similarity metrics, which evaluates the structural simi-
larity between actives and decoys. These metrics ensure that decoys structurally resemble
actives, which is important for the validity of structure-based screening methods [15].

2.4. ADMET Properties

To evaluate the ADMET properties, all pharmacophore-derived compounds were
assessed alongside the reference compound JBJ-125, which served as the standard. Various
parameters including bioavailability radar and fundamental physicochemical properties
such as molecular weight, lipophilicity, water solubility, metabolic characteristics, and drug
likeliness were examined. The consistent bioavailability pattern of the pharmacophore-
derived compounds BNS1–BNS6, BNS10–BNS11, and BNS14–BNS16 is comparable to that
of the reference compounds. Figure 3 illustrates the distribution of these compounds with
respect to their bioavailability.

Analysis of the basic physicochemical properties (Table S1) revealed that the molecular
weights of all the compounds except BNS13 were below 500 g/mol. As indicated by the
consensus Log P values (Table S2), the lipophilicity of the screened compounds was 2.22 to
4.32. In comparison, the Log P value of JBJ-125 was 3.42.

Assessment of water solubility patterns (Table S3) revealed that, based on the Log
S(ESOL) class categorization, all compounds were soluble, with most being moderately sol-
uble. However, according to the Ali solubility classification, most pharmacophore-derived
compounds exhibited poor water solubility, a trend consistent with the SILICOS-IT class
category, in which all compounds, including the reference, demonstrated poor water solu-
bility. All compounds, along with the reference compound except BNS2, BNS3, BNS11, and
BNS13 demonstrated high absorption in the gastrointestinal tract (GI, Table S4). Notably,
none of these compounds permeated across the blood–brain barrier (BBB). Most com-
pounds, including BNS1, BNS4, BNS6, BNS10, and BNS13–BNS16, along with the reference
compounds, are potential permeability glycoprotein (P-gp) substrates. BNS8 inhibited only
one and BNS14 inhibited two out of five cytochrome P450 (CYP) isoforms. Conversely, all
other compounds inhibited a minimum of three out of the five isoforms, whereas reference
compounds inhibited four isoforms. Moreover, all compounds, except for BNS13 and
reference compound JBJ-125, adhered to Lipinski’s rule of five (Table 3). Additionally, all
compounds exhibited a bioavailability score of 0.55. Among the compounds, BNS1-BNS6,
BNS11, and BNS14–BNS16 showed no PAIN and BRENK alerts, whereas others displayed
one or both alerts. The reference compound JBJ-125 presented one PAIN alert.

In the PROTOX study, hepatotoxicity, respiratory toxicity, carcinogenicity, immuno-
toxicity, mutagenicity, etc., were analyzed (Table 4). PROTOX works on the similarity
method, which is based on the fact that structurally similar molecules are likely to exhibit
similar toxic profiles [16]. In toxicity classification, most compounds (BNS1, BNS5 to BNS7,
BNS10, BNS11, and BNS13–BNS16) were categorized into level IV toxicity classes. As for
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BNS3, BNS8, BNS9, and BNS12, they were classified as level V toxicity classes, BNS4 as
level III, BNS2 as level VI, and JBJ-125 had toxicity level IV.
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instauration (0.25 < Fraction Csp3 < 1), and flexibility (number of rotatable bonds < 9).



Pharmaceuticals 2024, 17, 1107 6 of 20

Table 3. Predicted drug likeliness properties of compounds.

