Applications of Capillary Electrophoresis for the Detection of Adulterants in Dietary Supplements
Abstract
:1. Introduction
2. Overview of Capillary Electrophoresis
3. Applications of CE in Detecting Adulterants
4. Challenges and Considerations
5. Review Methodology
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Rautiainen, S.; Manson, J.E.; Lichtenstein, A.H.; Sesso, H.D. Dietary supplements and disease prevention—A global overview. Nat. Rev. Endocrinol. 2016, 12, 407–420. [Google Scholar] [CrossRef]
- Binns, C.W.; Lee, M.K.; Lee, A.H. Problems and prospects: Public health regulation of dietary supplements. Annu. Rev. Public Health 2018, 39, 403–420. [Google Scholar] [CrossRef]
- Rocha, T.; Amaral, J.S.; Oliveira, M.B.P. Adulteration of dietary supplements by the illegal addition of synthetic drugs: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 43–62. [Google Scholar] [CrossRef] [PubMed]
- White, C.M. Continued risk of dietary supplements adulterated with approved and unapproved drugs: Assessment of the US Food and Drug Administration’s tainted supplements database 2007 through 2021. J. Clin. Pharmacol. 2022, 62, 928–934. [Google Scholar] [CrossRef]
- Marcus, D.M. Dietary supplements: What’s in a name? What’s in the bottle? Drug Test. Anal. 2016, 8, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Orhan, I.E.; Senol, F.S.; Skalicka-Wozniak, K.; Georgiev, M.; Sener, B. Adulteration and Safety Issues in Nutraceuticals and Dietary Supplements: Innocent or Risky; Nutraceuticals, Nanotechnology in the Agri-Food Industry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 153–182. [Google Scholar]
- Czepielewska, E.; Makarewicz-Wujec, M.; Różewski, F.; Wojtasik, E.; Kozłowska-Wojciechowska, M. Drug adulteration of food supplements: A threat to public health in the European Union? Regul. Toxicol. Pharmacol. 2018, 97, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Vaclavik, L.; Krynitsky, A.J.; Rader, J.I. Mass spectrometric analysis of pharmaceutical adulterants in products labeled as botanical dietary supplements or herbal remedies: A review. Anal. Bioanal. Chem. 2014, 406, 6767–6790. [Google Scholar] [CrossRef]
- Jagim, A.R.; Harty, P.S.; Erickson, J.L.; Tinsley, G.M.; Garner, D.; Galpin, A.J. Prevalence of adulteration in dietary supplements and recommendations for safe supplement practices in sport. Front. Sports Act. Living 2023, 5, 1239121. [Google Scholar]
- Walker, M.J.; Naughton, D.P.; Deshmukh, N.; Burns, D.T. A review of methods for the simultaneous detection of illegal ingredients in food supplements. J. Appl. Phycol. A 2016, 44, 51–56. [Google Scholar]
- Liu, Y.; Lu, F. Adulterated pharmaceutical chemicals in botanical dietary supplements: Novel screening approaches. Rev. Anal. Chem. 2017, 36, 20160032. [Google Scholar]
- Voeten, R.L.; Ventouri, I.K.; Haselberg, R.; Somsen, G.W. Capillary electrophoresis: Trends and recent advances. Anal. Chem. 2018, 90, 1464–1481. [Google Scholar] [CrossRef] [PubMed]
- Toraño, J.S.; Ramautar, R.; de Jong, G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr. B 2019, 1118, 116–136. [Google Scholar] [CrossRef]
- Silva, M. Micellar electrokinetic chromatography: A review of methodological and instrumental innovations focusing on practical aspects. Electrophoresis 2013, 34, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Klepárník, K. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory. Electrophoresis 2015, 36, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Ganzera, M. Quality control of herbal medicines by capillary electrophoresis: Potential, requirements, and applications. Electrophoresis 2008, 29, 3489–3503. [Google Scholar] [CrossRef] [PubMed]
- Rabanes, H.R.; Guidote, A.M., Jr.; Quirino, J.P. Capillary electrophoresis of natural products: Highlights of the last five years (2006–2010). Electrophoresis 2012, 33, 180–195. [Google Scholar] [CrossRef]
- Gackowski, M.; Przybylska, A.; Kruszewski, S.; Koba, M.; Mądra-Gackowska, K.; Bogacz, A. Recent applications of capillary electrophoresis in the determination of active compounds in medicinal plants and pharmaceutical formulations. Molecules 2021, 26, 4141. [Google Scholar] [CrossRef]
- Przybylska, A.; Gackowski, M.; Koba, M. Application of capillary electrophoresis to the analysis of bioactive compounds in herbal raw materials. Molecules 2021, 26, 2135. [Google Scholar] [CrossRef]
- Muschietti, L.; Redko, F.; Ulloa, J. Adulterants in selected dietary supplements and their detection methods. Drug Test. Anal. 2020, 12, 861–886. [Google Scholar] [CrossRef]
- Ku, Y.R.; Chang, Y.S.; Wen, K.C.; Ho, L.K. Analysis and confirmation of synthetic anorexics in adulterated traditional Chinese medicines by high-performance capillary electrophoresis. J. Chromatogr. A 1999, 848, 537–543. [Google Scholar] [CrossRef]
- Ku, Y.R.; Tsai, M.J.; Lin, J.H.; Wen, K.C. Micellar Electrokinetic Capillary Chromatography of Clobenzorex HCI and Diazepam Adulterated in Anorexiant Traditional Chinese Medicine. Chin. Pharm. J. 1996, 32–40. [Google Scholar]
- Cheng, H.L.; Tseng, M.C.; Tsai, P.L.; Her, G.R. Analysis of synthetic chemical drugs in adulterated Chinese medicines by capillary electrophoresis/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 1473–1480. [Google Scholar] [CrossRef]
- Ku, Y.R.; Chag, L.Y.; Ho, L.K.; Lin, J.H. Analysis of synthetic anti-diabetic drugs in adulterated traditional Chinese medicines by high-performance capillary electrophoresis. J. Pharm. Biomed. Anal. 2003, 33, 329–334. [Google Scholar] [CrossRef]
- Avula, B.; Khan, I.A. Separation and determination of ephedrine enantiomers and synephrine by high performance capillary electrophoresis in dietary supplements. Chromatographia 2004, 59, 71–77. [Google Scholar] [CrossRef]
- Sitton, A.; Schmid, M.G.; Gübitz, G.; Aboul-Enein, H.Y. Determination of lipoic acid in dietary supplement preparations by capillary electrophoresis. J. Biochem. Biophys. Methods 2004, 61, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Sombra, L.L.; Gómez, M.R.; Olsina, R.; Martínez, L.D.; Silva, M.F. Comparative study between capillary electrophoresis and high performance liquid chromatography in ‘guarana’ based phytopharmaceuticals. J. Pharm. Biomed. Anal. 2005, 36, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Phinney, K.W.; Ihara, T.; Sander, L.C. Determination of ephedrine alkaloid stereoisomers in dietary supplements by capillary electrophoresis. J. Chromatogr. A 2005, 1077, 90–97. [Google Scholar] [CrossRef]
- Prokorátová, V.; Kvasnička, F.; Ševčík, R.; Voldřich, M. Capillary electrophoresis determination of carnitine in food supplements. J. Chromatogr. A 2005, 1081, 60–64. [Google Scholar] [CrossRef]