Compounds. Lipinski
#Violations

Ghose
#Violations

Veber
#Violations

Egan
#ViolAtions

Muegge
#Violations

Bioavailability
Score

PAINS
#Alert

Brenk
#Alert

Lead Likeness
#Violations

Synthetic
Accessibility

BNS1 Yes, 0 violations No#2 yes yes yes 0.55 0 0 No#3 3.75

BNS2 Yes, 0 violations No#3 yes No No 0.55 0 0 No#3 3.93

BNS3 Yes, 0 Violation Yes Yes No Yes 0.55 0 0 No#3 3.73

BNS4 Yes, 0 Violations Yes Yes Yes Yes 0.55 0 0 No#2 3.32

BNS5 Yes, 0 Violations Yes Yes Yes Yes 0.55 0 0 No#2 3.04

BNS6 Yes, 0 Violations Yes Yes Yes Yes 0.55 0 0 No#2 2.81

BNS7 Yes, 0 Violations Yes Yes Yes Yes 0.55 1 1 No#2 3.3

BNS8 Yes, 0 Violations Yes Yes Yes Yes 0.55 1 3 No#2 3.37

BNS9 Yes, 0 violations Yes Yes Yes Yes 0.55 1 1 No#2 3.25

BNS10 Yes, 0 Violations No#2 Yes Yes Yes 0.55 0 1 No#3 3.88

BNS11 Yes, 0 Violations Yes Yes Yes Yes 0.55 0 0 No#3 3.5

BNS12 Yes, 0 Violations Yes Yes Yes Yes 0.55 1 1 No#2 3.37

BNS13 Yes, 1 Violation No#2 Yes Yes No#1 0.55 1 3 No#2 5.32

BNS14 Yes,0 Violations Yes Yes Yes Yes 0.55 0 0 No#2 3.34

BNS15 Yes, 0 Violations Yes Yes Yes Yes 0.55 0 0 No#2 2.66

BNS16 Yes, 0 Violations Yes Yes Yes Yes 0.55 0 0 No#2 3.17

JBJ-125 Yes, 1 Violations No#2 No#2 Yes Yes 0.55 1 0 No#2 4.26
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Table 4. Toxicity prediction by PROTOX.

Compounds Hepato-Toxicity Neuro Toxicity Respiratory Toxicity Carcino Genicity Immuno Toxicity Muta Genicity Cyto Toxicity Toxicity Class

BNS1 Inactive Active Active inactive inactive Moderately active Moderately active IV

BNS2 Inactive Inactive Active Moderately inactive inactive inactive inactive VI

BNS3 Moderately active Inactive Moderately active Moderately active Moderately active Moderately inactive Inactive V

BNS4 Moderately inactive Moderately active Active Moderately inactive Moderately active Moderately active Moderately inactive III

BNS5 Moderately active Moderately active Moderately inactive Moderately inactive Inactive Moderately inactive Inactive IV

BNS6 Moderately active Moderately active Moderately inactive Moderately inactive Inactive Moderately inactive Inactive IV

BNS7 Moderately active Moderately active Moderately inactive Moderately inactive Moderately active Moderately inactive Moderately inactive IV

BNS8 Moderately active Moderately inactive Moderately inactive Active Moderately inactive Active inactive V

BNS9 Moderately active Moderately active Moderately inactive Moderately inactive inactive Moderately inactive inactive V

BNS10 Moderately inactive Active Active Moderately inactive inactive inactive inactive IV

BNS11 Moderately active Moderately active Active Moderately inactive Moderately inactive Moderately inactive Moderately inactive IV

BNS12 Moderately active Moderately active Moderately inactive Moderately active Active Moderately active inactive V

BNS13 Moderately active Moderately inactive Moderately inactive Moderately active inactive Active inactive IV

BNS14 Moderately inactive Moderately active Moderately active Moderately inactive Active Moderately active inactive IV

BNS15 Moderately inactive Moderately inactive Moderately inactive Moderately active inactive Moderately inactive inactive IV

BNS16 Moderately inactive Moderately active Active Moderately inactive Moderately active Moderately active Moderately inactive IV

JBJ-125 Moderately inactive Active Active Moderately inactive Active Moderately inactive Moderately inactive IV
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Therefore, from the absorption, distribution, metabolism, and excretion (ADME) and
PAIN (Pan Assay Interference) and BRENK alert analysis, we filtered BNS1-BNS6, BNS11,
and BNS14–BNS16 as they were likely to possess a structurally promising moiety by not
eliciting false-positive responses (PAIN alert). Usually, PAIN alert holding molecules con-
tain substructures, which are likely to produce false positive biological results regardless of
the target protein [17], thereby, reducing the likelihood of putative toxicity or metabolic
instability (BRENK alert). The bioavailability ranges of these compounds were similar
compared to that of the reference compound. Upon comparing the 10 compounds obtained
after filtering through the PAIN and BRENK alert analysis with the 11 compounds iden-
tified from the bioavailability radar, we found overlapping compounds, except BNS10.
Further scrutiny revealed that BNS10 possessed a BRENK alert, leading to its exclusion.
Consequently, we selected 10 compounds that matched both the bioavailability radar
and drug likeliness criteria and from the Protox toxicity class classification, which were
in a considerable range; thus, they were considered for further evaluation, specifically
molecular docking.

2.5. Molecular Docking Validation

Molecular docking validation was conducted using Glide by docking the extracted
native ligand (57N) to the EGFR protein (PDB ID: 5D41) and superimposing the docked
ligand. Superimposition revealed that the docked ligand conformation was nearly identical
to that of the native co-crystallized ligand (Figure 4), with a 0.998 root mean square deviation
(RMSD) value.
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2.6. Molecular Docking

The molecular docking results of the 10 compounds identified from the ADMET tests
are presented in Table 5.