- Weiss, D.J.; Austria, E.J.; Anderton, C.R.; Hompesch, R.; Jander, A. Analysis of green tea extract dietary supplements by micellar electrokinetic chromatography. J. Chromatogr. A 2006, 1117, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Cianchino, V.; Acosta, G.; Ortega, C.; Martínez, L.D.; Gomez, M.R. Analysis of potential adulteration in herbal medicines and dietary supplements for weight control by capillary electrophoresis. Food Chem. 2008, 108, 1075–1081. [Google Scholar] [CrossRef]
- Malavaki, C.J.; Asimakopoulou, A.P.; Lamari, F.N.; Theocharis, A.D.; Tzanakakis, G.N.; Karamanos, N.K. Capillary electrophoresis for the quality control of chondroitin sulfates in raw materials and formulations. Anal. Biochem. 2008, 374, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Orlandini, S.; Giannini, I.; Pinzauti, S.; Furlanetto, S. Multivariate optimisation and validation of a capillary electrophoresis method for the analysis of resveratrol in a nutraceutical. Talanta 2008, 74, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, L.; Castro-Puyana, M.; García-Ruiz, C.; Crego, A.L.; Marina, M.L. Determination of L-and D-carnitine in dietary food supplements using capillary electrophoresis–tandem mass spectrometry. Food Chem. 2010, 120, 921–928. [Google Scholar] [CrossRef]
- de Carvalho, L.M.; Martini, M.; Moreira, A.P.; Garcia, S.C.; do Nascimento, P.C.; Bohrer, D. Determination of synthetic pharmaceuticals in phytotherapeutics by capillary zone electrophoresis with contactless conductivity detection (CZE-C4D). Microchem. J. 2010, 96, 114–119. [Google Scholar] [CrossRef]
- Carvalho, L.D.; Cohen, P.A.; Silva, C.V.; Moreira, A.P.L.; Falcão, T.M.; Dal Molin, T.R.; Martini, M. A new approach to determining pharmacologic adulteration of herbal weight loss products. Food Addit. Contam. Part A 2012, 29, 1661–1667. [Google Scholar] [CrossRef]
- Akamatsu, S.; Mitsuhashi, T. Development of a simple capillary electrophoretic determination of glucosamine in nutritional supplements using in-capillary derivatization with o-phthalaldehyde. Food Chem. 2012, 130, 1137–1141. [Google Scholar] [CrossRef]
- Kodama, S.; Taga, A.; Aizawa, S.I.; Kemmei, T.; Honda, Y.; Suzuki, K.; Yamamoto, A. Direct enantioseparation of lipoic acid in dietary supplements by capillary electrophoresis using trimethyl-β-cyclodextrin as a chiral selector. Electrophoresis 2012, 33, 2441–2445. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.P.L.; Motta, M.J.; Dal Molin, T.R.; Viana, C.; de Carvalho, L.M. Determination of diuretics and laxatives as adulterants in herbal formulations for weight loss. Food Addit. Contam. Part A 2013, 30, 1230–1237. [Google Scholar] [CrossRef]
- Viana, C.; Ferreira, M.; Romero, C.S.; Bortoluzzi, M.R.; Lima, F.O.; Rolim, C.M.; de Carvalho, L.M. A capillary zone electrophoretic method for the determination of hypoglycemics as adulterants in herbal formulations used for the treatment of diabetes. Anal. Methods 2013, 5, 2126–2133. [Google Scholar] [CrossRef]
- Akamatsu, S.; Mitsuhashi, T. Development of a simple analytical method using capillary electrophoresis-tandem mass spectrometry for product identification and simultaneous determination of free amino acids in dietary supplements containing royal jelly. J. Food Compos. Anal. 2013, 30, 47–51. [Google Scholar] [CrossRef]
- Akamatsu, S.; Mitsuhashi, T. Simultaneous determination of pharmaceutical components in dietary supplements for weight loss by capillary electrophoresis tandem mass spectrometry. Drug Test. Anal. 2014, 6, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.G.; Aguiar, F.P.; Jesus, D.P.D. A rapid and simple method for determination of 5-hydroxytryptophan in dietary supplements by capillary electrophoresis. J. Braz. Chem. Soc. 2014, 25, 783–787. [Google Scholar] [CrossRef]