From the docking score, pharmacophore-derived compounds ranged from −9.692 to
−11.625 (Table 5) and for the reference compound JBJ-125 it was −11.119. So, compared to
the reference, BNS1 (−11.625) and BNS16 (−11.237) showed better docking scores. Also,
considering the total amino acid interactions, JBJ-125 had 26 interactions, whereas BNS1
and BNS2 both had a maximum of 29 amino acid interactions. Apart from this, BNS3,
BNS4, and BNS11 showed 27 amino acid interactions, which are more than reference
JBJ-125 (Table 5). So, based on the docking score and number of amino acid interactions,
BNS1–BNS4, BNS11, and BNS16 were selected for molecular dynamics simulation.
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Table 5. Molecular docking (Glide score, IFD score, and total amino acid interactions) result.

Compound Glide Score
(Kcal/mol) IFD Score Total Amino Acid

Interaction

BNS1 −11.625 −667.73 29
BNS2 −10.313 −663.75 29
BNS3 −9.874 −666.74 27
BNS4 −10.408 −671.39 27
BNS5 −10.217 −664.96 25
BNS6 −9.853 −664.44 23

BNS11 −10.193 −665.93 27
BNS14 −10.442 −671.61 25
BNS15 −9.692 −663.93 21
BNS16 −11.237 −673.11 24

57N −10.388 −662.43 20
JBJ-125 −11.119 −659.97 26

From the interaction category (Figure 5), it was observed that all compounds including
the reference have shown hydrophobic interaction with “LEU747, ILE759, MET766, LEU777,
LEU788, MET790, PHE856, and LEU858”. Regarding hydrogen bond interactions we found
that all pharmacophore-derived compounds (except BNS4) showed a hydrogen bond
interaction with LYS745. Polar interaction was observed with THR854 among all the
pharmacophore-derived and reference compounds. In negative charge interactions, JBJ-125
showed interaction with ASP800, ASP855 and GLU762 but all the other pharmacophore-
derived compounds formed interaction with ASP855, GLU762, and GLU866. Therefore,
from the molecular docking experiment, we found that our compounds interacting with
amino acids mostly matched with the earlier discussed amino acids from the previous
findings [8,10]. Additionally, it was observed that JBJ-125 formed a salt bridge interaction
with GLU762. Pi cation interactions were observed among BNS1 and BNS4 with LYS745
and pi-pi stacking was observed with PHE856 among BNS2, BNS3, and BNS16.
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Upon further analysis, it was observed that the pharmacophore-derived compounds
BNS1, BNS3, BNS4, and BNS16 had the presence of a benzamide group in common and
interesting interactions were formed with the benzamide group. For example, the benzene
ring of the benzamide group was found to form a pi-cation interaction with LYS745 in
BNS1 and BNS4 and pi-pi stacking interactions with BNS3 (Table S5). Considering the
carbonyl group present in benzamide, BNS3 and BNS16 had a hydrogen bond interaction
with LYS745 (Table S5). Again, from the amide group, hydrogen bond interactions were
observed with ASP855 in BNS1 and with GLU762 in BNS3. On the other hand, BNS2 and
BNS11 had an acetamide group in common. Here, with the acetamide group, LYS745 had a
hydrogen bond interaction with the carbonyl group of BNS2 and BNS11.

2.7. Induced Fit Docking

By using Induced Fit Docking (IFD), it is possible to create multiple poses for the
ligand–protein complex. Here, multiple conformational alterations matching the receptor
–ligand position are conducted, followed by ranking the poses based on the IFD score for
the identification of the ideal structure of the docked complex. In this study, using IFD,
we compared the IFD scores of pharmacophore-derived compounds with the reference
compound JBJ-125 to investigate the ideal ligand posture. All scores are listed in Table 5.
From Table 5, we can find that the IFD score of JBJ-125 was −659.97 whereas, from the com-
pounds obtained from pharmacophore, the IFD score range varied from−663.75 to−673.11,
indicating the better performance of IFD of the pharmacophore-derived compounds. The
highest IFD score was observed in BNS16 (−673.11) and the lowest in BNS2 (−663.75). With
induced-fit docking, it is possible to generate multiple ligand-receptor structures along
with certain conformational changes made by the receptor to receive a ligand. Therefore,
this comprehensive technique helps in identifying promising ligand-receptor combinations
for additional studies.

2.8. Molecular Dynamics Simulation

Molecular dynamics (MD) simulations were performed for 100 nanoseconds (ns) to
evaluate the stability of ligand binding with proteins along with complex flexibility [18]. The
tested compounds’ binding stability and protein–ligand complex flexibility were observed
utilizing the root mean square deviation (RMSD) and root mean square fluctuation (RMSF),
respectively. In addition, the radius of gyration (rGyr) and molecular surface area (MolSA)
were also analyzed to observe the nature of ligand extendedness and molecular surface
calculation respectively.