- Václavíková, E.; Kvasnička, F. Quality control of chondroitin sulphate used in dietary supplements. Czech J. Food Sci. 2015, 33, 165–173. [Google Scholar] [CrossRef]
- dos Santos, V.B.; Daniel, D.; Singh, M.; do Lago, C.L. Amphetamine and derivatives in natural weight loss pills and dietary supplements by capillary electrophoresis-tandem mass spectrometry. J. Chromatogr. B 2016, 1038, 19–25. [Google Scholar] [CrossRef]
- Tero-Vescan, A.; Vari, C.E.; Imre, S.; Ősz, B.E.; Filip, C.; Hancu, G. Comparative analysis by HPLC-UV and capillary electrophoresis of dietary supplements for weight loss. Farmacia 2016, 64, 699–705. [Google Scholar]
- Wang, D.; Man, R.; Shu, M.; Liu, H.; Gao, Y.; Luan, F. Detection of sibutramine and phenolphthalein in functional foods using capillary electrophoresis. Anal. Methods 2016, 8, 621–626. [Google Scholar] [CrossRef]
- Müller, L.S.; Muratt, D.T.; Molin, T.R.D.; Urquhart, C.G.; Viana, C.; de Carvalho, L.M. Analysis of pharmacologic adulteration in dietary supplements by capillary zone electrophoresis using simultaneous contactless conductivity and UV detection. Chromatographia 2018, 81, 689–698. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, M.H.; Vu, M.T.; Duong, H.A.; Pham, H.V.; Mai, T.D. Dual-channeled capillary electrophoresis coupled with contactless conductivity detection for rapid determination of choline and taurine in energy drinks and dietary supplements. Talanta 2019, 193, 168–175. [Google Scholar] [CrossRef]
- Duong, H.A.; Vu, M.T.; Nguyen, T.D.; Nguyen, M.H.; Mai, T.D. Determination of 10-hydroxy-2-decenoic acid and free amino acids in royal jelly supplements with purpose-made capillary electrophoresis coupled with contactless conductivity detection. J. Food Compos. Anal. 2020, 87, 103422. [Google Scholar] [CrossRef]
- Restaino, O.F.; De Rosa, M.; Schiraldi, C. High-performance capillary electrophoresis to determine intact keratan sulfate and hyaluronic acid in animal origin chondroitin sulfate samples and food supplements. Electrophoresis 2020, 41, 1740–1748. [Google Scholar] [CrossRef]
- Kvasnička, F.; Rajchl, A. Electrophoretic determination of taurine. J. Chromatogr. A 2021, 1645, 462075. [Google Scholar] [CrossRef] [PubMed]
- Riasová, P.; Jenčo, J.; Moreno-González, D.; Vander Heyden, Y.; Mangelings, D.; Polášek, M.; Jáč, P. Development of a capillary electrophoresis method for the separation of flavonolignans in silymarin complex. Electrophoresis 2022, 43, 930–938. [Google Scholar] [CrossRef]
- Cizmarova, I.; Matuskova, M.; Stefanik, O.; Horniakova, A.; Mikus, P.; Piestansky, J. Determination of thiamine and pyridoxine in food supplements by a green ultrasensitive two-dimensional capillary electrophoresis hyphenated with mass spectrometry. Chem. Papers 2022, 76, 6235–6245. [Google Scholar] [CrossRef]
- Amorim, T.L.; Duarte, L.M.; de la Fuente, M.A.; de Oliveira, M.A.L.; Gómez-Cortés, P. Fast capillary electrophoresis method for determination of docosahexaenoic and eicosapentaenoic acids in marine oils omega-3 supplements. J. Chromatogr. A 2020, 1613, 460641. [Google Scholar] [CrossRef]