From the molecular dynamics simulation, for JBJ-125, the average RMSD of the protein
backbone atom was 2.204 Å (Figure 6A), with a maximum of 2.92 Å at 75.40 ns. The
backbone RMSD was almost stable and slight fluctuation was observed within the 68 to
76 ns range. The average RMSD of ligand fit to protein was 2.421 Å with a maximum
value of 3.44 Å at 18.80; other than this, the RMSD was almost stable. Overall, the average
protein–ligand complex RMSD was below 3.00 Å, indicating a good stability pattern. The
protein RMSF value average was 1.032 Å, the average rGyr value was 6.063, and MolSA
was 480.72 Å2 (Figure 7).

For BNS1, the average RMSD of the protein backbone was 3.144 Å (Figure 6A) and the
average RMSD of ligand fit to protein was 2.97 Å. For the protein backbone, it took around
20 ns to reach a stable point and after that, it was almost stable through the 100 ns run;
an almost similar pattern was also observed in ligand RMSD. The overall ligand protein
RMSD was close to 3.00 Å. The protein RMSF value average was 1.210 Å (Figure 6B). The
rGyr value average was 5.27 Å, which was better than JBJ-125, and the average MolSA
value was 466.93 Å2 (Figure 7).

For BNS2, the protein backbone RMSD value average was 2.821 Å (Figure 6A). The
RMSD distribution pattern of the BNS2 protein backbone was almost similar to BNS1.
The ligand RMSD average was 2.10 Å with minor fluctuations. This indicates the overall
considerable RMSD of the protein–ligand complex. The average protein RMSF (Figure 6B)



Pharmaceuticals 2024, 17, 1107 12 of 20

value was observed at 1.171 Å. The rGyr was observed at 4.688 Å, which was better than
the reference compound. The average MolSA value was 426.87 Å2 (Figure 7).
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In BNS3, the observed protein backbone RMSD average was 2.805 Å (Figure 6A), and
ligand RMSD had an average of 4.155 Å. For protein backbone RMSD, initial fluctuation
was seen within 20 ns; after that, similar distribution was observed. In ligand RMSD, after
40 ns, stable distribution was seen. Here, the ligand RMSD value observed was slightly
higher than the JBJ-125. The protein RMSF value average was 1.09 Å (Figure 6B). Also,
the average rGyr was 4.605 Å, which was better than JBJ-125, and the MolSA average was
394.94 Å2 (Figure 7).

In BNS4, the average protein backbone RMSD value was 4.014 Å (Figure 6A) and the
ligand RMSD was 4.713 Å. The average protein RMSF value was 1.309 Å (Figure 6B) but
the highest fluctuation crossed 5 Å. The rGyr value observed was 5.08 Å, whereas MolSA
was 419.194 Å2 (Figure 7)

In BNS11, the protein backbone RMSD average was observed at 2.95 Å (Figure 6A) but
in the protein backbone RMSD, among the overall distribution, fluctuation was frequently
raised above 3.0 Å. The ligand RMSD average was 4.706 Å but after 10 ns to the rest, the
overall distribution was above 4.0 Å, indicating less ligand protein binding compared to
JBJ-125. The average protein backbone RMSF was 1.68 Å (Figure 6B). The rGyr was 4.71 Å
and the, MolSA average was 399.08 Å2 (Figure 7).

For BNS16, the protein backbone RMSD average was 2.67 Å (Figure 6A); after 30 ns to
the rest, the average distribution was below 3.0 Å. The ligand RMSD average was 2.280 Å;
after initial fluctuation, the RMSD graph declined to 2.50 Å till the first 50 ns. During the
last 50 ns, distribution was observed below 2.5 Å. The protein RMSF average was 1.180 Å2

(Figure 6B). The average rGyr was 5.08 Å and the average MolSA was 406.49 Å2 (Figure 7).
For all the compounds obtained from the pharmacophore, the rGyr value score was

lower than the reference compound, indicating that the pharmacophore-derived com-
pounds will undergo less conformational change within the active site than the reference
one [19]. The MolSA value of the compounds indicates the polarity of the compounds,
which is competitive toward the reference [19]. The post-MD simulation interaction is
presented in the Supplementary Figure S1 and the data are presented in Tables S6–S10.

Compared to the reference compound, BNS2 and BNS16 had a similar protein–ligand
RMSD value average, within the range below 3.0 Å, indicating a stable complex [20]. For
BNS1, the ligand RMSD average was 2.97 Å and the protein RMSD value average was
3.144 Å, which is not significantly higher than the acceptable range. In BNS3 and BNS11,
the average ligand RMSD value was slightly higher than 3.0 Å (i.e., 4.155 Å and 4.706 Å)
but not significantly different; thus, BNS1, BNS3, and BNS11 can also be considered for
further evaluation. But, in BNS4, both the protein and ligand RMSD value average was over
4.00 Å; thus, excluding this, we have BNS2, BNS16, BNS1, BNS3, and BNS11 (Figure S2) as
potential candidates for further evaluation.

3. Discussion

After pharmacophore modeling and virtual screening, we validated the pharma-
cophore model using deep learning techniques and found considerable results. The physic-
ochemical attributes of pharmacophore-derived compounds were comprehensibly analyzed
utilizing SWISS ADME. Lipophilicity, a fundamental determinant of drug absorption, was
meticulously evaluated from the Log Po/w (ranging from 2.22–4.32 across the compound
set). These positive values signify favorable lipophilic characteristics, indicating potential
gastrointestinal absorption [21,22]. Furthermore, the assessment of solubility, a pivotal
parameter governing drug bioavailability, revealed a collective trend toward poor water
solubility among the pharmacophore-derived compounds and reference standards. Despite
this, the observed lipophilicity suggests the prospect of substantial oral absorption, facili-
tating systemic distribution and eventual therapeutic action [23,24]. This intricate interplay
between lipophilicity and solubility underscores the nuanced pharmacokinetic profile of
the identified compounds, warranting further exploration to elucidate their therapeutic
potential with precision and depth.
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The assessment of Absorption, Distribution, Metabolism, and Excretion (ADME) prop-
erties constitutes a pivotal aspect in delineating the pharmacological behavior of potential
drug candidates [25]. Particularly, for orally administered drugs, efficient absorption within
the gastrointestinal tract (GIT) is of paramount importance for optimizing pharmacokinetic
parameters. Conversely, the blood–brain barrier (BBB) serves as a pivotal physiological
barrier that selectively regulates the entry of substances into the central nervous system
(CNS) [26]. A comprehensive analysis of ADME properties revealed compelling insights
into the pharmacokinetic profile of the identified compounds. Notably, except for BNS2,
BNS3, BNS11, and BNS13, the evaluated compounds exhibited high gastrointestinal absorp-
tion rates, indicating favorable oral bioavailability. Furthermore, the absence of blood–brain
barrier permeation among the investigated compounds suggests a reduced likelihood of ad-
verse effects within the CNS, thus augmenting their safety profile for potential therapeutic
applications. These findings underscore the potential utility of the identified compounds
as orally administered agents with favorable pharmacokinetic attributes and minimal
CNS-related side effects.

P-glycoprotein (P-gp) serves as a pivotal efflux transporter, facilitating substrate
translocation from intracellular to extracellular compartments, thereby mitigating the
potential toxic effects of compounds [27,28]. In our in silico investigation, we tested the P-gp
substrate affinity of the identified compounds to elucidate their potential pharmacokinetic
interactions. Notably, JBJ-125 exhibited P-gp substrate positivity, indicating their propensity
to interact with this efflux transporter. Similarly, BNS1, BNS4, BNS6, BNS10, and BNS13-
BNS16 also demonstrated P-gp substrate positivity. These observations shed light on
the potential pharmacokinetic behavior of the identified compounds, particularly their
interaction with P-gp and subsequent implications for drug disposition and efficacy. These
insights will be instrumental in guiding further pharmacological evaluation and therapeutic
applications of the identified compounds.

Understanding the intricate interactions between compounds and the cytochrome
P450 (CYP) system is crucial to elucidating the pharmacokinetic profiles of potential drugs.
These interactions play a pivotal role in mediating the biotransformation and elimination
of drugs from the systemic circulation [17]. In this study, we examined the inhibitory
potential of the identified compounds against various CYP isoforms to elucidate their
pharmacokinetic implications. Our findings revealed that BNS8 and BNS14 inhibited
only one and two CYP isoforms, respectively. Interestingly, the remaining compounds
inhibited a minimum of three CYP isoforms. Comparative analysis of the reference com-
pound JBJ-125 demonstrated a striking similarity in the inhibitory patterns, underscoring
the consistency in pharmacokinetic behavior across the compounds. These observations
underscore the importance of assessing CYP-mediated drug interactions in predicting the
pharmacokinetic profile and potential drug–drug interactions of novel compounds. Such
insights are invaluable for guiding further pharmacological investigations and optimizing
therapeutic strategies.

The identification of structurally promising moieties and assessment of potential toxi-
city are critical steps in the preclinical evaluation of novel compounds. In the study, we
used PAIN and BRENK to identify the structural motifs associated with false-positive re-
sponses in silico and putative toxicity, chemical reactivity, and metabolic instability [29,30].
Our analysis revealed that BNS1- BNS6, BNS11, and BNS14–BNS16 exhibited no PAIN or
BRENK alerts. Conversely, JBJ-125 exhibited one PAIN alert. Furthermore, the PROTOX
study indicated that all other pharmacophore-derived compounds, except BNS4, demon-
strated toxicity levels below III, suggesting their potential safety for further evaluation [31].
Based on the bioavailability radar and drug-likeness properties, we selected 10 compounds
(BNS1-BNS6, BNS11, and BNS14–BNS16) for subsequent molecular docking studies.