- Do, Y.N.; Kieu, T.L.P.; Dang, T.H.M.; Nguyen, Q.H.; Dang, T.H.; Tran, C.S.; Vu, A.P.; Do, T.T.; Nguyen, T.N.; Pham, T.N.M.; et al. Green analytical method for simultaneous determination of glucosamine and calcium in dietary supplements by capillary electrophoresis with capacitively coupled contactless conductivity detection. J. Anal. Methods Chem. 2023, 2023, 2765508. [Google Scholar] [CrossRef]
- Pukleš, I.; Páger, C.; Sakač, N.; Šarkanj, B.; Matasović, B.; Samardžić, M.; Budetić, M.; Marković, D.; Jozanović, M. Electrophoretic determination of L-carnosine in health supplements using an integrated lab-on-a-chip platform with contactless conductivity detection. Int. J. Mol. Sci. 2023, 24, 14705. [Google Scholar] [CrossRef]
- Pukleš, I.; Páger, C.; Sakač, N.; Matasović, B.; Kovač-Andrić, E.; Šarkanj, B.; Samardžić, M.; Budetić, M.; Molnárová, K.; Marković, D.; et al. A new green approach to L-histidine and β-alanine analysis in dietary supplements using rapid and simple contactless conductivity detection integrated with high-resolution glass-microchip electrophoresis. Anal. Bioanal. Chem. 2024, 416, 3605–3617. [Google Scholar] [CrossRef]
- Chien, H.J.; Zheng, Y.F.; Wang, W.C.; Kuo, C.Y.; Hsu, Y.M.; Lai, C.C. Determination of adulteration, geographical origins, and species of food by mass spectrometry. Mass Spectrom. Rev. 2023, 42, 2273–2323. [Google Scholar] [CrossRef]
- Rapaka, R.S.; Coates, P.M. Dietary supplements and related products: A brief summary. Life Sci. 2006, 78, 2026–2032. [Google Scholar] [CrossRef]
- Bolshakov, D.S.; Amelin, V.G. Capillary electrophoresis in assessing the quality and safety of foods. J. Anal. Chem. 2023, 78, 815–855. [Google Scholar] [CrossRef]
CE Technique | Analytical Conditions | Product | Substances | Reference |
---|---|---|---|---|
CZE | 120 mM of phosphate, 15% acetonitrile, pH 2.0, 16 kV, 30 °C UV detection 200 nm | traditional Chinese medicinal powders | clobenzorex, diethylpropion, fenfluramine, methamphetamine, phenylpropanolamine, phentermine | [21] |
CZE MEKC CE-ESI-MS | CZE: 40 mM of ammonium acetate, pH 9.0, 20 kV MEKC: 40 mM of ammonium acetate, 20 mM of SDS, pH 9.0, 20 kV UV detection 254 nm CE-ESI-MS: sheath liquid composition methanol/water (70:30) containing 0.2% formic acid, ESI voltage +4 kV | traditional Chinese medicinal powders | acetaminophen, bucetin, caffeine, diazepam, ethoxybenzamide, fenbufen, flufenamic acid, indomethacin, ketoprofen, mefenamic acid, niflumic acid, oxyphenbutazone, phenylbutazone, prednisolone, salicylamide, sulindac | [23] |
CZE | 100 mM of phosphate–borate, pH 7.50, 15 kV, 30 °C UV detection 200 nm | traditional Chinese medicines | acetohexamide, chlorpropamide, glibenclamide, tolbutamide | [24] |
CE | 55 mM of phosphate, 10 mM of borate, 20 mM of HP-β-CD, 7 mM of β-CD, 30% methanol, pH 8.6, 30 kV, 37 °C UV detection 210 nm | tablets, capsules | ephedrine, pseudoephedrine stereoisomers | [25] |
CZE | 50 mM of phosphate, 20% methanol, pH 7.0, 15 kV, 25 °C UV detection 208 nm | tablets | alpha-lipoic acid | [26] |
CZE | 20 mm of sodium tetraborate, pH 9.2, 25 kV, 25 °C UV detection 212 nm | guarana powder and tablets | caffeine, theobromine, theophylline | [27] |
CZE | Method I: 25 mM of phosphate, pH 2.5, 2.8% sulfated-β-CD + 1.2% heptakis(2,6-di-O-methyl)-β-CD, −15 kV, 25 °C Method II: 25 mM of phosphate, pH 2.5, 4% 4% heptakis(2,6-di-O-methyl)-β-CD, 30 kV, 25 °C Method III: 25 mM of phosphate, pH 2.5, 4% hydroxypropyl-β-CD, 25 kV, 25 °C UV detection 210 nm | ephedra products | ephedrine, pseudoephedrine stereoisomers | [28] |