From the docking studies, we found that compounds BNS1 to BNS4 and BNS11
showed more amino acid interactions and BNS1 and BNS16 had docking scores higher than
reference JBJ-125. From the induced fit docking; we found all the pharmacophore-derived
compounds had higher IFD scores. Compared with JBJ-125, we can observe that, like JBJ-
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125, BNS1, BN2, BNS3, BNS4, BNS11, and BNS16 had common positive charge interactions
with LYS745. Here, we do not see any additional interaction between JBJ-125 and LYS745
but in BNS1 there is one hydrogen bond interaction and one pi cation interaction with
LYS745, one hydrogen bond interaction with BNS2 and BNS3, two pi cation interactions
with BNS4, BNS11, and BNS16 present, which shows the stronger bond formation of these
compounds compared to JBJ-125. JBJ-125 had negative charge interactions with GLU762, so
was seen among the other compounds also. Notably, JBJ-125 had a salt bridge interaction
with GLU762. Additionally, BNS3 and BNS11 had formed one hydrogen bond interaction
with GLU762, indicating their competitiveness with JBJ-125. Also, in the introduction part,
THR854, Asp855, and Phe856 were discussed as key important amino acid residues for
the allosteric site [8,10]. Here, JBJ-125, THR854, Asp855, and Phe856 formed polar, charge-
negative, and hydrophobic interactions, respectively. A similar pattern was observed
among all the other compounds also as well. Additionally, we observed that in BNS1,
a hydrogen bond interaction was formed with ASP855 and a pi-pi stacking interaction
was formed with PHE856 in BNS2, BNS11, and BNS16, stating stronger interaction of
these compounds than JBJ-125. Previous studies have shown that afatinib and erlotinib
showed docking scores of−7.69 and−7.37, respectively, against EGFR [32,33], whereas, our
pharmacophore-derived compounds showed better docking scores than them indicating
their better binding affinity and selectivity.

Compound BNS1 bears a 1,2,3,4-tetrahydroquinoline scaffold. In previous studies,
quinazoline derivatives containing the 1,2,3,4-tetrahydroquinoline moiety demonstrated
significant inhibitory activity against EGFR kinase, comparable to the positive control,
afatinib [34]. This suggests that BNS1 could potentially exhibit strong EGFR inhibitory
effects, making it a promising candidate for further experiments.

Also, Compound BNS3 features a thiazolo[3,2-a]pyrimidine scaffold. Another study
reported that a novel series of naphtho[2′,3′:4,5]thiazolo[3,2-a]pyrimidine hybrids were
synthesized and evaluated for their topo IIα/EGFR inhibitory activities [35]. Compounds
6i, 6a, and 6c from this series showed superior cytotoxic activity compared to doxorubicin
and erlotinib against tested cancer cell lines. Molecular docking studies revealed that
compound 6a forms the same hydrogen bond interaction with LYS 745 as observed with
BNS3 in our study. This structural similarity and interaction suggest that BNS3 may also
exhibit potent EGFR inhibition and could offer enhanced efficacy in treating cancers with
EGFR involvement. Both BNS1 and BNS3 show potential for strong EGFR inhibitory
activity due to their structural resemblance to compounds that have demonstrated efficacy
in preclinical studies. This enhances their prospects as effective EGFR inhibitors.

Along with these tests, the considerable MD simulation pattern increases the accep-
tance of our compounds. Moreover, all these compounds showed interactions with the key
important amino acid residues regarded as potential allosteric sites as mentioned earlier.
Thus, our final compounds can be considered for further experiments as a better therapeutic
choice compared to JBJ-125.

4. Material and Methods

Virtual experimentation was started with pharmacophore design and virtual screen-
ing using Pharmit [36], followed by the ADMET test using SWISS ADME and PROTOX
3.0 [17,31]. For docking, the glide function was used to perform a systematic search for the
conformational, orientation, and positional space of the ligand in the binding pocket [37].
A molecular dynamics study was performed using Desmond in the Schrodinger molecular
modeling suite [18].