cITP CZE | cITP: terminating electrolyte 10 mM of acetic acid, leading electrolyte 40 mM of acetic acid, 20 mM of ammonium hydroxide CZE: 15 mM of Tris, 25 mM of phosphate, 15 kV UV detection 254 nm | food supplements | L-carnitine | [29] |
MEKC | 5 mM of borate, 60 mM of phosphate, 50 mM of SDS, pH 7.00, 27 kV, 25 °C UV detection 210 nm | dietary supplements containing green tea extracts | caffeine, catechins ((−)-epigallocatechin, (+)-catechin, (−)-epigallocatechin-3-gallate, (−)-epicatechin, or (−)-epicatechin gallate) | [30] |
CZE | 50 mM of phosphate, pH 3.0, 30 kV, 25 °C UV detection 200 nm | tablets, hard capsules, liquid formulations | chondroitin sulfate (glycosaminoglycan or DNA impurities, hyaluronan impurities) | [32] |
CZE | 23 mM of borate, 7% acetonitrile (v/v), pH 10.0, 26 kV, 20 °C UV detection 280 nm | effervescent tablets | resveratrol | [33] |
CE-ESI-MS | 50 mM of ammonium formate, pH 2.5, 0.2% (m/v) succinyl-γ-CD (4 succinyl groups/CD ring), 25 kV, 25 °C MS: sheath liquid, isopropanol/water (50/50 v/v) with 0.1% formic acid | tablets, capsules, biscuits, drinks | carnitine enantiomers | [34] |
CZE | 50 mM of phosphate in a mixture of water/acetonitrile 50/50 (v/v), 15 kV, 25 °C C4D detection at 600 kHz and 2 Vpp | slimming capsules | amfepramone, fenproporex, fluoxetine, sibutramine | [35] |
CZE | 20 mM of borate, 5 mM of o-phthalaldehyde (derivatization agent), 5 mM of 3-mercaptopropionic acid, pH 9.20, 25 kV, 30 °C UV detection 340 nm | dietary supplements | glucosamine | [36] |
CE | 100 mM of phosphate, pH 7.0, 8 mM of TM-β-CD, 18 kV, 20 °C UV detection 200 nm | dietary supplements | alpha-lipoic acid (chiral purity) | [38] |
CZE | 20 mM of phosphate + 30% methanol, pH 9.2, 15 kV, 25 °C C4D detection at 400 kHz and 2 Vpp | slimming capsules | amiloride, chlorthalidone, furosemide, hydrochlorothiazide phenolphthalein amfepramone fluoxetine, paroxetine | [39] |
CZE | 20 mM of sodium acetate, pH 10.0, −15 kV, 25 °C C4D detection at 400 kHz and 2 Vpp | antidiabetic capsules | chlorpropamide, glibenclamide, gliclazide, metformin | [40] |
CE-MS-MS | 20 mM of ammonium formate in 20% acetonitrile, pH 8.0, 30 kV MS: sheath liquid, 5 mM of ammonium formate and 0.1% (v/v) formic acid in 50% v/v methanol/water | slimming tablets, capsules, powders | acetazolamide, furosemide, hydrochlorothiazide, spironolactone, triamterene, trichloromethiazide bisacodyl, dioctyl sulfosuccinate, picosulfate, phenolphthalein, sennoside A, B fenfluramine, mazindol, N-didemethylsibutramine, N-nitrosofenfluramine, phentermine, sibutamine fluoxetine diazepam | [42] |
CZE | 20 mM of phosphate, pH 10.0, 0.2 mM of CTAB, −20 kV, 25 °C UV detection 214 nm | tablets and capsules | 5-hydroxytryptophan (5-HTP) | [43] |
cITP CZE | cITP: leading electrolyte: 5 mM of hydrochloric acid + 10 mM of glycine + 0.01% of 2-hydroxyethylcellulose, pH 2.8; terminating electrolyte: 10 mM of citric acid UV detection 254 nm CZE: 25 mM of phosphate + 21 mM of Tris, pH 3.0, −20 kV UV detection 232 nm | raw material used for dietary supplements production | chondroitin sulphate | [44] |
CE-MS-MS | 100 mM of formic acid, pH 2.4, 25 kV, 20 °C MS: sheath liquid 20 mM of formic acid, pH 2.7, in methanol/water 50:50 (v/v) | tablets, capsules, tea | amphetamine, methamphetamine, methylenedioxyamphetamine, methylenedioxymethamphetamine, methylenedioxyethylamphetamine and phentermine | [45] |