4.1. Pharmacophore Designing/Modeling

A pharmacophore is an exposure of the drug-likeness of a molecule to its steric and
electronic features, which are required to ensure optimal intermolecular interactions with a
specific biological target, that is, a protein or enzyme, and inhibit or block its activity [38].
The pharmacophore technique can be used to facilitate drug development while searching
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large libraries or databases. In this study, the structure-based pharmacophore for the
allosteric site of PDB ID:5D41 was generated using JBJ-125, the active inhibitor. The
pharmacophore was generated using the free online server Pharmit, an open tool available
at (http://pharmit.csb.pitt.edu, accessed on 13 June 2024). The value specification we
used here are aromatic ring 1 (X: 8.6, Y: −0.7, Z: −0.1), aromatic ring 2 (X: 15.4, Y: −3.9, Z:
−0.2), aromatic ring 3 (X: 17.6, Y: 2.2, Z: −0.1), hydrogen bond donor (X: 15.9, Y: 0.1, Z: 0.5),
hydrogen bond acceptor 1 (X: 11.8, Y: 1.3, Z: 0.2) hydrogen bond acceptor 2 (X: 14.1, Y: 1.0,
Z: −0.6), hydrogen bond acceptor 3 (X: 12.7, Y: −4.3, Z: 0.2), hydrophobic bond 1 (X: 8.6, Y:
−0.7, Z: −0.1), hydrophobic bond 2 (X: 15.4, Y: −3.9, Z: −0.2), and hydrophobic bond 3 (X:
17.6,Y: 2.2, Z: −0.1).

4.2. Pharmacophore-Based Virtual Screening

In computational drug development and discovery processes, pharmacophore-based
virtual screening is one of the most important steps for searching large libraries to identify
LEADS against specific targets. Several tools and servers are available for pharmacophore-
based virtual screening. Here, we used Pharmit, a free online server with an algorithm that
can screen compound libraries based on the pharmacophore model or molecular shape and
rank the results by energy minimization [36]. Using Pharmit, large databases of compounds
can be screened based on their pharmacophoric features or molecular shapes. In this study,
we screened the zinc database (https://zinc20.docking.org/, accessed on 13 June 2024) [39]
based on JBJ-125 using Pharmit, and the top hits generated from the model are given in
Table 6.

Table 6. Top hits generated from the Pharmit model.

Compound ID RMSD Mass RBnds

ZINC000012777271 0.617 437 8
ZINC000013577005 0.642 490 10
ZINC000229934991 0.687 577 5
ZINC000033067751 0.699 431 8
ZINC000012638703 0.701 499 9
ZINC000041077159 0.714 433 8
ZINC000020617150 0.750 380 8
ZINC000020617126 0.751 408 8
ZINC000033067859 0.754 445 8
ZINC000000831474 0.762 366 8
ZINC000059488016 0.797 385 2
ZINC000059488018 0.798 429 2
ZINC000059488021 0.798 380 3
ZINC000059488022 0.798 395 3
ZINC000016694801 0.807 495 10
ZINC000021535964 0.821 472 8

4.3. Pharmacophore Validation

To determine the model accuracy of our pharmacophore model in predicting active
chemicals, pharmacophore validation was performed. Here, we used the Deep decoy
dataset (https://github.com/oxpig/DeepCoy, accessed on 18 June 2024), which generates
property—matching decoy molecules, using a deep learning strategy called deep coy [15].
Here, we took the active molecules SMILE and generated 100 inactive decoy structures for
each active molecule.

4.4. ADME Profile

The absorption, distribution, metabolism, and excretion (ADME) profile of the selected
compounds was determined using SwissADME. The freely accessible SwissADME web tool
(http://www.swissadme.ch/, accessed on 19 June 2024) is the most relevant computational
method for providing a global appraisal of the pharmacokinetic profiles of small molecules.

http://pharmit.csb.pitt.edu
https://zinc20.docking.org/
https://github.com/oxpig/DeepCoy
http://www.swissadme.ch/
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These methods were selected by web tool designers for robustness and ease of interpretation
to enable efficient translation into medicinal chemistry [17]. Additionally, hepatotoxicity,
neurotoxicity, carcinogenicity, immune-toxicity, mutagenicity, cytotoxicity, and toxicity
were predicted using PROTOX 3.0 (ProTox-3.0-Prediction of Toxicity of chemicals) available
in (https://tox.charite.de/protox3/, accessed on 19 June 2024) [31].

4.5. Ligand Preparation

For ligand preparation, we designed a structure-based pharmacophore, targeting the
allosteric site of PDB ID-5D41 focusing on JBJ-125, its active inhibitor. The pharmacophore
was generated using the free online server Pharmit. Using the pharmacophore, we screened
16 compounds having structural similarity with JBJ-125 from the zinc database. The selected
compounds were processed for energy minimization via the LigPrep module of Schrodinger
using the OPLS3e force field [40]. The ZINC and PubChem ID of the pharmacophore-
derived and reference compounds, respectively, are presented in Table 1.