CZE MEKC | 50 mM of phosphate, pH 4.8, 25 kV, 20 °C 50 mM of sodium tetraborate + 50 mM of SDS, pH 9.8, 25 kV, 20 °C UV detection 210 nm | slimming tablets, capsules | caffeine, ephedrine, sibutramine, yohimbine | [46] |
MEKC | 20 mM of phosphate + 20 mM of SDS, pH 11.0, 25 kV, 20 °C UV detection 223 nm | slimming capsules, tea | phenolphthalein, sibutramine | [47] |
CZE | 20 mM of phosphate, 40 mM of sodium hydroxide + 30% methanol (v/v), pH 9.2, 15 kV, 25 °C UV detection 260 nm C4D detection at 400 kHz | weight loss, fat burning, appetite reduction supplements | amiloride, chlorthalidone, furosemide, hydrochlorothiazide fluoxetine, paroxetine phenolphthalein amfepramone | [48] |
CZE | choline: 150 mM of Tris/lactic acid, pH 8.96, −10 kV taurine: 150 mM of Tris/acetic acid, pH 9.5, −10 kV C4D detection at 400 kHz | energy drinks, powdered infant formula, probiotic green rice samples | choline, taurine | [49] |
CE | 10-hydroxy-2-decenoic acid: 20 mM of Tris(hydroxymethyl)aminomethane, pH8.5, −17 kV free amino acids: 2 M lactic acid C4D detection 400 kHz | royal jelly based dietary supplement | 10-hydroxy-2-decenoic acid, free amino acids | [50] |
cITP-CZE | leading electrolyte: 5 mM of HCl, 10 mM of glycylglycine 0.05% 2-hydroxyethyl cellulose solution, pH 3.2 terminating electrolyte: 10 mM of citric acid BGE electrolyte: 50 mM of acetic acid, 20 mM of glycylglycine, and 0.1% 2-hydroxyethyl cellulose solution, pH 3.7 | dietary supplements, food samples | taurine | [52] |
CZE | 100 mM of boric acid, 10% methanol, 5 mM of heptakis(2,3,6-tri-O-methyl)-β-CD, pH 9.0, 25 kV, 25 °C UV detection 200 nm | dietary supplements | flavonolignans (silybin A, silybin B, isosilybin A, isosilybin B, silychristin, silydianin) in silymarin | [53] |
cITP-CE-ESI-MS | 10 mM of ammonium acetate + 20 mM of acetic acid, pH 4.5 spray liquid mixture of methanol + 0.1% acetic acid water solution (50:50, v/v) | tablets, effervescent tablets, drops | pyridoxine (vitamin B6), thiamine (vitamin B1) | [54] |
CZE | 30 mM of sodium tetraborate, 12 mM of Brij 35, 33% methanol (v/v), 17% acetonitrile (v/v), 27 kV, 27 °C, UV detection 200 nm | marine oil gelulels | eicosapentaenoic acid, docosahexaenoic acid | [55] |
CZE | 10 mM of Tris/acetic acid, pH 5.0, 20 kV, 20 °C C4D detection at 400 kHz | tablets, hard capsules | glucosamine, calcium | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hancu, G.; Székely-Szentmiklósi, B.; Stroia, D.G.; Kelemen, H. Applications of Capillary Electrophoresis for the Detection of Adulterants in Dietary Supplements. Pharmaceuticals 2024, 17, 1119. https://doi.org/10.3390/ph17091119
Hancu G, Székely-Szentmiklósi B, Stroia DG, Kelemen H. Applications of Capillary Electrophoresis for the Detection of Adulterants in Dietary Supplements. Pharmaceuticals. 2024; 17(9):1119. https://doi.org/10.3390/ph17091119
Chicago/Turabian StyleHancu, Gabriel, Blanka Székely-Szentmiklósi, Denisa Gabriela Stroia, and Hajnal Kelemen. 2024. "Applications of Capillary Electrophoresis for the Detection of Adulterants in Dietary Supplements" Pharmaceuticals 17, no. 9: 1119. https://doi.org/10.3390/ph17091119
APA StyleHancu, G., Székely-Szentmiklósi, B., Stroia, D. G., & Kelemen, H. (2024). Applications of Capillary Electrophoresis for the Detection of Adulterants in Dietary Supplements. Pharmaceuticals, 17(9), 1119. https://doi.org/10.3390/ph17091119