4.6. Protein Preparation

We selected a mutant-selective EGFR protein structure targeting T790M and C797S
mutations (PDB ID-5D41). The PDB structure was downloaded from RCSB PDB [41].
After the protein structure was retired from RCSB PDB, it underwent protein preparation
processes available in Schrodinger [42]. During the protein preparation, water molecules
were removed, missing side chains were added using Prime, and all co-crystallized ligands
except 57N were deleted because they represent an allosteric inhibitor. 57N was used later
for generating the receptor grid. The protein energy minimization was performed using
the OPLS3e force field. The Van der Waals radius scaling factor was kept at 1.0 with a
partial cutoff value of 0.25. For receptor grid generation, the centroid of the workspace
ligand (57N) was selected and the grid box was generated accordingly (X: −23.71, Y: 31.37,
Z: 12.3).

4.7. Docking Simulation Validation

Docking simulation was validated by re-docking the native ligand to the receptor
binding site, to validate docking analysis, reproducibility, and reliability.

4.8. Molecular Docking

The GLIDE operational ligand docking tool in Maestro was used to generate molecular
docking [43]. In GLIDE, compounds having atom numbers more than 500 and rotatable
bonds more than 100 were set to reject [44]. As the number of designed analogs and
generated tautomer was less, they were screened using the standard precision (SP) method,
which uses descriptors and explicit water technology. The SP method eliminates false posi-
tives and employs a protocol with a refined growth strategy [37] and for ligand sampling,
the flexible option was chosen along with nitrogen inversion and ring conformation in
consideration. The application of sample bias was performed to all torsions presented
with attached functional groups. Also, the Epik tool was enabled to enhance the docking
score [45]. Minimization of post-docking was also performed, where the number of ten
poses per ligand was evaluated to report the most effective conformation.

4.9. Induced Fit Docking

For induced fit docking using Schrodinger, the induced fit docking module was
utilized [19,28]. Here, we used the previously used receptor grid box. For conformational
sampling, sample ring conformation was kept with an energy window of 2.5 kcal/mol;
additionally, receptor van der Waals scaling was kept at 0.50 along with ligand van der
Waals scaling at 0.50. Residue refinement was kept within 5.0 Å of the ligand poses. Glide
redocking of structures was kept within 30.0 kcal/mol of the best structure with standard
precision mode. Table 5 presents the outcome of the induced fit docking score.

https://tox.charite.de/protox3/
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4.10. Molecular Dynamics

Target–ligand complex flexibility was studied via molecular dynamics (MD) to mimic
biological systems. MD simulations were performed using the Desmond tool of the
Schrödinger Drug Design Suite. Based on the docking score, the ligands were subjected
to MD simulations for 100 ns to study their stability. The three steps performed for the
MD simulation were building the system, minimization, and MD simulation. The docked
ligand–protein complex was selected and the system was modeled by a predefined solvent
system—TIP3P under orthorhombic boundary conditions. System neutralization was con-
ducted by adding counter ions and salt was added as a concentration of 0.15 M Na+ and
Cl− ions for reaching physiological circumstances and the system building was performed
using OPLS3e force field. In a 100 ns run of molecular dynamics, trajectory data were
taken every 50 picoseconds, energy data were captured at 1.2 picoseconds intervals, and
the approximate number of frames was 500. NPT ensemble class was selected and 300 K
temperature followed by 1.01325 pressures (bar) was carried out for MD simulation. Later,
utilization of the simulation interaction diagram function was used for generating figures
and plots to present the results. Any negative charges on the model were neutralized with
sodium ions and the model was subjected to energy minimization until 25 kcal/mol/Å
gradient thresholds were achieved at 300 K and 1 bar pressure via the NPT ensemble class.
When conducting the MD simulation, the trajectory was recorded at 50 ps with approx-
imately 500 frames. The complex stability was evaluated by protein and ligand RMSD
(Root-Mean-Square Deviation) fluctuations, protein–ligand interactions, and contacts with
various amino acids using the Simulation Event Analysis tool of Desmond [18].

5. Conclusions

In our study, the aim was to identify potential allosteric inhibitors to overcome the
mutations that happen in EGFR NSCLC. To do it, we considered compound JBJ−125 as a
reference and developed a pharmacophore-based on the features of JBJ-125 and performed
a deep learning-based method to validate the pharmacophore model, followed by virtual
screening. After that, we evaluated their toxicity via Swiss ADME and Protox. The
screened compounds from ADMET tests undergo molecular docking, induced fit docking,
and molecular dynamics studies. We found that BNS1, BNS2, BNS3, BNS11, and BNS16
have better interactions and docking scores than JBJ-125, and interactions with previously
reported amino acid residues as allosteric sites were also observed among them. Recent
studies indicate the capacity of JBJ-125 as a promising one to overcome resistance as a single
agent or in combination with Osimertinib; hence, we believe we have potential outcomes
and in vitro studies need to be performed to fully discover their therapeutic potential.
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